Abstract
COVID-19 primarily affects the respiratory system and may lead to severe systemic complications, such as acute respiratory distress syndrome (ARDS), multiple organ failure, cytokine storm, and thromboembolic events. Depending on the immune status of the affected individual early disease control can be reached by a robust type-I-interferon (type-I-IFN) response restricting viral replication. If type-I-IFN upregulation is impaired, patients develop severe COVID-19 that involves profound alveolitis, endothelitis, complement activation, recruitment of immune cells, as well as immunothrombosis. In patients with proper initial disease control there can be a second flare of type-I-IFN release leading to post-COVID manifestation such as chilblain-like lesions that are characterized by thrombosis of small vessels in addition to an inflammatory infiltrate resembling lupus erythematosus (LE). Mechanistically, SARS-CoV-2 invades pneumocytes and endothelial cells by acting on angiotensin-II-converting enzyme 2 (ACE2). It is hypothesized, that viral uptake might downregulate ACE2 bioavailability and enhance angiotensin-II-derived pro-inflammatory and pro-thrombotic state. Since ACE2 is encoded on the X chromosome these conditions might also be influenced by gender-specific regulation. Taken together, SARS-CoV-2 infection affects the vascular compartment leading to variable thrombogenic or inflammatory response depending on the individual immune response status.
Funding source: Deutsche Forschungsgemeinschaft (German Research Foundation)
Award Identifier / Grant number: TRR237 369799452/404458960
Funding source: Medical Faculty Carl Gustav Carus (Technical University Dresden)
Award Identifier / Grant number: MeDDrive Programme (MeDDrive Start Project 2021/2022)
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This work was supported by the Deutsche Forschungsgemeinschaft (German Research Foundation), grant TRR237 369799452/404458960 to CG; by the MeDDrive Programme (MeDDrive Start Project 2021/2022 grant to SA) of the Medical Faculty Carl Gustav Carus (Technical University Dresden), and by the Dresden Else Kröner Research College “Phosphoproteom-Dynamics” (membership of SA) of the Medical Faculty Carl Gustav Carus (Technical University Dresden), University Hospital Carl Gustav Carus Dresden.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Abdullah, M., Chai, P.-S., Chong, M.-Y., Tohit, E.R.M., Ramasamy, R., Pei, C.P., and Vidyadaran, S. (2012). Gender effect on in vitro lymphocyte subset levels of healthy individuals. Cell. Immunol. 272: 214–219, https://doi.org/10.1016/j.cellimm.2011.10.009.Search in Google Scholar PubMed
Ackermann, M., Verleden, S.E., Kuehnel, M., Haverich, A., Welte, T., Laenger, F., Vanstapel, A., Werlein, C., Stark, H., Tzankov, A., et al.. (2020). Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N. Engl. J. Med. 383: 120–128, https://doi.org/10.1056/nejmoa2015432.Search in Google Scholar PubMed PubMed Central
Al-Gburi, S., Deussen, A.J., Galli, R., Muders, M.H., Zatschler, B., Neisser, A., Müller, B., and Kopaliani, I. (2017). Sex-specific differences in age-dependent progression of aortic dysfunction and related cardiac remodeling in spontaneously hypertensive rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 312: R835–R849, https://doi.org/10.1152/ajpregu.00231.2016.Search in Google Scholar PubMed
Ali, R.A., Wuescher, L.M., and Worth, R.G. (2015). Platelets: essential components of the immune system. Curr. Trends Immunol. 16: 65–78.Search in Google Scholar
Althaus, K., Marini, I., Zlamal, J., Pelzl, L., Singh, A., Häberle, H., Mehrländer, M., Hammer, S., Schulze, H., Bitzer, M., et al.. (2021). Antibody-induced procoagulant platelets in severe COVID-19 infection. Blood 137: 1061–1071, https://doi.org/10.1182/blood.2020008762.Search in Google Scholar PubMed PubMed Central
Årfors, L., Vesterqvist, O., Jphnsson, H., and Gréen, K. (1990). Increased thromboxane formation in patients with antiphospholipid syndrome. Eur. J. Clin. Invest. 20: 607–612, https://doi.org/10.1111/j.1365-2362.1990.tb01908.x.Search in Google Scholar PubMed
Aschoff, R., Zimmermann, N., Beissert, S., and Günther, C. (2020). Type I interferon signature in chilblain-like lesions associated with the COVID-19 pandemic. Dermatopathology 7: 57–63, https://doi.org/10.3390/dermatopathology7030010.Search in Google Scholar PubMed PubMed Central
Bassi, A., Russo, T., Argenziano, G., Mazzatenta, C., Venturini, E., Neri, I., and Piccolo, V. (2021). Chilblain-like lesions during COVID-19 pandemic: the state of the art. Life 11: 1–5, https://doi.org/10.3390/life11010023.Search in Google Scholar PubMed PubMed Central
Bayly-Jones, C., Bubeck, D., and Dunstone, M.A. (2017). The mystery behind membrane insertion: a review of the complement membrane attack complex. Phil. Trans. Biol. Sci. 372: 20160221, https://doi.org/10.1098/rstb.2016.0221.Search in Google Scholar PubMed PubMed Central
