Startseite Lebenswissenschaften In vitro ADME characterization of a very potent 3-acylamino-2-aminopropionic acid-derived GluN2C-NMDA receptor agonist and its ester prodrugs
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

In vitro ADME characterization of a very potent 3-acylamino-2-aminopropionic acid-derived GluN2C-NMDA receptor agonist and its ester prodrugs

  • Elena Bechthold , Lucie Grey ORCID logo , Emil Diamant , Judith Schmidt , Ruben Steigerwald , Fabao Zhao , Kasper B. Hansen , Lennart Bunch , Rasmus P. Clausen und Bernhard Wünsch ORCID logo EMAIL logo
Veröffentlicht/Copyright: 25. November 2022

Abstract

The GluN2C subunit exists predominantly, but not exclusively in NMDA receptors within the cerebellum. Antagonists such as UBP1700 and positive allosteric modulators including PYD-106 and 3-acylamino-2-aminopropionic acid derivatives such as UA3-10 ((R)-2-amino-3-{[5-(2-bromophenyl)thiophen-2-yl]carboxamido}propionic acid) represent promising tool compounds to investigate the role of GluN2C-containing NMDA receptors in the signal transduction in the brain. However, due to its high polarity the bioavailability and CNS penetration of the amino acid UA3-10 are expected to be rather low. Herein, three ester prodrugs 12ac of the NMDA receptor glycine site agonist UA3-10 were prepared and pharmacokinetically characterized. The esters 12ac showed higher lipophilicity (higher logD7.4 values) than the acid UA3-10 but almost the same binding at human serum albumin. The acid UA3-10 was rather stable upon incubation with mouse liver microsomes and NADPH, but the esters 12ac were fast hydrolyzed to afford the acid UA3-10. Incubation with pig liver esterase and mouse serum led to rapid hydrolysis of the esters 12ac. The isopropyl ester 12c showed a promising logD7.4 value of 3.57 and the highest stability in the presence of pig liver esterase and mouse serum. These results demonstrate that ester prodrugs of UA3-10 can potentially afford improved bioavailability and CNS penetration.


Corresponding author: Bernhard Wünsch, Westfälische Wilhelms-Universität Münster, GRK 2515, Chemical Biology of Ion Channels (Chembion), Corrensstraße 48, D-48149 Münster, Germany; and Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149 Münster, Germany, E-mail:
Elena Bechthold and Lucie Grey contributed equally to this work.

Award Identifier / Grant number: [NS097536] to K.B.H.

Award Identifier / Grant number: GRK 2515/1

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the Research Training Group “Chemical biology of ion channels (Chembion)” funded by the Deutsche Forschungsgemeinschaft (DFG) [GRK 2515/1], which is gratefully acknowledged. The authors acknowledge financial support from the National Institutes of Health [NS097536] to K.B.H.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Bhattacharya, S., Khatri, A., Swanger, S.A., DiRaddo, J.O., Yi, F., Hansen, K.B., Yuan, H., and Traynelis, S.F. (2018). Triheteromeric GluN1/GluN2A/GluN2C NMDARs with unique single-channel properties are the dominant receptor population in cerebellar granule cells. Neuron 99: 315–328, https://doi.org/10.1016/j.neuron.2018.06.010.Suche in Google Scholar PubMed PubMed Central

Börgel, F., Galla, F., Lehmkuhl, K., Schepmann, D., Ametamey, S.M., and Wünsch, B. (2019). Pharmacokinetic properties of enantiomerically pure GluN2B selective NMDA receptor antagonists with 3-benzazepine scaffold. J. Pharm. Biomed. Anal. A 172: 214–222, https://doi.org/10.1016/j.jpba.2019.04.032.Suche in Google Scholar PubMed

