Startseite Factors Capable of Modifying the Response of Pseudomonas aeruginosa to the Inactivation Induced by Heterogeneous Photocatalysis
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Factors Capable of Modifying the Response of Pseudomonas aeruginosa to the Inactivation Induced by Heterogeneous Photocatalysis

  • Paula Z. Araujo , Oscar J. Oppezzo , Jorge A. Ibáñez , Miguel Blesa und Ramón A. Pizarro EMAIL logo
Veröffentlicht/Copyright: 20. Juni 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The heterogeneous photocatalysis (HP) procedure has been demonstrated to be an interesting method for disinfecting water. It is effective for inactivating Pseudomonas aeruginosa, but its effectiveness may be reduced due to the action of several factors which are able to affect bacterial radio-sensitivity. The results reported here show the influence of nutritional stress and pre-exposure to sub-lethal UVA doses on the efficiency of the inactivation of P. aeruginosa by HP. Both previous exposures to low UVA fluencies and nutrient deprivation induce bacterial resistance to this process, in concordance with previous observations about the lethal effect of direct UVA irradiation. Starvation plus pre-irradiation did not have synergistic or antagonist effects. Kinetic parameters are presented for all three cases. These factors should be taken into account in the design of a water treatment process.

References

1. GeloverS, GómezLA, ReyesK, LealMT. A practical demonstration of water disinfection using TiO2 films and sunlight. Water Res2006;40:327480.10.1016/j.watres.2006.07.006Suche in Google Scholar PubMed

2. Blanco-GalvezJ, Fernández-IbáñezP, Malato-RodríguezS. Solar photocatalytic detoxification and disinfection of water: recent overview. J Solar Energy Eng2007;129:415.10.1115/1.2390948Suche in Google Scholar

3. DemeestereK, DewulfJ, De WitteB, BeeldensA, Van LangenhoveH. Heterogeneous photocatalytic removal of toluene from air on building materials enriched with TiO2. Build Environ2008;43:40614.10.1016/j.buildenv.2007.01.016Suche in Google Scholar

4. FernándezP, BlancoJ, SichelC, MalatoS. Water disinfection by solar photocatalysis using compound parabolic collectors. Catalysis Today2005;101:34552.10.1016/j.cattod.2005.03.062Suche in Google Scholar

5. McCullaghC, RobertsonJMC, BahnemannDW, RobertsonPKJ. The application of TiO2 photocatalysis for disinfection of water contaminated with pathogenic micro-organisms: a review. Res Chem Intermed2007;33:35975.10.1163/156856707779238775Suche in Google Scholar

6. McLoughlinOA, Fernandez IbañezP, GernjakW, Malato RodrıguezS, GillLW. Photocatalytic disinfection of water using low cost compound parabolic collectors. Solar Energy2004;77:62533.10.1016/j.solener.2004.05.017Suche in Google Scholar

7. AraujoPZ, MendiveCB, Garcıa RodenasLA, MorandoPJ, RegazzoniAE, BlesaMA, et al. FT-IR–ATR as a tool to probe photocatalytic interfaces. Colloids Surf A Physicochem Eng Aspects2005;265:7380.10.1016/j.colsurfa.2004.10.137Suche in Google Scholar

8. GimenoO, CarbajoM, LópezMJ, MeleroJA, BeltránF, RivasFJ. Photocatalytic promoted oxidation of phenolic mixtures: an insight into the operating and mechanistic aspects. Water Res2007;41:467284.10.1016/j.watres.2007.06.042Suche in Google Scholar PubMed

9. MurruniL, LeyvaG, LitterMI. Photocatalytic removal of Pb(II) over TiO2 and Pt–TiO2 powders. Catalysis Today2007;129:12735.10.1016/j.cattod.2007.06.058Suche in Google Scholar

10. JacobyOA, ManessPC, WolfrumEJ, BlakeDM, FennellJA. Mineralization of bacterial cell mass on a photocatalytic surface in air. Environ Sci Technol1998;32:26503.10.1021/es980036fSuche in Google Scholar

11. BlakeDM, ManessPC, HuangZ, WolfrumEJ, HuangJ. Application of the photocatalytic chemistry and the killing of cancer cells. Sep Purif Methods1999;28:150.10.1080/03602549909351643Suche in Google Scholar

