Home Simulation of Porosity Regrowth during Heat Treatment after Hot Isostatic Pressing in Titanium Components
Article
Licensed
Unlicensed Requires Authentication

Simulation of Porosity Regrowth during Heat Treatment after Hot Isostatic Pressing in Titanium Components

  • C. Behrens EMAIL logo , M. Siewert , A. Lüke , D. Bödeker and V. Ploshikhin
Published/Copyright: October 20, 2023

Abstract

Additive manufacturing (AM) is driven by design freedom, having fewer process constraints than traditional manufacturing processes. It requires careful process control and qualified parameters to create dense metal parts. However, defects in the form of cavities can be detected in as-built specimens by computed tomography. Post-processing techniques such as hot isostatic pressing (HIP) are applied to eliminate porosity, but regrowth of argon gas pores is observed after additional heat treatment.

In this work, a mesoscopic heat treatment simulation of an argon-filled gas pore in titanium components is presented. A combination of HIP and high-temperature heat treatment for β-annealing is simulated. Calculated pore regrowth is qualitatively consistent with experimental observation from the literature. Simulation results support the hypothesis of argon not dissolving in the titanium matrix by assuming a constant amount of argon particles in the pore. Mesoscopic heat treatment simulations may be a part of a simulation-driven optimization of thermal post-processing to improve the quality and performance of AM components.

Kurzfassung

Bei der additiven Fertigung (AM) herrscht Designfreiheit und es gibt weniger Prozessbeschränkungen als bei herkömmlichen Fertigungsverfahren. Sie erfordert eine sorgfältige Prozesssteuerung und qualifizierte Parameter, um dichte Metallteile herzustellen. Defekte in Form von Löchern können jedoch in den gefertigten Proben durch Computertomographie erkannt werden. Nachbearbeitungsverfahren wie das heißisostatische Pressen (HIP) werden angewandt, um die Porosität zu beseitigen, aber nach einer zusätzlichen Wärmebehandlung wird das Nachwachsen von Argongasporen beobachtet.

In dieser Arbeit wird eine mesoskopische Wärmebehandlungssimulation einer argongefüllten Gaspore in Titanbauteilen vorgestellt. Es wird eine Kombination aus HIP und Hochtemperatur-Wärmebehandlung zum β-Glühen simuliert. Das berechnete Porenwachstum stimmt qualitativ mit experimentellen Beobachtungen in der Literatur überein. Die Simulationsergebnisse unterstützen die Hypothese, dass sich Argon nicht in der Titanmatrix auflöst, wenn von einer konstanten Menge an Argonpartikeln in der Pore ausgegangen wird. Mesoskopische Wärmebehandlungssimulationen können Teil einer simulationsgestützten Optimierung der thermischen Nachbehandlung sein, um die Qualität und Leistung von AM-Komponenten zu verbessern.

Acknowledgment

We would like to express our sincere gratitude to our partners who conducted the experiments and provided us with valuable data and feedback. Their expertise and dedication were essential for the success of this research. The Bundesanstalt für Materialforschung und -prüfung (BAM) has conducted the creep experiments and the company Premium Aerotec for manufacturing the specimens.

This research was funded by the German Federal Ministry of Economics and Energy (BMWi) within the Federal Aeronautical Research Programme (LuFo V-3) and the project “Integrative simulations of components of the ALM process chain” within the joint project diAMpro (“digitale, automatisierte und selbstadaptierende ALM-Fertigungskette”).

Danksagung

Wir möchten unseren Partnern, die die Experimente durchgeführt und uns mit wertvollen Daten und Rückmeldungen versorgt haben, unseren aufrichtigen Dank aussprechen. Ihr Fachwissen und ihr Engagement waren für den Erfolg dieser Forschung unerlässlich. Die Bundesanstalt für Materialforschung und -prüfung (BAM) hat die Kriechexperimente durchgeführt und die Firma Premium Aerotec hat die Proben hergestellt.

