Artikel
Öffentlich zugänglich
Frontmatter
Veröffentlicht/Copyright:
17. November 2022
Published Online: 2022-11-17
Published in Print: 2022-11-25
©2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Heme research – the past, the present and the future
- A primer on heme biosynthesis
- New roles for GAPDH, Hsp90, and NO in regulating heme allocation and hemeprotein function in mammals
- The role of host heme in bacterial infection
- Signal transduction mechanisms in heme-based globin-coupled oxygen sensors with a focus on a histidine kinase (AfGcHK) and a diguanylate cyclase (YddV or EcDosC)
- Heme delivery to heme oxygenase-2 involves glyceraldehyde-3-phosphate dehydrogenase
- Novel insights into heme binding to hemoglobin
- Extracellular hemin is a reverse use-dependent gating modifier of cardiac voltage-gated Na+ channels
- Assessment of the breadth of binding promiscuity of heme towards human proteins
- Determination of free heme in stored red blood cells with an apo-horseradish peroxidase-based assay
- Comparative studies of soluble and immobilized Fe(III) heme-peptide complexes as alternative heterogeneous biocatalysts
Artikel in diesem Heft
- Frontmatter
- Heme research – the past, the present and the future
- A primer on heme biosynthesis
- New roles for GAPDH, Hsp90, and NO in regulating heme allocation and hemeprotein function in mammals
- The role of host heme in bacterial infection
- Signal transduction mechanisms in heme-based globin-coupled oxygen sensors with a focus on a histidine kinase (AfGcHK) and a diguanylate cyclase (YddV or EcDosC)
- Heme delivery to heme oxygenase-2 involves glyceraldehyde-3-phosphate dehydrogenase
- Novel insights into heme binding to hemoglobin
- Extracellular hemin is a reverse use-dependent gating modifier of cardiac voltage-gated Na+ channels
- Assessment of the breadth of binding promiscuity of heme towards human proteins
- Determination of free heme in stored red blood cells with an apo-horseradish peroxidase-based assay
- Comparative studies of soluble and immobilized Fe(III) heme-peptide complexes as alternative heterogeneous biocatalysts