12. MillsA, Le HunteS. An overview of semiconductor photocatalysis. Photochem Photobiol A Chem1997;108:135.10.1016/S1010-6030(97)00118-4Suche in Google Scholar

13. RichardsonSD, ThrustonAD, ColleteTW, PattersonKS, LykinsBW, IrelandJC. Identification of TiO2/UV disinfection byproducts in drinking water. Environ Sci Technol1996;30:332734.10.1021/es960142mSuche in Google Scholar

14. RincónAG, PulgarinC, AdlerN, PeringerP. Interaction between E. coli inactivation and DBP-precursors-dihydroxybenzene isomers – in the photocatalytic process of drinking-water disinfection with TiO2. J Photochem Photobiol A Chem2001;139:23341.10.1016/S1010-6030(01)00374-4Suche in Google Scholar

15. AcraA, JurdiM, Mu’allemH, KarahagopianY, RaffoulZ. Water disinfection by solar radiation, assessment and application. Technical Study 66e 1990. In: http://www.idrc.ca/library/document/041882/. IDRC Library Documents, Ottawa, ON, 1998.Suche in Google Scholar

16. RincónAG, PulgarinC, AdlerN, PeringerP. Solar water disinfection: scope of the process and analysis of radiation experiments. J Water Ser Res Technol-Aqua1994;43:15469.Suche in Google Scholar

17. McGuiganKG, JoyceTM, ConroyRM. Solar disinfection: use of sunlight to decontaminate drinking water in developing countries. J Med Microbiol1999;48:7857.10.1099/00222615-48-9-785Suche in Google Scholar PubMed

18. NavntoftC. Ph.D. Aplicaciones de la radiación solar UV en tratamiento de aguas, Universidad Nacional de San Martín, 2009.Suche in Google Scholar

19. AdamsLK, LyonDY, AlvarezPJJ. Comparative eco-toxicity of nanoscale TiO2, SiO2 and ZnO water suspensions. Water Res2006;40:352763.10.1016/j.watres.2006.08.004Suche in Google Scholar PubMed

20. BenabbouAK, DerricheZ, FelixC, LejeuneP, GuillardC. Photocatalytic inactivation of Escherichia coli: effect of concentration of TiO2 and microorganism, nature, and intensity of UV irradiation. Appl Catalysis B2007;76:25763.Suche in Google Scholar

21. EgertonTA, KosaSAM, ChristensenPA. Photoelectrocatalytic disinfection of E. coli suspensions by iron doped TiO2. Phys Chem Chem Phys2006;8:398406.10.1039/B507516ESuche in Google Scholar

22. GogniatG, ThyssenM, DenisM, PulgarinC, DukanS. The bactericidal effect of TiO2 photocatalisis involves adsorption onto catalysis and the loss of membrane integrity. FEMS Microbiol Lett2006;258:1824.10.1111/j.1574-6968.2006.00190.xSuche in Google Scholar PubMed

23. LonnenJ, KilvingstonS, KehoeSC, Al-TouatiF, Mc GuiganKG. Solar and photocatalityc disinfection of protozoan, fungal and bacterial microbes in drinking water. Water Res2005;39:87783.10.1016/j.watres.2004.11.023Suche in Google Scholar PubMed

24. RobertsonJMC, RobertsonPKJ, LawtonLA. A comparison of the effectiveness of TiO2 photocatalysis and UVA photolysis for the destruction of three pathogenic micro-organisms. J Photochem Photobiol A Chem2005;175:516.10.1016/j.jphotochem.2005.04.033Suche in Google Scholar

25. IbáñezJ, LitterMI, PizarroRA. Photocatalytic bactericidal effect of TiO2 on Enterobacter cloacae. Comparative study with other Gram (–) bacteria. J Photochem Photobiol A Chem2003;175:815.10.1016/S1010-6030(03)00074-1Suche in Google Scholar

26. BiguzziM, ShamaG. Effect of titanium dioxide concentration on the survival of Pseudomonas stutzeri during irradiation with near ultraviolet light. Lett Appl Microbiol1994;19:45860.10.1111/j.1472-765X.1994.tb00981.xSuche in Google Scholar

27. RincónAG, PulgarinC. Photocatalytical inactivation of E. coli: effect of (continuous–intermittent) light intensity and of (suspended–fixed) TiO2 concentration. Appl Catalysis B Environ2003;44:26384.10.1016/S0926-3373(03)00076-6Suche in Google Scholar

