Startseite Fischer-Tropsch synthesis: Variation of Co/γ-Al2O3 catalyst performance due to changing dispersion, reducibility, acidity and strong metal-support interaction by Ru, Zr and Ce promoters
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Fischer-Tropsch synthesis: Variation of Co/γ-Al2O3 catalyst performance due to changing dispersion, reducibility, acidity and strong metal-support interaction by Ru, Zr and Ce promoters

  • Moradian Amin , Bahadoran Farzad EMAIL logo , Shirazi Laleh und Zamani Yahya
Veröffentlicht/Copyright: 16. September 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this study the effect of (0.1 %Ru, 0–10 % Zr) and (0.1 %Ru, 0–10 % Ce) promoters on dispersion, strong metal-support interaction and reduction behavior of cobalt-supported alumina catalyst in the Fischer-Tropsch synthesis was investigated. The synthesized catalysts were characterized by BET, XRD, ICP, TPR, XPS, and TEM techniques. The results show that addition of Ce to the catalyst leads to the shift of the TPR peaks to lower temperatures which expected that shows higher activity due to higher reducibility, but surprisingly due to SMSI effect results in the lower catalyst activity compared with the unpromoted catalyst. Also, there was a synergistic effect between Ce and Ru in the reduction behavior of Ru-Ce promoted catalyst. The other notable finding of this study was the improvement in the catalyst reducibility in the presence of Zr compared with the unpromoted one that equivalently means the higher catalyst activity. Comparison of the Zr-promoted with the Ce-promoted catalysts show that the former have higher catalyst activity than the latter due to higher acidity and SMSI effect in the presence of the Zr promoter. The C5 selectivity of the 0.1Ru10Zr/15Co and 3Ce/15Co catalysts at low pressure have shown more than 50 % improvement compared to the unpromoted one. Based on the activity at atmospheric pressure; the unpromoted, 0.1Ru/15Co, 0.1Ru3Ce/15Co and 0.1Ru10Zr/15Co catalysts were selected for high pressure condition tests, in which the 0.1Ru10Zr/15Co catalyst shows the highest catalyst activity and heavier hydrocarbon selectivity.

Acknowledgments

The financial supports of this study by the Research Institute of Petroleum Industry, Gas Research Division, Tehran, Iran is thankfully acknowledged.

Reference

Ali, S., B. Chen, and J.G.J. Goodwin, 1995. Zr Promotion of Co/SiO2 for Fischer-Tropsch Synthesis. Journal of Catalysis 157, 35–41.10.1006/jcat.1995.1265Suche in Google Scholar

Bartholomew, C.H., and R.J. Farrauto, 2006. Fundamentals of Industrial Catalytic Processes. 2nd ed. New Jersey: John Wiley & Sons.10.1002/9780471730071Suche in Google Scholar

Bergwerff, J.A., A.A. Lysova, L. Espinosa-Alonso, I.V. Koptyug, and B.M. Weckhuysen, 2008. Monitoring Transport Phenomena of Paramagnetic Metal-Ion Complexes inside Catalyst Bodies with Magnetic Resonance Imaging. Chemistry - A European Journal 14, 2363–2374.10.1002/chem.200700990Suche in Google Scholar

Bezemer, G.L., P.B. Radstake, U. Falke, H. Oosterbeek, H.P.C.E. Kuipers, A.J. Van Dillen, and K.P. De Jong, 2006. Investigation of Promoter Effects of Manganese Oxide on Carbon Nanofiber-Supported Cobalt Catalysts for Fischer–Tropsch Synthesis. Journal of Catalysis 237, 152–161.10.1016/j.jcat.2005.10.031Suche in Google Scholar

Boffa, A., C. Lin, A.T. Bell, and G.A. Somorjai, 1994. Promotion of CO and CO2 Hydrogenation over Rh by Metal Oxides: The Influence of Oxide Lewis Acidity and Reducibility. Journal of Catalysis 149, 149–158.10.1006/jcat.1994.1280Suche in Google Scholar