Butsch, V., Börgel, F., Galla, F., Schwegmann, K., Hermann, S., Schäfers, M., Riemann, B., Wünsch, B., and Wagner, S. (2018). Design, (radio)synthesis, and in vitro and in vivo evaluation of highly selective and potent matrix metalloproteinase 12 (MMP-12) inhibitors as radiotracers for positron emission tomography. J. Med. Chem. 61: 4115–4134, https://doi.org/10.1021/acs.jmedchem.8b00200.Suche in Google Scholar PubMed

Clarke, R.J. and Johnson, J.W. (2006). NMDA receptor NR2 subunit dependence of the slow component of magnesium unblock. J. Neurosci. 26: 5825–5834, https://doi.org/10.1523/jneurosci.0577-06.2006.Suche in Google Scholar

Collingridge, G.L., Olsen, R.W., Peters, J., and Spedding, M. (2009). A nomenclature for ligand-gated ion channels. Neuropharmacology 56: 2–5, https://doi.org/10.1016/j.neuropharm.2008.06.063.Suche in Google Scholar PubMed PubMed Central

Eriksson, M., Nilsson, A., Froelich-Fabre, S., Åkesson, E., Dunker, J., Seiger, Å., Folkesson, R., Benedikz, E., and Sundström, E. (2002). Cloning and expression of the human N-methyl-d-aspartate receptor subunit NR3A. Neurosci. Lett. 321: 177–181, https://doi.org/10.1016/s0304-3940(01)02524-1.Suche in Google Scholar PubMed

Falck, E., Begrow, F., Verspohl, E.J., and Wünsch, B. (2014a). In vitro and in vivo biotransformation of WMS-1410, a potent GluN2B selective NMDA receptor antagonist. J. Pharm. Biomed. Anal. 94: 36–44, https://doi.org/10.1016/j.jpba.2014.01.017.Suche in Google Scholar PubMed

Falck, E., Begrow, F., Verspohl, E., and Wünsch, B. (2014b). Metabolism studies of ifenprodil, a potent GluN2B receptor antagonist. J. Pharm. Biomed. Anal. 88: 96–105, https://doi.org/10.1016/j.jpba.2013.08.014.Suche in Google Scholar PubMed

Galla, F., Bourgeois, C., Lehmkuhl, K., Schepmann, D., Soeberdt, M., Lotts, T., Abels, C., Ständer, S., and Wünsch, B. (2016). Effects of polar κ receptor agonists designed for the periphery on ATP-induced Ca2+ release from keratinocytes. Med. Chem. Commun. 7: 317–326, https://doi.org/10.1039/c5md00414d.Suche in Google Scholar

Gupta, S.C., Ravikrishnan, A., Liu, J., Mao, Z., Pavuluri, R., Hillman, B.G., Gandhi, P.J., Stairs, D.J., Li, M., Ugale, R.R., et al.. (2016). The NMDA receptor GluN2C subunit controls cortical excitatoryinhibitory balance, neuronal oscillations and cognitive function. Sci. Rep. 6: 38321, https://doi.org/10.1038/srep38321.Suche in Google Scholar PubMed PubMed Central

Hansen, K.B., Ogden, K.K., Yuan, H., and Traynelis, S.F. (2014). Distinct functional and pharmacological properties of triheteromeric GluN1/GluN2A/GluN2B NMDA receptors. Neuron 5: 1084–1096, https://doi.org/10.1016/j.neuron.2014.01.035.Suche in Google Scholar PubMed PubMed Central

Hansen, K.B., Yi, P., Perszyk, R.E., Furukawa, H., Wollmuth, L.P., Gibb, A.J., and Traynelis, S.F. (2018). Structure, function, and allosteric modulation of NMDA receptors. J. Gen. Physiol. 6: 1081–1105, https://doi.org/10.1085/jgp.201812032.Suche in Google Scholar PubMed PubMed Central

Hansen, K.B., Wollmuth, L.P., Bowie, D., Furukawa, H., Menniti, F.S., Sobolevsky, A.I., Swanson, G.T., Swanger, S.A., Greger, I.H., Nakagawa, T., et al.. (2021). Structure, function, and pharmacology of glutamate receptor ion channels. Pharmacol. Rev. 73: 298–487, https://doi.org/10.1124/pharmrev.120.000131.Suche in Google Scholar PubMed PubMed Central