28. McWhirterMJ, McQuillanAJ, BremerPJ. Influence of ionic strength and pH on the first 60 min of Pseudomonas aeruginosa attachment to ZnSe and to TiO2 monitored by ATR-IR spectroscopy. Colloids Surf B Biointerfaces2002;26:36572.10.1016/S0927-7765(02)00017-6Suche in Google Scholar

29. RincónAG, PulgarinC. Comparative evaluation of Fe3+ and TiO2 photo-assisted processes in solar photocatalytic disinfection of water. Appl Catalysis B Environ2006;63:22231.10.1016/j.apcatb.2005.10.009Suche in Google Scholar

30. RincónAG, PulgarinC. Use of coaxial photocatalytic reactor (CAPHORE) in the TiO2 photo-assisted treatment of mixed E. coli and Bacillus sp. and bacterial community present in wastewater. Catalysis Today2005;101:33144.10.1016/j.cattod.2005.03.022Suche in Google Scholar

31. StoverCK, PhamXQ, ErwinAL, MizoguchiSD, WarrenerP, HickeyMJ, et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature2000;406:95964.Suche in Google Scholar

32. FernandezRO, PizarroRA. Lethal effect induced in Pseudomonas aeruginosa exposed to ultraviolet-A radiation. Phototochem Photobiol1996;64:3349.10.1111/j.1751-1097.1996.tb02467.xSuche in Google Scholar

33. Amezaga-MadridP, Nevarez-MoorillonGV, Orrantia-BorundaE, Miki-YoshidaM. Photoinduced bactericidal activity against Pseudomonas aeruginosa by TiO2 based thin films. FEMS Microbiol Lett2002;211:1838.10.1016/S0378-1097(02)00686-9Suche in Google Scholar

34. NavntoftC, AraujoP, LitterMI, ApellaMC, FernaéndezD, PuchuluME, et al. Field tests of the solar water detoxification SOLWATER Reactor in Los Pereyra, Tucumaén, Argentina. J Solar Energy Eng2007;129:12734.10.1115/1.2391318Suche in Google Scholar

35. BaxendaleJH, BridgeMK. Lethal effect induced in Pseudomonas aeruginosa exposed to ultraviolet-A radiation. J Phys Chem1955;59:7838.Suche in Google Scholar

36. FernandezRO, PizarroRA. Pseudomonas aeruginosa UV-A-induced lethal effect: influence of salts, nutritional stress and pyocyanine. J Photochem Photobiol B Biol1999;50:5965.10.1016/S1011-1344(99)00071-8Suche in Google Scholar

37. Amezaga-MadridP, Silveyra-MoralesR, Cordoba-FierroL, Nevarez-MoorillonGV, Miki-YoshidaM, Orrantia-BorundaE, et al. TEM evidence of ultrastructural alteration on Pseudomonas aeruginosa by photocatalytic TiO2 thin films. J Photochem Photobiol B Biol2003;70:4550.10.1016/S1011-1344(03)00054-XSuche in Google Scholar

38. GageJP, RobertsTM, DuffyJE. Susceptibility of Pseudomonas aeruginosa biofilm to UVA illumination over photocatalytic and non-photocatalytic surfaces. Biofilms2005;2:15563.10.1017/S1479050505001857Suche in Google Scholar

39. CostaC, PezzoniM, FernándezR, PizarroR. Role of the quorum sensing mechanism in the response of Pseudomonas aeruginosa to lethal and sublethal UVA irradiation. Photochem Photobiol2010;86:133442.10.1111/j.1751-1097.2010.00800.xSuche in Google Scholar

40. KramerG, BakerJ, AmesB. Near-UV stress in Salmonella typhimurium: 4-thiouridine in tRNA, ppGpp and ApppGpp as components of an adaptative response. J Bacteriol1988;170:234451.10.1128/jb.170.5.2344-2351.1988Suche in Google Scholar

41. OppezzoOJ, PizarroRA. Sublethal effects of ultraviolet A radiation on Enterobacter cloacae. J Photochem Photobiol B Biol2001;62:15865.10.1016/S1011-1344(01)00180-4Suche in Google Scholar

42. PizarroRA, OrceLV. Membrane damage and recovery associated with growth delay induced by near-UV radiation in Escherichia coli K-12. Photochem Photobiol1998;47:3917.10.1111/j.1751-1097.1988.tb02742.xSuche in Google Scholar PubMed

