Startseite Determination of Photochemical, Electrochemical and Photoelectrochemical Efficiencies in a Photoelectrocatalytic Reactor
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Determination of Photochemical, Electrochemical and Photoelectrochemical Efficiencies in a Photoelectrocatalytic Reactor

  • Javier Marugán EMAIL logo , Rafael van Grieken , Cristina Pablos , Cristina Adán und Ruud Timmers
Veröffentlicht/Copyright: 20. Juni 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The relation between the amount of incident photons, absorbed photons, oxidant species, reaction products and electrons in the external circuit should be analyzed individually to determine the step limiting the efficiency of the global photoelectrocatalytic processes. This work discusses the evaluation of three different titania electrodes for the oxidation of methanol in a photoelectrocatalytic reactor. The electrode prepared with three titania coating cycles shows a high efficiency in terms of photochemical (photons to product molecules), electrochemical (product molecules to electrons) and photoelectrochemical (photons to electrons) what explain its high activity for the photoelectrocatalytic oxidation of methanol.

Appendix: Values of the efficiencies

Table 5

Photonic efficiencies of formaldehyde formation during the photoelectrocatalytic oxidation of 0.1 M aqueous solutions of methanol in 0.1 M Na2SO4 at increasing potential bias with the three studied electrodes. Values calculated with eq. [2] using the incident radiation value estimated by actinometry (1.01 × 106 Einstein s1).

E (V)ξ (molHCHO Einstein1)
1-TiO2/ITO2-TiO2/ITO3-TiO2/ITO
Open circuit0.0224 (±0.0070)0.0381 (±0.0076)0.0465 (±0.0093)
0.40.0276 (±0.0055)0.0462 (±0.0092)0.0732 (±0.015)
0.60.0126 (±0.0050)0.0367 (±0.0073)0.0893 (±0.018)
0.80.0169 (±0.0058)0.0469 (±0.0094)0.0637 (±0.013)
1.00.0070 (±0.0039)0.0350 (±0.0070)0.0780 (±0.016)
1.40.0124 (±0.0050)0.0359 (±0.0072)0.0655 (±0.013)
Table 6

Minimum quantum efficiencies of formaldehyde formation during the photoelectrocatalytic oxidation of 0.1 M aqueous solutions of methanol in 0.1 M Na2SO4 at increasing potential bias with the three studied electrodes. Values calculated with eq. [3] using the absorbed radiation values estimated by radiometry (Table 4).

E (V) (molHCHO Einstein1)
1-TiO2/ITO2-TiO2/ITO3-TiO2/ITO
Open circuit0.0601 (±0.019)0.0720 (±0.014)0.0792 (±0.016)
0.40.0738 (±0.015)0.0873 (±0.018)0.1247 (±0.025)
0.60.0337 (±0.013)0.0693 (±0.014)0.1520 (±0.030)
0.80.0453 (±0.016)0.0885 (±0.018)0.1085 (±0.022)
1.00.0188 (±0.010)0.0661 (±0.013)0.1329 (±0.027)
1.40.0333 (±0.013)0.0679 (±0.014)0.1115 (±0.022)
Table 7

Electrochemical efficiencies of formaldehyde formation during the photoelectrocatalytic oxidation of 0.1 M aqueous solutions of methanol in 0.1 M Na2SO4 at increasing potential bias with the three studied electrodes. Values calculated with eq. [4] using the photocurrent densities registered during the reactions (Table 3).

E (V)ε (molHCHO mole1)
1-TiO2/ITO2-TiO2/ITO3-TiO2/ITO
0.40.365 (±0.110)0.466 (±0.093)0.318 (±0.064)
0.60.337 (±0.067)0.452 (±0.090)0.435 (±0.087)
0.80.137 (±0.054)0.359 (±0.072)0.504 (±0.100)
1.00.199 (±0.069)0.382 (±0.076)0.386 (±0.077)
1.40.065 (±0.036)0.244 (±0.049)0.423 (±0.085)
Table 8

Incident photon-to-current efficiencies during the photoelectrocatalytic oxidation of 0.1 M aqueous solutions of methanol in 0.1 M Na2SO4 at increasing potential bias with the three studied electrodes. Values calculated with eq. [5].

