Home Chemical, pharmacodynamic and pharmacokinetic characterization of the GluN2B receptor antagonist 3-(4-phenylbutyl)-2,3,4,5-tetrahydro-1H-3-benzazepine-1,7-diol – starting point for PET tracer development
Article
Licensed
Unlicensed Requires Authentication

Chemical, pharmacodynamic and pharmacokinetic characterization of the GluN2B receptor antagonist 3-(4-phenylbutyl)-2,3,4,5-tetrahydro-1H-3-benzazepine-1,7-diol – starting point for PET tracer development

  • Marvin Korff , Ruben Steigerwald , Elena Bechthold , Dirk Schepmann ORCID logo , Julian A. Schreiber ORCID logo , Sven G. Meuth ORCID logo , Guiscard Seebohm ORCID logo and Bernhard Wünsch ORCID logo EMAIL logo
Published/Copyright: October 10, 2022

Abstract

GluN2B-NMDA receptors play a key role in several neurological and neurodegenerative disorders. In order to develop novel negative allosteric GluN2B-NMDA receptor modulators, the concept of conformational restriction was pursued, i.e. the flexible aminoethanol substructure of ifenprodil was embedded into a more rigid tetrahydro-3-benzazepine system. The resulting tetrahydro-3-benzazepine-1,7-diol (±)-2 (WMS-1410) showed promising receptor affinity in receptor binding studies (Ki = 84 nM) as well as pharmacological activity in two-electrode-voltage-clamp experiments (IC50 = 116 nM) and in cytoprotective assays (IC50 = 18.5 nM). The interactions of (R)-2 with the ifenprodil binding site of GluN2B-NMDA receptors were analyzed on the molecular level and the “foot-in-the-door” mechanism was developed. Due to promising pharmacokinetic parameters (logD7.4 = 1.68, plasma protein binding of 76–77%, sufficient metabolic stability) F-substituted analogs were prepared and evaluated as tracers for positron emission tomography (PET). Both fluorine-18-labeled PET tracers [18F]11 and [18F]15 showed high brain uptake, specific accumulation in regions known for high GluN2B-NMDA receptor expression, but no interactions with σ1 receptors. Radiometabolites were not observed in the brain. Both PET tracers might be suitable for application in humans.


Corresponding author: Bernhard Wünsch, Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, GRK 2515 Munster, Germany; and Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149 Münster, Germany, E-mail:
Marvin Korff and Ruben Steigerwald contributed equally.
  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the Research Training Group “Chemical biology of ion channels (Chembion)” funded by the Deutsche Forschungsgemeinschaft (DFG), which is gratefully acknowledged.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Ahmed, H., Haider, A., Varisco, J., Stankovic, M., Wallimann, R., Gruber, G., Iten, I., Müller Herde, A., Keller, C., Schibli, R., et al.. (2019). Structure-affinity relationships of 2,3,4,5-Tetrahydro-1H-3-benzazepine and 6,7,8,9-tetrahydro-5H-benzo[7]annulen-7-amine analogues and the discovery of a radiofluorinated 2,3,4,5-tetrahydro-1H-3-benzazepine congener for imaging GluN2B subunit-containing N-methyl-D-aspartate receptors. J. Med. Chem. 62: 9450–9470, https://doi.org/10.1021/acs.jmedchem.9b00812.Search in Google Scholar PubMed

Ahmed, H., Wallimann, R., Haider, A., Hosseini, V., Gruber, S., Robledo, M., Nguyen, T., Müller Herde, A., Iten, I., Keller, C., et al.. (2021). Preclinical development of 18F-OF-NB1 for imaging GluN2B-containing N-methyl-D-aspartate receptors and its utility as a biomarker for amyotrophic lateral sclerosis. J. Nucl. Med. 62: 259–265, https://doi.org/10.2967/jnumed.120.246785.Search in Google Scholar PubMed

Algernon pharmaceuticals announces 154 patients enrolled in its multinational phase 2b/3 human Study of Ifenprodil for COVID-19, Available at: https://www.globenewswire.com/news-release/2020/11/23/2131702/0/en/Algernon-Pharmaceuticals-Announces-154-Patients-Enrolled-in-its-Multinational-Phase-2b-3-Human-Study-of-Ifenprodil-for-COVID-19.html.Search in Google Scholar