Borer, A.L., C. Bronnimann, and R. Prins, 1994. ZrO2‒Promoted Rh/SiO2 Catalysts in CO Hydrogenation and Temperature-Programmed Reduction. Journal of Catalysis 145, 516–525.10.1006/jcat.1994.1062Suche in Google Scholar

Carballo, J.M.G., J. Yang, A. Holmen, S. García-Rodríguez, S. Rojas, M. Ojeda, and J.L.G. Fierro, 2011. Catalytic Effects of Ruthenium Particle Size on the Fischer–Tropsch Synthesis. Journal of Catalysis 284, 102–108.10.1016/j.jcat.2011.09.008Suche in Google Scholar

Chabot, G., R. Guilet, P. Cognet, and C. Gourdon, 2015. A Mathematical Modeling of Catalytic Milli-Fixed Bed Reactor for Fischer–Tropsch Synthesis: Influence of Tube Diameter on Fischer Tropsch Selectivity and Thermal Behavior. Chemical Engineering Science 127, 72–83.10.1016/j.ces.2015.01.015Suche in Google Scholar

Chu, W., P.A. Chernavskii, L. Gengembre, G.A. Pankina, P. Fongarland, and A.Y. Khodakov, 2007. Cobalt Species in Promoted Cobalt Alumina-Supported Fischer–Tropsch Catalysts. Journal of Catalysis 252, 215–230.10.1016/j.jcat.2007.09.018Suche in Google Scholar

Dai, X., C. Yu, and R. Li, 2007. Deactivation of CeO2‒Promoted Co/SiO2 Fischer-Tropsch Catalysts. Chinese Journal of Catalysis 28, 1047–1052.10.1016/S1872-2067(08)60007-8Suche in Google Scholar

Dai, X., C. Yu, R. Li, H. Shi, and S. Shen, 2006. Role of CeO2 Promoter in Co/SiO2 Catalyst for Fischer-Tropsch Synthesis. Chinese Journal of Catalysis 27, 904–910.10.1016/S1872-2067(06)60047-8Suche in Google Scholar

Das, T.K., G. Jacobs, P.M. Patterson, W.A. Conner, J. Li, and B.H. Davis, 2003. Fischer–Tropsch Synthesis: Characterization and Catalytic Properties of Rhenium Promoted Cobalt Alumina Catalysts. Fuel 82, 805–815.10.1016/S0016-2361(02)00361-7Suche in Google Scholar

Dinse, A., M. Aigner, M. Ulbrich, G.R. Johnson, and A.T. Bell, 2012. Effects of Mn Promotion on the Activity and Selectivity of Co/SiO2 for Fischer–Tropsch Synthesis. Journal of Catalysis 288, 104–114.10.1016/j.jcat.2012.01.008Suche in Google Scholar

Dry, M.E., 1999. Fischer–Tropsch Reactions and the Environment. Applied Catalysis A: General 189, 185–190.10.1016/S0926-860X(99)00275-6Suche in Google Scholar

Dutta, P., N.O. Elbashir, A. Manivannan, M.S. Seehra, and C.B. Roberts, 2004. Characterization of Fischer–Tropsch Cobalt-Based Catalytic Systems (Co/Sio2 and Co/Al2O3) by X-Ray Diffraction and Magnetic Measurements. Article. Catalysis Letters 98, 203–210.10.1007/s10562-004-8681-2Suche in Google Scholar

Ernst, B., L. Hilaire, and A. Kiennemann, 1999. Effects of Highly Dispersed Ceria Addition on Reducibility, Activity and Hydrocarbon Chain Growth of a Co/SiO2 Fischer–Tropsch Catalyst. Catalysis Today 50, 413–427.10.1016/S0920-5861(98)00519-7Suche in Google Scholar