E (V)IPCE (mole Einstein1)
1-TiO2/ITO2-TiO2/ITO3-TiO2/ITO
0.40.076 (±0.023)0.099 (±0.020)0.230 (±0.046)
0.60.037 (±0.007)0.081 (±0.016)0.205 (±0.041)
0.80.124 (±0.049)0.131 (±0.026)0.126 (±0.025)
1.00.035 (±0.012)0.092 (±0.018)0.202 (±0.040)
1.40.192 (±0.106)0.147 (±0.029)0.155 (±0.031)

Notation

CHCHOformaldehyde molar concentration, mol cm3
surface rate of photon absorption, Einstein cm2 s1
Epotential bias, V
FFaraday constant, C mol1
Jphotocurrent density, A
kzero-order kinetic constant, mol cm2 s1
P0incident irradiation power, Einstein s1
qradiation flux, Einstein cm2 s1
rHCHOformaldehyde formation reaction rate, mol cm2 s1
electrode surface area, cm2
ttime, s
VTtotal working volume, cm3

Greek letters

εelectrochemical efficiency, molHCHO mole1
monochromatic quantum yield, molHCHO Einstein1
λwavelength, nm
ηpolychromatic quantum efficiency, molHCHO Einstein1
ξphotonic efficiency, molHCHO Einstein1

Subscripts

λindicates a dependence on wavelength
minindicates the minimum value

Special symbols

〈 〉indicates average value

References

1. Vinodgopal K, Hotchandani S, Kamat PV. Electrochemically assisted photocatalysis. TiO2 particulate film electrodes for photocatalytic degradation of 4-chlorophenol. J Phys Chem 1993;97:9040–44.10.1021/j100137a033Suche in Google Scholar

2. Kim DH, Anderson MA. Photoelectrocatalytic degradation of formic acid using a porous TiO2 thin film electrode. Environ Sci Technol 1994;28:479–83.10.1021/es00052a021Suche in Google Scholar PubMed

3. Egerton TA, Christensen PA, Kosa SA, Onoka B. Photoelectrocatalysis by titanium dioxide for water treatment. Int J Environ Pollut 2006;27:2–19.10.1504/IJEP.2006.010450Suche in Google Scholar

4. Georgieva J, Armyanov S, Valova E, Poulios I, Sotiropoulos S. Preparation and photoelectrochemical characterisation of electrosynthesised titanium dioxide deposits on stainless steel substrates. Electrochim Acta 2006;51:2076–87.10.1016/j.electacta.2005.07.017Suche in Google Scholar

5. Sun L, Bolton JR. Determination of the quantum yield for the photochemical generation of hydroxyl radicals in TiO2 suspensions. J Phys Chem 1996;100:4127–34.10.1021/jp9505800Suche in Google Scholar

6. Byrne JA, Eggins BR, Linquette-Mailley S, Dunlop PS. The effect of hole acceptors on the photocurrent response of particulate TiO2 anodes. Analyst 1998;123:2007–12.10.1039/a803885fSuche in Google Scholar

7. Mandelbaum PA, Regazzoni AE, Blesa MA, Bilmes SA. Photo-electro-oxidation of alcohols on titanium dioxide thin film electrodes. J Phys Chem B 1999;103:5505–11.10.1021/jp984812hSuche in Google Scholar

8. van Grieken R, Marugán J, Sordo C, Pablos C. Comparison of the photocatalytic disinfection of E. coli suspensions in slurry, wall and fixed-bed reactors. Catal Today 2009;144:48–54.10.1016/j.cattod.2008.11.017Suche in Google Scholar

9. van Grieken R, Marugán J, Sordo C, Martínez P, Pablos C. Photocatalytic inactivation of bacteria in water using suspended and immobilized silver-TiO2. Appl Catal B: Environ 2009;93:112–8.10.1016/j.apcatb.2009.09.019Suche in Google Scholar

10. Braun AM, Maurette MT, Oliveros E. Photochemical technology. Chichester: Wiley, 1991.Suche in Google Scholar

11. Nash T. The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J 1953;55:416–21.10.1042/bj0550416Suche in Google Scholar PubMed PubMed Central