Jessen, M., Frederiksen, K., Yi, F., Clausen, R.P., Hansen, K.B., Bräuner-Osborne, H., Kilburn, P., and Damholt, A. (2017). Identification of AICP as a GluN2C-selective N-methyl-d-aspartate receptor superagonist at the GluN1 glycine site. Mol. Pharmacol. 92: 151–161, https://doi.org/10.1124/mol.117.108944.Suche in Google Scholar PubMed PubMed Central

Jia, M., Noutong Njapo, S.A., Rastogi, V., and Hedna, V.S. (2015). Taming glutamate excitotoxicity: strategic pathway modulation for neuroprotection. CNS Drugs 29: 153–162, https://doi.org/10.1007/s40263-015-0225-3.Suche in Google Scholar PubMed

Kaiser, T.M., Kell, S.A., Kusumoto, H., Shaulsky, G., Bhattacharya, S., Epplin, M.P., Strong, K.L., Miller, E.J., Cox, B.D., Menaldino, D.S., et al.. (2018). The bioactive protein-ligand conformation of GluN2C-selective positive allosteric modulators bound to the NMDA receptor. Mol. Pharmacol. 93: 141–156, https://doi.org/10.1124/mol.117.110940.Suche in Google Scholar PubMed PubMed Central

Karakas, E., Simorowski, N., and Furukawa, H. (2011). Subunit arrangement and phenylethanolamine binding in GluN1/GluN2B NMDA receptors. Nature 475: 249–253, https://doi.org/10.1038/nature10180.Suche in Google Scholar PubMed PubMed Central

Karakas, E. and Furukawa, H. (2014). Homology-modelling GluN1/GluN2C: crystal structure of a heterotetrameric NMDA receptor ion channel. Science 344: 992–997, https://doi.org/10.1126/science.1251915.Suche in Google Scholar PubMed PubMed Central

Khatri, A., Burger, P.B., Swanger, S.A., Hansen, K.B., Zimmerman, S., Karakas, E., Liotta, D.C., Furukawa, H., Snyder, J.P., and Traynelis, S.F. (2014). Structural determinations and mechanism of action of a GluN2C-selective NMDA receptor positive allosteric modulator. Mol. Pharmacol. 86: 548–560, https://doi.org/10.1124/mol.114.094516.Suche in Google Scholar PubMed PubMed Central

Khlestova, E., Johnson, J.W., Krystal, J.H., and Lisman, J. (2016). The role of GluN2C-containing NMDA receptors in ketamine’s psychotogenic action and in schizophrenia models. J. Neurosci. 36: 11151–11157, https://doi.org/10.1523/jneurosci.1203-16.2016.Suche in Google Scholar PubMed PubMed Central

Lü, W., Du, J., Goehring, A., and Gouaux, E. (2017). Cryo-EM structures of the triheteromeric NMDA receptor and its allosteric modulation. Science 355: eaa13729, 1–9, https://doi.org/10.1126/science.aal3729.Suche in Google Scholar PubMed PubMed Central

Mitra, R. and Ganesh, K.N. (2011). PNAs grafted with (α/γ, R/S)-aminomethylene pendants: regio- and stereo-specific effects on DNA binding and improved cell uptake. Chem. Commun. 47: 1198–1200, https://doi.org/10.1039/c0cc03988h.Suche in Google Scholar PubMed

Paoletti, P. (2011). Molecular basis of NMDA receptor functional diversity. Eur. J. Neurosci. 33: 1351–1365, https://doi.org/10.1111/j.1460-9568.2011.07628.x.Suche in Google Scholar PubMed

Paoletti, P. and Neyton, J. (2007). NMDA receptor subunits: function and pharmacology. Curr. Opin. Pharmacol. 7: 39–47, https://doi.org/10.1016/j.coph.2006.08.011.Suche in Google Scholar PubMed