Artola, A. and Singer, W. (1987). Long-term potentiation and NMDA receptors in rat visual cortex. Nature 330: 649–652, https://doi.org/10.1038/330649a0.Search in Google Scholar PubMed

Bashir, Z.I., Alford, S., Davies, S.N., Randall, A.D., and Collingridge, G.L. (1991). Long-term potentiation of NMDA receptor-mediated synaptic transmission in the hippocampus. Nature 349: 156–158, https://doi.org/10.1038/349156a0.Search in Google Scholar PubMed

Bechthold, E., Schreiber, J.A., Lehmkuhl, K., Frehland, B., Schepmann, D., Bernal, F.A., Daniliuc, C., Álvarez, I., Val, C., Schmidt, T.J., et al.. (2021). Ifenprodil stereoisomers: synthesis, absolute configuration and correlation with biological activity. J. Med. Chem. 64: 1170–1179, https://doi.org/10.1021/acs.jmedchem.0c01912.Search in Google Scholar PubMed

Börgel, F., Szermerski, M., Schreiber, J.A., Temme, L., Strutz-Seebohm, N., Lehmkuhl, K., Schepmann, D., Ametamey, S.M., Seebohm, G., Schmidt, T.J., et al.. (2018). Synthesis and pharmacological evaluation of enantiomerically pure GluN2B selective NMDA receptor antagonists. ChemMedChem 13: 1580–1587, https://doi.org/10.1002/cmdc.201800214.Search in Google Scholar PubMed

Börgel, F., Galla, F., Lehmkuhl, K., Schepmann, D., Ametamey, S.M., and Wünsch, B. (2019). Pharmacokinetic properties of enantiomerically pure GluN2B selective NMDA receptor antagonists with 3-benzazepine scaffold. J. Pharm. Biomed. Anal. 172: 214–222, https://doi.org/10.1016/j.jpba.2019.04.032.Search in Google Scholar PubMed

Butsch, V., Börgel, F., Galla, F., Schwegmann, K., Hermann, S., Schäfers, M., Riemann, B., Wünsch, B., and Wagner, S. (2018). Design, (radio) synthesis, and in vitro and in vivo evaluation of highly selective and potent matrix metalloproteinase 12 (MMP-12) inhibitors as radiotracers for positron emission tomography. J. Med. Chem. 61: 4115–4134, https://doi.org/10.1021/acs.jmedchem.8b00200.Search in Google Scholar PubMed

Chenard, B.L., Shalaby, I.A., Koe, B.K., Ronau, R.T., Butler, T.W., Prochniak, M.A., Schmidt, A.W., and Fox, C.B. (1991). Separation of Α1 Adrenergic and N-methyl-D-aspartate antagonist activity in a series of ifenprodil compounds. J. Med. Chem. 34: 3085–3090, https://doi.org/10.1021/jm00114a018.Search in Google Scholar PubMed

Collingridge, G.L., Olsen, R.W., Peters, J., and Spedding, M. (2009). A nomenclature for ligand-gated ion channels. Neuropharmacology 56: 2–5.10.1016/j.neuropharm.2008.06.063Search in Google Scholar PubMed PubMed Central

Dingledine, R., Borges, K., Bowie, D., and Traynelis, S.F. (1999). The glutamate receptor ion channels. Pharmacol. Rev. 51: 7–61.Search in Google Scholar

Eriksson, M., Nilsson, A., Froelich-Fabre, S., Åkesson, E., Dunker, J., Seiger, Å., Folkesson, R., Benedikz, E., and Sundström, E. (2002). Cloning and expression of the human N-methyl-D-aspartate receptor subunit NR3A. Neurosci. Lett. 321: 177–181, https://doi.org/10.1016/s0304-3940(01)02524-1.Search in Google Scholar PubMed

Falck, E., Begrow, F., Verspohl, E., and Wünsch, B. (2014a). In vitro and in vivo biotransformation of WMS-1410, a potent GluN2B selective NMDA receptor antagonist. J. Pharm. Biomed. Anal. 94: 36–44, https://doi.org/10.1016/j.jpba.2014.01.017.Search in Google Scholar PubMed