Feller, A., M. Claeys, and E. Van Steen, 1999. Cobalt Cluster Effects in Zirconium Promoted Co/SiO2 Fischer–Tropsch Catalysts. Journal of Catalysis 185, 120–130.10.1006/jcat.1999.2497Suche in Google Scholar

Fogler, H.S., 1999. Elements of Chemical Reaction Engineering. 3th ed. New Delhi: Prentice-Hall, Inc.Suche in Google Scholar

Gnanamani, M.K., G. Jacobs, W.D. Shafer, M.C. Ribeiro, V.R.R. Pendyala, W. Ma, and B.H. Davis, 2012. Fischer Tropsch Synthesis: Deuterium Isotopic Study for the Formation of Oxygenates over CeO2 Supported Pt–Co Catalysts. Catalysis Communications 25, 12–17.10.1016/j.catcom.2012.03.028Suche in Google Scholar

Gnanamani, M.K., M.C. Ribeiro, W. Ma, W.D. Shafer, G. Jacobs, U.M. Graham, and B.H. Davis, 2011. Fischer–Tropsch Synthesis: Metal–Support Interfacial Contact Governs Oxygenates Selectivity over CeO2 Supported Pt–Co Catalysts. Applied Catalysis A: General 393, 17–23.10.1016/j.apcata.2010.11.019Suche in Google Scholar

He, H.H., X. Dai, and C.T. Au, 2004. Defective Structure, Oxygen Mobility, Oxygen Storage Capacity, and Redox Properties of RE-Based (RE = Ce, Pr) Solid Solutions. Catalysis Today 90, 245–254.10.1016/j.cattod.2004.04.033Suche in Google Scholar

He, L., Y. Zhang, and M. Fan, 2015. Development of Composited Rare-Earth Promoted Cobalt-Based Fischer–Tropsch Synthesis Catalysts with High Activity and Selectivity. Applied Catalysis A: General 505, 276–283.10.1016/j.apcata.2015.07.041Suche in Google Scholar

Iglesia, E., 1997. Design, Synthesis, and Use of Cobalt-Based Fischer-Tropsch Synthesis Catalysts. Applied Catalysis A: General 161, 59–78.10.1016/S0926-860X(97)00186-5Suche in Google Scholar

Iglesia, E., S.L. Soled, and R.A. Fiato, 1992. Fischer-Tropsch Synthesis on Cobalt and Ruthenium Metal Dispersion and Support Effects on Reaction Rate and Selectivity. Journal of Catalysis 137, 212–224.10.1016/0021-9517(92)90150-GSuche in Google Scholar

Iglesia, E., S.L. Soled, R.A. Fiato, and G.H. Via, 1993. Bimetallic Synergy in Cobalt Ruthenium Fischer-Tropsch Synthesis Catalysts. Journal of Catalysis 143: 345–368.10.1006/jcat.1993.1281Suche in Google Scholar

Jacobs, G., J.A. Chaney, P.M. Patterson, T.K. Das, and B.H. Davis, 2004. Fischer–Tropsch Synthesis: Study of the Promotion of Re on the Reduction Property of Co/Al2O3 Catalysts by in Situ EXAFS/XANES of Co K and Re LIII Edges and XPS. Applied Catalysis A: General 264, 203–212.10.1016/j.apcata.2003.12.049Suche in Google Scholar

Jacobs, G., T.K. Das, Y. Zhang, J. Li, G. Racoillet, and B.H. Davis, 2002. Fischer–Tropsch Synthesis: Support, Loading, and Promoter Effects on the Reducibility of Cobalt Catalysts. Applied Catalysis A: General 233, 263–281.10.1016/S0926-860X(02)00195-3Suche in Google Scholar

Johnson, G.R., and A.T. Bell, 2016. Effects of Lewis Acidity of Metal Oxide Promoters on the Activity and Selectivity of Co-Based Fischer–Tropsch Synthesis Catalysts. Journal of Catalysis 338, 250–264.10.1016/j.jcat.2016.03.022Suche in Google Scholar