Diese Forschung wurde gefördert durch das Bundesministerium für Wirtschaft und Energie (BMWi) im Rahmen des Luftfahrtforschungsprogramms des Bundes (LuFo V-3) und das Projekt „Integrative Simulationen von Komponenten der ALM-Prozesskette“ im Rahmen des Verbundprojekts diAMpro („digitale, automatisierte und selbstadaptierende ALM-Fertigungskette“).

References

1 Kamal, M., Rizza, G.: 4 – Design for metal additive manufacturing for aerospace applications. Additive Manufacturing for the Aerospace Industry. F. Froes, R. Boyer (eds.), Elsevier, Oxford, UK, 2019, pp. 67–86, DOI:10.1016/C2017-0-00712-710.1016/C2017-0-00712-7Search in Google Scholar

2 Attaran, M.: The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing, Business Horizons 60 (2017) 5, pp. 677–688, DOI:10.1016/j.bushor.2017.05.01110.1016/j.bushor.2017.05.011Search in Google Scholar

3 Wohlers, T. T., Wohlers Associates; Campbell, R. I., Diegel, O., Kowen, J., Huff, R., Mostow, N., Fidan, I., Bourell, D. L., van Rensburg, J.: Wohlers Report 2022: 3D Printing and Additive Manufacturing Global State of the Industry, Wohlers Associates, Fort Collins, USA, 2022Search in Google Scholar

4 Zhang, Y., Yang, S., Zhao, Y. F.: Manufacturability analysis of metal laser-based powder bed fusion additive manufacturing – a survey. The Int. J. of Adv. Manuf. Tech. 110 (2020), pp. 57–78, DOI:10.1007/s00170-020-05825-610.1007/s00170-020-05825-6Search in Google Scholar

5 Kan, W. H., Chiu, L. N. S., Lim, C. V. S., Zhu, Y., Tian, Y., Jiang, D., Huang, A.: A critical review on the effects of process-induced porosity on the mechanical properties of alloys fabricated by laser powder bed fusion. J. Mater. Sci. 57 (2022), pp. 9818–9865, DOI:10.1007/s10853-022-06990-710.1007/s10853-022-06990-7Search in Google Scholar

6 Seifi, M., Salem, A., Beuth, J., Harrysson, O., Lewandowski, J. J.: Overview of Materials Qualification Needs for Metal Additive Manufacturing. JOM 68 (2016), pp. 747–764. DOI:10.1007/s11837-015-1810-010.1007/s11837-015-1810-0Search in Google Scholar

7 Brennan, M. C., Keist, J. S., Palmer, T. A.: Defects in Metal Additive ManufacturingProcesses. J. Mater. Eng. Perform. 30 (2021), pp. 4808–4818, DOI:10.1007/s11665-021-05919-610.1007/s11665-021-05919-6Search in Google Scholar

8 Cunningham, R., Zhao, C., Parab, N., Kantzos, C., Pauza, J., Fezzaa, K; Sun, T., Rollett, A. D.: Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed x-ray imaging. Science 363 (2019) 6429, pp. 849–852, DOI:10.1126/science.aav468710.1126/science.aav4687Search in Google Scholar PubMed

9 Khorasani, A., Gibson, I., Goldberg, M., Littlefair, G.: On the role of different annealing heat treatments on mechanical properties and microstructure of selective laser melted and conventional wrought Ti-6Al-4V. Rapid Prototyping J. 23 (2017) 2, pp. 295–304, DOI:10.1108/RPJ-02-2016-002210.1108/RPJ-02-2016-0022Search in Google Scholar

10 Nguyen, H. D., Pramanik, A., Basak, A. K., Dong, Y., Prakash, C., Debnath, S., Shankar, S., Jawahir, I. S., Dixit, S., Buddhi, D.: A critical review on additive manufacturing of Ti-6Al-4V alloy: microstructure and mechanical properties. J. Mater. Res. and Tech. 18 (2022), pp. 4641–4661, DOI:10.1016/j. jmrt.2022.04.05510.1016/j.jmrt.2022.04.055Search in Google Scholar