Falck, E., Begrow, F., Verspohl, E., and Wünsch, B. (2014b). Metabolism studies of ifenprodil, a potent GluN2B receptor antagonist. J. Pharm. Biomed. Anal. 88: 96–105, https://doi.org/10.1016/j.jpba.2013.08.014.Search in Google Scholar PubMed

Galla, F., Bourgeois, C., Lehmkuhl, K., Schepmann, D., Soeberdt, M., Lotts, T., Abels, C., Ständer, S., and Wünsch, B. (2016). Effects of polar κ receptor agonists designed for the periphery on ATP-induced Ca2+ release from keratinocytes. MedChemComm 7: 317–326, https://doi.org/10.1039/c5md00414d.Search in Google Scholar

Gruber, S. and Ametamey, S.M. (2017). Imaging of glutamate receptor subtypes. Much achieved, and still much to do. Drug Discov. Today Technol. 25: 27–36, https://doi.org/10.1016/j.ddtec.2017.10.006.Search in Google Scholar PubMed

Haider, A., Iten, I., Ahmed, H., Müller Herde, A., Gruber, S., Krämer, S.D., Keller, C., Schibli, R., Wünsch, B., Mu, L., et al.. (2019). Identification and preclinical evaluation of a radiofluorinated benzazepine derivative for imaging the GluN2B subunit of the ionotropic NMDA receptor. J. Nucl. Med. 60: 259–266, https://doi.org/10.2967/jnumed.118.212134.Search in Google Scholar PubMed PubMed Central

Hashimoto, K. (2015). Activation of sigma-1 receptor chaperone in the treatment of neuropsychiatric diseases and its clinical implication. J. Pharmacol. Sci. 127: 6–9, https://doi.org/10.1016/j.jphs.2014.11.010.Search in Google Scholar PubMed

Huang, Y., Shen, W., Su, J., Cheng, B., Li, D., Liu, G., Zhou, W.X., and Zhang, Y.X. (2017). Modulating the balance of synaptic and extrasynaptic NMDA receptors shows positive effects against amyloid-β-induced neurotoxicity. J. Alzheim. Dis. 57: 885–897, https://doi.org/10.3233/jad-161186.Search in Google Scholar PubMed

Ismail, C.A.N., Suppian, R., Abd Aziz, C.B., Haris, K., and Long, I. (2019). Increased nociceptive responses in streptozotocin-induced diabetic rats and the related expression of spinal NR2B subunit of N-methyl-D-aspartate receptors. Diabetes Metab. J. 43: 222–235, https://doi.org/10.4093/dmj.2018.0020.Search in Google Scholar PubMed PubMed Central

Jia, M., Noutong Njapo, S.A., Rastogi, V., and Hedna, V.S. (2015). Taming glutamate excitotoxicity: strategic pathway modulation for neuroprotection. CNS Drugs 29: 153–162, https://doi.org/10.1007/s40263-015-0225-3.Search in Google Scholar PubMed

Karakas, E. and Furukawa, H. (2014). Crystal structure of heterotetrameric NMDA receptor ion channel. Science 344: 992–997, https://doi.org/10.1126/science.1251915.Search in Google Scholar PubMed PubMed Central

Karakas, E., Simorowski, N., and Furukawa, H. (2011). Subunit arrangement and phenylethanolamine binding in GluN1/GluN2B NMDA receptors. Nature 475: 249–253, https://doi.org/10.1038/nature10180.Search in Google Scholar PubMed PubMed Central

Karbon, E.W., Patch, R.J., Pontecorvo, M.J., and Ferkany, J.W. (1990). Ifenprodil potently interacts with [3HI (+) -3-PPP-labeled o binding sites in Guinea pig brain membranes. Eur. J. Pharmacol. 176: 247–248, https://doi.org/10.1016/0014-2999(90)90538-h.Search in Google Scholar PubMed

Kelly, B.L. and Ferreira, A. (2006). SS-amyloid-induced dynamin 1 degradation is mediated by N-methyl-D-aspartate receptors in hippocampal neurons. J. Biol. Chem. 281: 28079–28089, https://doi.org/10.1074/jbc.m605081200.Search in Google Scholar PubMed

Kim, Y., Cho, H., Ahn, Y.J., Kim, J., and Yoon, Y.W. (2012). Effect of NMDA NR2B antagonist on neuropathic pain in two spinal cord injury models. Pain 153: 1022–1029, https://doi.org/10.1016/j.pain.2012.02.003.Search in Google Scholar PubMed