Jongsomjit, B., J. Panpranot, and J.G.J. Goodwin, 2001. Co-Support Compound Formation in Alumina-Supported Cobalt Catalysts. Journal of Catalysis 204, 98–109.10.1006/jcat.2001.3387Suche in Google Scholar

Jongsomjit, B., J. Panpranot, and J.G.J. Goodwin, 2003. Effect of Zirconia-Modified Alumina on the Properties of Co/γ-Al2O3 Catalysts. Journal of Catalysis 215, 66–77.10.1016/S0021-9517(02)00102-1Suche in Google Scholar

Khodakov, A.Y., R. Bechara, and A. Griboval-Constant, 2003. Fischer–Tropsch Synthesis over Silica Supported Cobalt Catalysts: Mesoporous Structure versus Cobalt Surface Density. Applied Catalysis A: General 254, 273–288.10.1016/S0926-860X(03)00489-7Suche in Google Scholar

Khodakov, A.Y., A. Griboval-Constan, R. Bechara, and F. Villain, 2001. Pore-Size Control of Cobalt Dispersion and Reducibility in Mesoporous Silicas. Journal Physical Chemical B 105, 9805–9811.10.1021/jp011989uSuche in Google Scholar

Kogelbauer, A., J.G.J. Goodwin, and R. Oukaci, 1996. Ruthenium Promotion of Co/Al2O3Fischer–Tropsch Catalysts. Journal of Catalysis 160, 125–133.10.1006/jcat.1996.0130Suche in Google Scholar

Komaya, T., A.T. Bell, Z. Weng-Sieh, R. Gronsky, F. Engelke, T.S. King, and M. Pruski, 1994. Effects of Dispersion and Metal-Metal Oxide Interactions on Fischer-Tropsch Synthesis over Ru/TiO2 and TiO2‒Promoted Ru/SiO2. Journal of Catalysis 150, 400–406.10.1006/jcat.1994.1358Suche in Google Scholar

Ma, C., N. Yao, Q. Han, and X. Li. 2012. “Synthesis and Application of Γ-Al2o3 Supported CoRu-Based Fischer–Tropsch Catalyst.” Chemical Engineering Journal 191: 534–540.10.1016/j.cej.2012.03.024Suche in Google Scholar

Ma, W., G. Jacobs, P. Gao, T. Jermwongratanachai, W.D. Shafer, V.R.R. Pendyala, C.H. Yen, J.L.S. Klettlinger, and B.H. Davis, 2014. Fischer–Tropsch Synthesis: Pore Size and Zr Promotional Effects on the Activity and Selectivity of 25%Co/Al2o3 Catalysts. Applied Catalysis A: General 475, 314–324.10.1016/j.apcata.2014.01.016Suche in Google Scholar

Ma, W., G. Jacobs, R.A. Keogh, D.B. Bukur, and B.H. Davis, 2012b. Fischer–Tropsch Synthesis: Effect of Pd, Pt, Re, and Ru Noble Metal Promoters on the Activity and Selectivity of a 25%Co/Al2o3 Catalyst. Applied Catalysis A: General 437–438, 1–9.10.1016/j.apcata.2012.05.037Suche in Google Scholar

Madikizela-Mnqanqeni, N.N., and N.J. Coville, 2004. Surface and Reactor Study of the Effect of Zinc on Titania-Supported Fischer–Tropsch Cobalt Catalysts. Applied Catalysis A: General 272, 339–346.10.1016/j.apcata.2004.06.006Suche in Google Scholar

Maitlis, P.M., and V. Zanotti, 2009. The Role of Electrophilic Species in the Fischer–Tropsch Reaction. Chemical Communications 53, 1619.10.1039/b822320nSuche in Google Scholar PubMed