Paoletti, P., Bellone, C., and Zhou, Q. (2013). NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat. Rev. Neurosci. 14: 383–400, https://doi.org/10.1038/nrn3504.Suche in Google Scholar PubMed

Rudolph, S., Dahlhaus, H., Hanekamp, W., Albers, C., Barth, M., Michels, G., Friedrich, D., and Lehr, M. (2021). Aryl N-[ω-(6-fluoroindol-1-yl)alkyl]carbamates as inhibitors of fatty acid amide hydrolase, monoacylglycerol lipase, and butyrylcholinesterase: structure–activity relationships and hydrolytic stability. ACS Omega 6: 13466–13483, https://doi.org/10.1021/acsomega.1c01699.Suche in Google Scholar PubMed PubMed Central

Shelkar, G.P., Pavuluri, R., Gandhi, P.J., Ravikrishnan, A., Gawande, D.Y., Liu, J., Stairs, D.J., Ugale, R.R., and Dravid, S.M. (2019). Differential effect of NMDA receptor GluN2C and GluN2D subunit ablation on behavior and channel blocker-induced schizophrenia phenotypes. Sci. Rep. 9: 7572, https://doi.org/10.1038/s41598-019-43957-2.Suche in Google Scholar PubMed PubMed Central

Traynelis, S.F., Wollmuth, L.P., McBain, Ch. J., Menniti, F.S., Vance, K.M., Ogden, K.K., Hansen, K.B., Yuan, H., Myers, S.J., and Dingledine, R. (2010). Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev. 62: 405–496, https://doi.org/10.1124/pr.109.002451.Suche in Google Scholar PubMed PubMed Central

Urwyler, S., Floersheim, P., Roy, B.L., and Koller, M. (2009). Drug design, in vitro pharmacology and structure–activity relationships of 3-acylamino-2-aminopropionic acid derivatives, a novel class of partial agonists at the glycine site on the N-methyl-d-aspartate (NMDA) receptor complex. J. Med. Chem. 52: 5093–5107, https://doi.org/10.1021/jm900363q.Suche in Google Scholar PubMed

Wang, J.X., Irvine, M.W., Burnell, E.S., Sapkota, K., Thatcher, R.J., Li, M., Simorowski, N., Volianskis, A., Collingridge, G.L., Monaghan, D.T., et al.. (2020). Structural basis of subtype-selective competitive antagonism for GluN2C/2D-containing NMDA receptors. Nat. Commun. 11: 423, https://doi.org/10.1038/s41467-020-14321-0.Suche in Google Scholar PubMed PubMed Central

Wyllie, D.J.A., Livesey, M.R., and Hardingham, G.E. (2013). Influence of GluN2 subunit identity on NMDA receptor function. Neuropharmacology 74: 4–17, https://doi.org/10.1016/j.neuropharm.2013.01.016.Suche in Google Scholar PubMed PubMed Central

Yi, F., Bhattacharya, S., Thompson, C.M., Traynelis, S.F., and Hansen, K.B. (2019). Functional and pharmacological properties of triheteromeric GluN1/2B/2D NMDA receptors. J. Physiol. 597: 5495–5514, https://doi.org/10.1113/jp278168.Suche in Google Scholar

Zhang, L., Kauffman, G.S., Pesti, J.A., and Yin, J. (1997). Rearrangement of Nr-protected L-asparagines with iodosobenzene diacetate. A practical route to â-amino-L-alanine derivatives chemical process R&D. The DuPont Merck Pharmaceutical Company, Deepwater, NJ 08023-0999, USA.Suche in Google Scholar

Zhao, F. (2020). Development of subtype selective NMDA receptors ligands. PhD thesis. University of Copenhagen, Copenhagen, Denmark.Suche in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2022-0229).


Received: 2022-07-12
Accepted: 2022-11-01
Published Online: 2022-11-25
Published in Print: 2023-03-28

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 7.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2022-0229/pdf
Button zum nach oben scrollen