Kotajima-Murakami, H., Takano, A., Ogai, Y., Tsukamoto, S., Murakami, M., Funada, D., Tanibuchi, Y., Tachimori, H., Maruo, K., Sasaki, T., et al.. (2019). Study of effects of ifenprodil in patients with methamphetamine dependence: protocol for an exploratory, randomized, double-blind, placebo-controlled trial. Neuropsychopharmacol. Rep. 39: 90–99, https://doi.org/10.1002/npr2.12050.Search in Google Scholar PubMed PubMed Central

Kutsuwada, T. (1992). Molecular diversity of the NMDA receptor channel. Nature 358: 36–41.10.1038/358036a0Search in Google Scholar PubMed

Liu, W., Jiang, X., Zu, Y., Yang, Y., Liu, Y., Sun, X., Xu, Z., Ding, H., and Zhao, Q. (2020). A comprehensive description of GluN2B-selective N-methyl-D-aspartate (NMDA) receptor antagonists. Eur. J. Med. Chem. 200: 112447, https://doi.org/10.1016/j.ejmech.2020.112447.Search in Google Scholar PubMed

Lü, W., Du, J., Goehring, A., and Gouaux, E. (2017). Cryo-EM structures of the triheteromeric NMDA receptor and its allosteric modulation. Science 355: 1–9, https://doi.org/10.1126/science.aal3729.Search in Google Scholar PubMed PubMed Central

McCool, B.A. and Lovinger, D.M. (1995). Ifenprodil inhibition of the 5-hydroxytryptamine3 receptor. Neuropharmacolgy 34: 621–629, https://doi.org/10.1016/0028-3908(95)00030-a.Search in Google Scholar PubMed

Mony, L., Kew, J.N.C., Gunthorpe, M.J., and Paoletti, P. (2009). Allosteric modulators of NR2B-containing NMDA receptors: molecular mechanisms and therapeutic potential. Br. J. Pharmacol. 157: 1301–1317, https://doi.org/10.1111/j.1476-5381.2009.00304.x.Search in Google Scholar

NP-120. Available at: https://algernonpharmaceuticals.com/ipf-np-120/.Search in Google Scholar

Paoletti, P., Bellone, C., and Zhou, Q. (2013). NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat. Rev. Neurosci. 14: 383–400, https://doi.org/10.1038/nrn3504.Search in Google Scholar

Paoletti, P. and Neyton, J. (2007). NMDA receptor subunits: function and pharmacology. Curr. Opin. Pharmacol. 7: 39–47, https://doi.org/10.1016/j.coph.2006.08.011.Search in Google Scholar

Pike, V.W. (2009). PET radiotracers: crossing the blood-brain barrier and surviving metabolism. Trends Pharmacol. Sci. 30: 431–440, https://doi.org/10.1016/j.tips.2009.05.005.Search in Google Scholar

Regan, M.C., Zhu, Z., Yuan, H., Yuan, H., Myer, S.J., Menaldino, D.S., Tahirovic, Y.A., Liotta, D.C., Traynelis, S.F., and Furukawa, H. (2019). Structural elements of a pH-sensitive inhibitor binding site in NMDA receptors. Nat. Commun. 10: 321, https://doi.org/10.1038/s41467-019-08291-1.Search in Google Scholar

Sasaki, T., Hashimoto, K., Niitsu, T., Hosoda, Y., Oda, Y., Shiko, Y., Ozawa, Y., Kawasaki, Y., Kanahara, N., Shiina, A., et al.. (2022). Ifenprodil tartrate treatment of adolescents with post-traumatic stress disorder: a double-blind, placebo-controlled trial. Psychiatr. Res. 311: 114486, https://doi.org/10.1016/j.psychres.2022.114486.Search in Google Scholar

Schepmann, D., Frehland, B., Lehmkuhl, K., Tewes, B., and Wünsch, B. (2010). Development of a selective competitive receptor binding assay for the determination of the affinity to NR2B containing NMDA receptors. J. Pharm. Biomed. Anal. 53: 603–608, https://doi.org/10.1016/j.jpba.2010.04.014.Search in Google Scholar