Marriott, A., 2004. Fischer-Tropsch Technology, in: M. Dry and A.P. Steynberg, (edited by) Elsevier Science & Technology, Sasolburg.Suche in Google Scholar

Menezes, P.W., A. Indra, N. Ranjbar Sahraie, A. Bergmann, P. Strasser, and M. Driess, 2015. Cobalt-Manganese-Based Spinels as Multifunctional Materials that Unify Catalytic Water Oxidation and Oxygen Reduction Reactions. ChemSusChem 8, 164–171.10.1002/cssc.201402699Suche in Google Scholar PubMed

Morales, B.Y.F., and B.M. Weckhuysen, 2006. Promotion Effects in Co-Based Fischer-Tropsch Catalysis, in: J.J. Spivey and K.M. Dooley, (edited by) Catalysis 19, 1–40. Please provide missing publisher name/publisher location for the “Morales and Weckhuysen, 2006” references list entry.Suche in Google Scholar

Mori, T., A. Miyamoto, N. Takahashi, M. Fukagaya, T. Hattori, and Y. Murakami, 1986. Promotion Effects of Vanadium, Niobium, Molybdenum, Tungsten, and Rhenium Oxides on Surface Reactions in the CO Hydrogenation over Ru/Al2O3 Catalyst. Journal of Physical Chemical 90, 5197–5201.10.1021/j100412a061Suche in Google Scholar

Mosayebi, A., M.A. Mehrpouya, and R. Abedini, 2016. The Development of New Comprehensive Kinetic Modeling for Fischer–Tropsch Synthesis Process over Co-Ru/γ-Al2O3 Nano-Catalyst in a Fixed-Bed Reactor. Chemical Engineering Journal 286, 416–426.10.1016/j.cej.2015.10.087Suche in Google Scholar

Mousavi, S., A. Zamaniyan, M. Irani, and M. Rashidzadeh, 2015. Generalized Kinetic Model for Iron and Cobalt Based Fischer–Tropsch Synthesis Catalysts: Review and Model Evaluation. Applied Catalysis A: General 506, 57–66.10.1016/j.apcata.2015.08.020Suche in Google Scholar

Mousavi, S., A. Zamaniyan, M. Irani, and M. Rashidzadeh, 2016. Statistical Investigation of Macro Kinetics for Iron and Cobalt Based Fischer-Tropsch Synthesis: Mechanistic and Kinetic Implications. Journal of Natural Gas Science and Engineering 34, 1333–1346.10.1016/j.jngse.2016.07.068Suche in Google Scholar

Park, J.Y., Y.J. Lee, P.R. Karandikar, K.W. Jun, J.W. Bae, and K.S. Ha, 2011. Ru Promoted Cobalt Catalyst on Γ-Al2o3 Support: Influence of Pre-Synthesized Nanoparticles on Fischer–Tropsch Reaction. Journal of Molecular Catalysis A: Chemical 344, 153–160.10.1016/j.molcata.2011.05.022Suche in Google Scholar

Parnian, M.J., A.A. Khodadadi, A. Taheri Najafabadi, and Y. Mortazavi, 2014a. Preferential Chemical Vapor Deposition of Ruthenium on Cobalt with Highly Enhanced Activity and Selectivity for Fischer–Tropsch Synthesis. Applied Catalysis A: General 470, 221–231.10.1016/j.apcata.2013.11.004Suche in Google Scholar

Parnian, M.J., A. Taheri Najafabadi, Y. Mortazavi, A.A. Khodadadi, and I. Nazzari, 2014b. Ru Promoted Cobalt Catalyst on Γ-Al2o3: Influence of Different Catalyst Preparation Method and Ru Loadings on Fischer–Tropsch Reaction and Kinetics. Applied Surface Science 313, 183–195.10.1016/j.apsusc.2014.05.183Suche in Google Scholar