11 Semiatin, S. L.: An Overview of the Thermomechanical Processing of α/β Titanium Alloys: Current Status and Future Research Opportunities. Metall. Mat. Trans. A 51 (2020), pp. 2593–2625, DOI:10.1007/s11661-020-05625-310.1007/s11661-020-05625-3Search in Google Scholar

12 Du Plessis, A., Macdonald, E.: Hot isostatic pressing in metal additive manufacturing: X-ray tomography reveals details of pore closure. Additive Manuf. 34 (2020), 101191, DOI:10.1016/j.addma.2020.101191, open acess10.1016/j.addma.2020.101191Search in Google Scholar

13 Tammas-Williams, S., Withers, P. J., Todd, I., Prangnell, P. B.: Porosity regrowth during heat treatment of hot isostatically pressed additively manufactured titaniumcomponents. Scripta Mater. 122 (2016), pp. 72–76, DOI:10.1016/j.scriptamat. 2016.05.00210.1016/j.scriptamat2016.05.002Search in Google Scholar

14 Atkinson, H. V., Davies, S.: Fundamental aspects of hot isostatic pressing: an overview. Metall. Mat. Trans. A 31 (2000), pp. 2981–3000, DOI:10.1007/s11661-000-0078-210.1007/s11661-000-0078-2Search in Google Scholar

15 Shao, S., Mahtabi, M. J., Shamsaei, N., Thompson, S. M.: Solubility of argon in laser additive manufactured α-titanium under hot isostatic pressing condition. Comp. Mater. Sci. 131 (2017), pp. 209–219, DOI:10.1016/j.commatsci.2017.01.04010.1016/j.commatsci.2017.01.040Search in Google Scholar

16 Zhuravkov, M., Lyu, Y., Starovoitov, E.: Mathematical Models of Solid with Rheological Properties. Mechanics of Solid Deformable Body. M. Zhuravkov, Y. Lyu, E. Starovoitov (eds.), Springer, Singapore, 2023, pp. 101–147, DOI:10.1007/978-981-19-8410-5_610.1007/978-981-19-8410-5_6Search in Google Scholar

17 Betten, J.: Creep Mechanics. Springer, Berlin, 2013, DOI:10.1007/978-3-662-04971-610.1007/978-3-662-04971-6Search in Google Scholar

18 Norton, F. H.: The Creep of Steel at High Temperatures. McGraw-Hill book Company, Inc., New York, USA 1929Search in Google Scholar

19 Naumenko, K., Altenbach, H.: Modeling of creep for structural analysis. Foundations of Engineering Mechanics, Springer, Berlin, 2007, DOI:10.1007/978-3-540-70839-110.1007/978-3-540-70839-1Search in Google Scholar

20 Badea, L., Surand, M., Ruau, J., Viguier, B.: Creep behavior of Ti-6Al-4V from 450 °C to 600 °C, University Polytechnica of Bucharest Scientific Bulletin, Series B 76 (2014), pp. 185–196, open acessSearch in Google Scholar

21 Reid, R. C., Prausnitz, J. M., Poling, B. E.: The Properties of Gases and Liquids. 4. Aufl., McGraw-Hill, Inc., New York, USA, 1987. – ISBN:0-07-051799-1Search in Google Scholar

22 Braess, D.: Finite Elemente: Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie. Masterclass, Springer, Berlin, 2013, DOI:10.1007/978-3-642-34797-910.1007/978-3-642-34797-9Search in Google Scholar

23 de Souza Neto, E. A., Perić, D., Owen, D. R. J.: Computational methods for plasticity: theory and applications. John Wiley, Southern Gate, Chichester, West Sussex, UK 2011, DOI:10.1002/978047069462610.1002/9780470694626Search in Google Scholar

24 Saunders, N., Guo, U. K. Z., Li, X., Miodownik, A. P., Schillé, J.-P.: Using JMatPro to model materials properties and behavior. JOM 55 (2003), pp. 60–65, DOI:10.1007/s11837-003-0013-210.1007/s11837-003-0013-2Search in Google Scholar

Published Online: 2023-10-20
Published in Print: 2023-10-31

© 2023 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 18.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/htm-2023-0018/html
Scroll to top button