Schreiber, J.A., Schepmann, D., Frehland, B., Thum, S., Datunashvili, M., Budde, T., Hollmann, M., Strutz-Seebohm, N., Wünsch, B., and Seebohm, G. (2019). A common mechanism allows selective targeting of GluN2B subunit-containing N-methyl-D-aspartate receptors. Commun. Biol. 2: 1–14, https://doi.org/10.1038/s42003-019-0645-6.Search in Google Scholar

Sobrio, F., Gilbert, G., Perrio, C., Barre, L., and Debruyne, D. (2010). PET and SPECT imaging of the NMDA receptor system: an overview of radiotracer development. Mini Rev. Med. Chem. 10: 870–886, https://doi.org/10.2174/138955710791608299.Search in Google Scholar

Stark, H., Graßmann, S., and Reichert Struktur, U. (2000). Funktion und potentielle therapeutische Bedeutung von NMDA-Rezeptoren. Teil 1: architektur und Modulation der Rezeptoren. Pharmazie Unserer Zeit 29: 159–166.10.1002/(SICI)1615-1003(200005)29:3<159::AID-PAUZ159>3.0.CO;2-2Search in Google Scholar

Stroebel, D., Buhl, D.L., Knafels, J.D., Chanda, P.K., Green, M., Sciabola, S., Mony, L., Paoletti, P., and Pandit, J. (2016). A novel binding pocket for GluN2B antagonists. Mol. Pharmacol. 89: 541–551, https://doi.org/10.1124/mol.115.103036.Search in Google Scholar PubMed PubMed Central

Sugaya, N., Ogai, Y., Aikawa, Y., Yumoto, Y., Takahama, M., Tanaka, M., Haraguchi, A., Umeno, M., and Ikeda, K. (2018). A randomized controlled study of the effect of ifenprodil on alcohol use in patients with alcohol dependence. Neuropsychopharmacol. Rep. 38: 9–17, https://doi.org/10.1002/npr2.12001.Search in Google Scholar PubMed PubMed Central

Szermerski, M., Börgel, F., Schepmann, D., Haider, A., Betzel, T., Ametamey, S., and Wünsch, B. (2018). Fluorinated GluN2B receptor antagonists with a 3-benzazepine scaffold designed for PET studies. ChemMedChem 13: 1058–1068, https://doi.org/10.1002/cmdc.201700819.Search in Google Scholar PubMed

Tewes, B., Frehland, B., Schepmann, D., Schmidtke, K.-U., Winckler, T., and Wünsch, B. (2010). Conformationally constrained NR2B selective NMDA receptor antagonists derived from ifenprodil: synthesis and biological evaluation of tetrahydro-3-benzazepine-1,7-diols. Bioorg. Med. Chem. 18: 8005–8015, https://doi.org/10.1016/j.bmc.2010.09.026.Search in Google Scholar PubMed

Traynelis, S.F., Wollmuth, L.P., McBain, Ch. J., Menniti, F.S., Vance, K.M., Ogden, K.K., Hansen, K.B., Yuan, H., Myers, S.J., and Dingledine, R. (2010). Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev. 62: 405–496, https://doi.org/10.1124/pr.109.002451.Search in Google Scholar PubMed PubMed Central

Waterhouse, R.N. (2003). Determination of lipophilicity and its use as a predictor of blood-brain barrier penetration of molecular imaging agents. Mol. Imag. Biol. 5: 376–389, https://doi.org/10.1016/j.mibio.2003.09.014.Search in Google Scholar PubMed

Williams, K. (1993). Ifenprodil discriminates subtypes of the N-methyl-D-aspartate receptor: selectivity and mechanisms at recombinant heteromeric receptors. Mol. Pharmacol. 44: 851–859.Search in Google Scholar

Wyllie, D.J.A., Livesey, M.R., and Hardingham, G.E. (2013). Influence of GluN2 subunit identity on NMDA receptor function. Neuropharmacology 74: 4–17, https://doi.org/10.1016/j.neuropharm.2013.01.016.Search in Google Scholar PubMed PubMed Central

Received: 2022-07-06
Accepted: 2022-09-22
Published Online: 2022-10-10
Published in Print: 2023-03-28

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 18.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2022-0222/html
Scroll to top button