43. TaberH, PomerantzBJ, HalfengerB. Near ultraviolet induction of growth delay studied in a menaquinone-deficient mutant of Bacillus subtilis. Photochem Photobiol1978;28:1916.10.1111/j.1751-1097.1978.tb07694.xSuche in Google Scholar PubMed

44. OppezzoOJ, CostaCS, PizarroRA. Effects of ultraviolet A radiation on survival and growth of Gram negative bacteria. Trends Photochem Photobiol2011;13:3750.Suche in Google Scholar

45. JenkinsDE, SchultzJE, MatinA. Starvation induced cross protection against heat or H2O2 challenge in E. coli. J Bacteriol1988;170:391097.10.1128/jb.170.9.3910-3914.1988Suche in Google Scholar PubMed PubMed Central

46. LabasMD, MartínCA, CassanoAE. Kinetics of bacteria disinfection with UV radiation in an absorbing and nutritious medium. Chem Eng J2005;114:8797.10.1016/j.cej.2005.09.013Suche in Google Scholar

47. LabasMD, BrandiRJ, MartínCA, CassanoAE. Kinetics of bacteria inactivation employing UV radiation under clear water conditions. Chem Eng J2006;121:13545.10.1016/j.cej.2006.05.012Suche in Google Scholar

48. LabasMD, BrandiRJ, MartínCA, CassanoAE. A contribution to the UV dose concept for bacteria disinfection in well mixed photoreactors. Chem Eng J2006;116:197202.10.1016/j.cej.2005.12.003Suche in Google Scholar

49. GeeraerdAH, ValdramidisVP, Van ImpeJF. GInaFiT, a freeware tool to assess non-log-linear microbial survivor curves. Int J Food Microbiol2005;102:95105.10.1016/j.ijfoodmicro.2004.11.038Suche in Google Scholar PubMed

50. HijnenWAM, BeerendonkEF, MedemaGJ. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: a review. Water Res2006;40:322.10.1016/j.watres.2005.10.030Suche in Google Scholar PubMed

Published Online: 2013-06-20

©2013 by Walter de Gruyter Berlin / Boston

Artikel in diesem Heft

  1. Masthead
  2. Masthead
  3. Editorial
  4. In Honor of Alberto E. Cassano: Researcher, Engineer, and Academic
  5. Articles
  6. From Ideal Reactor Concepts to Reality: The Novel Drum Reactor for Photocatalytic Wastewater Treatment
  7. Synthesis, Characterization, and Comparison of Sol–Gel TiO2 Immobilized Photocatalysts
  8. Determination of Kinetic Parameter in a Unified Kinetic Model for the Photodegradation of Phenol by Using Nonlinear Regression and the Genetic Algorithm
  9. Mass Transfer and Conservation from a Finite Source to an Infinite Media
  10. Modelling and Simulation of Gas–liquid Hydrodynamics in a Rectangular Air-lift Reactor
  11. Two-Dimensional Modeling of an Externally Irradiated Slurry Photoreactor
  12. Role of Aspect Ratio and Joule Heating within the Fluid Region Near a Cylindrical Electrode in Electrokinetic Remediation: A Numerical Solution based on the Boundary Layer Model
  13. Solar Water Disinfection Using NF-codoped TiO2 Photocatalysis: Estimation of Scaling-up Parameters
  14. A Simple and Semi-Empirical Model to Predict THMs Generation in Water Facilities Including pH Effects
  15. On the Standardization of the Photocatalytic Gas/Solid Tests
  16. Microalgae Technology: A Patent Survey
  17. Influence of Physical and Optical Parameters on 2,4-Dichlorophenol Degradation
  18. Factors Capable of Modifying the Response of Pseudomonas aeruginosa to the Inactivation Induced by Heterogeneous Photocatalysis
  19. Enhanced Antibacterial Activity of CeO2 Nanoparticles by Surfactants
  20. Determination of Photochemical, Electrochemical and Photoelectrochemical Efficiencies in a Photoelectrocatalytic Reactor
  21. Correlations between Molecular Descriptors from Various Volatile Organic Compounds and Photocatalytic Oxidation Kinetic Constants
  22. Role of Joule Heating in Electro-Assisted Processes: A Boundary Layer Approach for Rectangular Electrodes
Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijcre-2012-0037/html
Button zum nach oben scrollen