Pendyala, V.R.R., G. Jacobs, W. Ma, J.L.S. Klettlinger, C.H. Yen, and B.H. Davis, 2014. Fischer–Tropsch Synthesis: Effect of Catalyst Particle (Sieve) Size Range on Activity, Selectivity, and Aging of a Pt Promoted Co/Al2O3 Catalyst. Chemical Engineering Journal 249, 279–284.10.1016/j.cej.2014.03.100Suche in Google Scholar

Prieto, G., M.I.S. De Mello, P. Concepción, R. Murciano, S.B.C. Pergher, and A. Martinez, 2015. Cobalt-Catalyzed Fischer–Tropsch Synthesis: Chemical Nature of the Oxide Support as a Performance Descriptor. ACS Catalysis 5, 3323–3335.10.1021/acscatal.5b00057Suche in Google Scholar

Rohr, F., O.A. Lindvåg, A. Holmen, and E.A. Blekkan, 2000. Fischer–Tropsch Synthesis over Cobalt Catalysts Supported on Zirconia-Modified Alumina. Catalysis Today 58, 247–254.10.1016/S0920-5861(00)00258-3Suche in Google Scholar

Sachtler, W.M.H., and M. Ichikawa, 1986. Catalytic Site Requirements for Elementary Steps in Syngas Conversion to Oxygenates over Promoted Rhodium. The Journal of Physical Chemistry 90, 4752–4758.10.1021/j100411a009Suche in Google Scholar

Salazar-Villalpando, M.D., D.A. Berry, and A. Cugini, 2010. Role of Lattice Oxygen in the Partial Oxidation of Methane over Rh/zirconia-Doped Ceria. Isotopic Studies. International Journal of Hydrogen Energy 35, 1998–2003.10.1016/j.ijhydene.2009.12.023Suche in Google Scholar

Sari, A., 2014. Investigation of the Supercritical Conditions for Fischer–Tropsch Reaction over an Industrial Co–Ru/γ-Al2O3 Catalyst. Chemical Engineering Journal 244, 317–326.10.1016/j.cej.2014.01.086Suche in Google Scholar

Sasikala, R., S. Varma, N.M. Gupta, and S.K. Kulshreshtha, 2001. Reduction Behavior of Ce-Y Mixed Oxides. Journal of Materials Science Letters 20, 1131–1133.10.1023/A:1010948508523Suche in Google Scholar

Schanke, D., S. Vada, E.A. Blekkan, A.M. Hilmen, A. Hoff, and A. Holmen, 1995. Study of Pt-Promoted Cobalt CO Hydrogenation Catalysts. Journal of Catalysis 156, 85–95.10.1006/jcat.1995.1234Suche in Google Scholar

Scofield, J.H., 1976. Hartree-Slater Subshell Photoionization Cross-Sections at 1254 and 1487 eV. Journal of Electron Spectroscopy and Related Phenomena 8, 129–137.10.1016/0368-2048(76)80015-1Suche in Google Scholar

Sexton, B.A., A.E. Hughes, and T.W. Turney, 1986. An XPS and TPR Study of the Reduction of Promoted Cobalt-Kieselguhr Fischer-Tropsch Catalysts. Journal of Catalysis 97, 390–406.10.1016/0021-9517(86)90011-4Suche in Google Scholar

Shi, H.B., Q. Li, X.P. Dai, C.C. Yu, and S.K. Shen, 2004. CeO2‒Promotion of Co/SiO2 Fischer-Tropsch Synthesis Catalyst. Studies in Surface Science and Catalysis 147, 313–318.10.1016/S0167-2991(04)80070-3Suche in Google Scholar

Shimura, K., T. Miyazawa, T. Hanaoka, and S. Hirata, 2015. Fischer–Tropsch Synthesis over Alumina Supported Cobalt Catalyst: Effect of Promoter Addition. Applied Catalysis A: General 494, 1–11.10.1016/j.apcata.2015.01.017Suche in Google Scholar