12. Marugán J, Hufschmidt D, López-Muñoz MJ, Selzer V, Bahnemann D. Photonic efficiency for methanol photooxidation and hydroxyl radical generation on silica-supported TiO2 photocatalysts. Appl Catal B: Environ 2006;62:201–7.10.1016/j.apcatb.2005.07.013Suche in Google Scholar

13. Marugán J, Christensen P, Egerton T, Purnama H. Synthesis, characterization and activity of photocatalytic sol–gel TiO2 powders and electrodes. Appl Catal B: Environ 2009;89:273–83.10.1016/j.apcatb.2009.02.007Suche in Google Scholar

14. Serpone N, Salinaro A. Terminology, relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. Part I: Suggested protocol. Pure Appl Chem 1999;71:303–20.10.1351/pac199971020303Suche in Google Scholar

15. Bayarri B, Giménez J, Curcó D, Esplugas S. Direct evaluation of the absorbed photon flow in a photocatalytic reactor by an actinometric method. Chem Eng J 2012;200–2:158–67.10.1016/j.cej.2012.06.017Suche in Google Scholar

16. Imoberdorf GE, Cassano AE, Irazoqui HA, Alfano OM. Optimal design and modeling of annular photocatalytic wall reactors. Catal Today 2007;129:118–26.10.1016/j.cattod.2007.06.057Suche in Google Scholar

17. Marugán J, van Grieken R, Cassano AE, Alfano OM. Quantum efficiency of cyanide photooxidation with TiO2/SiO2 catalysts: multivariate analysis by experimental design. Catal Today 2007;129:143–51.10.1016/j.cattod.2007.06.060Suche in Google Scholar

18. Kulėšius Z, Ancutienė I, Valatka E. Kinetics of photoelectrochemical oxidation of some aliphatic alcohols using TiO2 and Ag/TiO2 coatings on stainless steel. Chem Technol 2009;2:69–74.Suche in Google Scholar

Published Online: 2013-06-20

©2013 by Walter de Gruyter Berlin / Boston

Artikel in diesem Heft

  1. Masthead
  2. Masthead
  3. Editorial
  4. In Honor of Alberto E. Cassano: Researcher, Engineer, and Academic
  5. Articles
  6. From Ideal Reactor Concepts to Reality: The Novel Drum Reactor for Photocatalytic Wastewater Treatment
  7. Synthesis, Characterization, and Comparison of Sol–Gel TiO2 Immobilized Photocatalysts
  8. Determination of Kinetic Parameter in a Unified Kinetic Model for the Photodegradation of Phenol by Using Nonlinear Regression and the Genetic Algorithm
  9. Mass Transfer and Conservation from a Finite Source to an Infinite Media
  10. Modelling and Simulation of Gas–liquid Hydrodynamics in a Rectangular Air-lift Reactor
  11. Two-Dimensional Modeling of an Externally Irradiated Slurry Photoreactor
  12. Role of Aspect Ratio and Joule Heating within the Fluid Region Near a Cylindrical Electrode in Electrokinetic Remediation: A Numerical Solution based on the Boundary Layer Model
  13. Solar Water Disinfection Using NF-codoped TiO2 Photocatalysis: Estimation of Scaling-up Parameters
  14. A Simple and Semi-Empirical Model to Predict THMs Generation in Water Facilities Including pH Effects
  15. On the Standardization of the Photocatalytic Gas/Solid Tests
  16. Microalgae Technology: A Patent Survey
  17. Influence of Physical and Optical Parameters on 2,4-Dichlorophenol Degradation
  18. Factors Capable of Modifying the Response of Pseudomonas aeruginosa to the Inactivation Induced by Heterogeneous Photocatalysis
  19. Enhanced Antibacterial Activity of CeO2 Nanoparticles by Surfactants
  20. Determination of Photochemical, Electrochemical and Photoelectrochemical Efficiencies in a Photoelectrocatalytic Reactor
  21. Correlations between Molecular Descriptors from Various Volatile Organic Compounds and Photocatalytic Oxidation Kinetic Constants
  22. Role of Joule Heating in Electro-Assisted Processes: A Boundary Layer Approach for Rectangular Electrodes
Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijcre-2012-0014/html
Button zum nach oben scrollen