Song, S.H., S.B. Lee, J.W. Bae, P.S. Sai Prasad, and K.W. Jun, 2008. Influence of Ru Segregation on the Activity of Ru–Co/γ-Al2O3 during FT Synthesis: A Comparison with that of Ru–Co/SiO2 Catalysts. Catalysis Communications 9, 2282–2286.10.1016/j.catcom.2008.05.023Suche in Google Scholar

Sun, X., X. Zhang, Y. Zhang, and N. Tsubaki, 2010. Reversible Promotional Effect of SiO2 Modification to Co/Al2O3 Catalyst for Fischer–Tropsch Synthesis. Applied Catalysis A: General 377, 134–139.10.1016/j.apcata.2010.01.029Suche in Google Scholar

Tsubaki, N., S. Sh., and K. Fujimoto, 2001. Different Functions of the Noble Metals Added to Cobalt Catalysts for Fischer–Tropsch Synthesis. Journal of Catalysis 199, 236–246.10.1006/jcat.2001.3163Suche in Google Scholar

Van De Loosdrecht, J., F.G. Botes, I.M. Ciobica, A. Ferreira, P. Gibson, D.J. Moodley, A.M. Saib, J.L. Visagie, C.J. Weststrate, and J.W. Niemantsverdriet. 2013. “Fischer-Tropsch Synthesis: Catalysts and Chemistry.”. In Comprehensive Inorganic Chemistry II. 525–557.10.1016/B978-0-08-097774-4.00729-4Suche in Google Scholar

Vannice, M.A., 1992. Hydrogenation of Co and Carbonyl Functional Groups. Catalysis Today 12, 255–267.10.1016/0920-5861(92)85044-MSuche in Google Scholar

Vannice, M.A., 2005. Kinetics of Catalytic Reactions. Kinetics of Catalytic Reactions. 1st ed., Springer, Boston.10.1007/b136380Suche in Google Scholar

Wang, J., P.A. Chernavskii, Y. Wang, and A.Y. Khodakov, 2013. Influence of the Support and Promotion on the Structure and Catalytic Performance of Copper–Cobalt Catalysts for Carbon Monoxide Hydrogenation. Fuel 103, 1111–1122.10.1016/j.fuel.2012.07.055Suche in Google Scholar

Xiong, H., Y. Zhang, K. Liew, and J. Li, 2005. Catalytic Performance of Zirconium-Modified Co/Al2O3 for Fischer–Tropsch Synthesis. Journal of Molecular Catalysis A: Chemical 231, 145–151.10.1016/j.molcata.2004.12.033Suche in Google Scholar

Zhang, J., J. Chen, J. Ren, and Y. Sun, 2003. Chemical Treatment of Γ-Al2o3 and Its Influence on the Properties of Co-Based Catalysts for Fischer–Tropsch Synthesis. Applied Catalysis A: General 243, 121–133.10.1016/S0926-860X(02)00541-0Suche in Google Scholar

Zhang, Y., H. Xiong, K. Liew, and J. Li, 2005. Effect of Magnesia on Alumina-Supported Cobalt Fischer–Tropsch Synthesis Catalysts. Journal of Molecular Catalysis A: Chemical 237, 172–181.10.1016/j.molcata.2005.04.057Suche in Google Scholar

Zohdi-Fasaei, H., H. Atashi, F. Farshchi Tabrizi, and A.A. Mirzaei, 2016. Effects of Mass Transfer on Fischer-Tropsch Kinetics over Mesoporous Silica-Supported CoMnCe Nano Catalysts in a Fixed-Bed Reactor. Journal of Natural Gas Science and Engineering 32, 262–272.10.1016/j.jngse.2016.03.090Suche in Google Scholar

Received: 2017-4-27
Accepted: 2017-8-17
Published Online: 2017-9-16

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 29.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijcre-2017-0070/html
Button zum nach oben scrollen