Berletch, J.B., Yang, F., Xu, J., Carrel, L., and Disteche, C.M. (2011). Genes that escape from X inactivation. Hum. Genet. 130: 237–245, https://doi.org/10.1007/s00439-011-1011-z.Search in Google Scholar PubMed PubMed Central
Berthelot, J.M., Drouet, L., and Lioté, F. (2020a). Kawasaki-like diseases and thrombotic coagulopathy in COVID-19: delayed over-activation of the STING pathway? Emerg. Microb. Infect. 9: 1514–1522, https://doi.org/10.1080/22221751.2020.1785336.Search in Google Scholar PubMed PubMed Central
Berthelot, J.M., Lioté, F., Maugars, Y., and Sibilia, J. (2020b). Lymphocyte changes in severe COVID-19: delayed over-activation of STING? Front. Immunol. 11: 1–13, https://doi.org/10.3389/fimmu.2020.607069.Search in Google Scholar PubMed PubMed Central
Bonaventura, A., Vecchié, A., Dagna, L., Martinod, K., Dixon, D.L., Van Tassell, B.W., Dentali, F., Montecucco, F., Massberg, S., Levi, M., et al.. (2021). Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat. Rev. Immunol. 21: 319–329, https://doi.org/10.1038/s41577-021-00536-9.Search in Google Scholar PubMed PubMed Central
Brooks, W.H. (2010). X chromosome inactivation and autoimmunity. Clin. Rev. Allergy Immunol. 39: 20–29, https://doi.org/10.1007/s12016-009-8167-5.Search in Google Scholar PubMed
Brooks, W.H. and Renaudineau, Y. (2015). Epigenetics and autoimmune diseases: the X chromosome-nucleolus nexus. Front. Genet. 6: 1–20, https://doi.org/10.3389/fgene.2015.00022.Search in Google Scholar PubMed PubMed Central
Brumfiel, C.M., DiLorenzo, A.M., and Petronic-Rosic, V.M. (2021). Dermatologic manifestations of COVID-19-associated multisystem inflammatory syndrome in children. Clin. Dermatol 39: 329–333, doi:https://doi.org/10.1016/j.clindermatol.2020.10.021.Search in Google Scholar PubMed PubMed Central
Buckley, C.D., Rainger, G.E., Nash, G.B., Raza, K., and Buckley, C.D. (2005). Endothelial cells, fibroblasts and vasculitis Europe PMC Funders Group. Rheumatology 44: 860–863, https://doi.org/10.1093/rheumatology/keh542.Search in Google Scholar PubMed PubMed Central
Cahill, P.A. and Redmond, E.M. (2016). Vascular endothelium – gatekeeper of vessel health. Atherosclerosis 248: 97–109, https://doi.org/10.1016/j.atherosclerosis.2016.03.007.Search in Google Scholar PubMed PubMed Central
Campbell, C.M. and Kahwash, R. (2020). Will complement inhibition be the new target in treating COVID-19 – related. Circulation 141: 1739–1741, https://doi.org/10.1161/circulationaha.120.047419.Search in Google Scholar PubMed
Campbell, R.A., Boilard, E., and Rondina, M.T. (2021). Is there a role for the ACE2 receptor in SARS-CoV-2 interactions with platelets? J. Thromb. Haemostasis 19: 46–50, https://doi.org/10.1111/jth.15156.Search in Google Scholar PubMed PubMed Central
Cappel, M.A., Cappel, J.A., and Wetter, D.A. (2021). Pernio (chilblains), SARS-CoV-2, and COVID toes unified through cutaneous and systemic mechanisms. Mayo Clin. Proc. 96: 989–1005, https://doi.org/10.1016/j.mayocp.2021.01.009.Search in Google Scholar PubMed PubMed Central
Carreau, A., Kieda, C., and Grillon, C. (2011). Nitric oxide modulates the expression of endothelial cell adhesion molecules involved in angiogenesis and leukocyte recruitment. Exp. Cell Res. 317: 29–41, https://doi.org/10.1016/j.yexcr.2010.08.011.Search in Google Scholar PubMed
Chaudhary, H., Mohan, M., Jain, A., Kumar, V., Takia, L., Sudhakar, M., Angurana, S.K., and Jindal, A.K. (2021). Acral gangrene - ugly cousin of ‘Covid toes’ in multisystem inflammatory syndrome in children associated with SARS-CoV-2? Pediatr. Infect. Dis. J. 40: e312–e313, https://doi.org/10.1097/inf.0000000000003181.Search in Google Scholar
Cheng, Z., Dai, T., He, X., Zhang, Z., Xie, F., Wang, S., Zhang, L., and Zhou, F. (2020). The interactions between cGAS-STING pathway and pathogens. Signal Transduct. Targeted Ther. 5: 91, https://doi.org/10.1038/s41392-020-0198-7.Search in Google Scholar PubMed PubMed Central
Chouaki Benmansour, N., Carvelli, J., and Vivier, E. (2021). Complement cascade in severe forms of COVID-19: recent advances in therapy. Eur. J. Immunol. 51: 1652–1659, https://doi.org/10.1002/eji.202048959.Search in Google Scholar PubMed PubMed Central
Ciulla, M.M. (2020). SARS-CoV-2 downregulation of ACE2 and pleiotropic effects of ACEIs/ARBs. Hypertens. Res. 43: 985–986, https://doi.org/10.1038/s41440-020-0488-z.Search in Google Scholar PubMed PubMed Central
Colmenero, I., Santonja, C., Alonso-Riaño, M., Noguera-Morel, L., Hernández-Martín, A., Andina, D., Wiesner, T., Rodríguez-Peralto, J.L., Requena, L., and Torrelo, A. (2020). SARS-CoV-2 endothelial infection causes COVID-19 chilblains: histopathological, immunohistochemical and ultrastructural study of seven paediatric cases. Br. J. Dermatol. 183: 729–737, https://doi.org/10.1111/bjd.19327.Search in Google Scholar PubMed PubMed Central
Colonna, C., Spinelli, F., Monzani, N.A., Ceriotti, F., and Gelmetti, C. (2020). Chilblains in children in the time of COVID-19: new evidence with serology assay. Pediatr. Dermatol. 37: 1000–1001, https://doi.org/10.1111/pde.14269.Search in Google Scholar PubMed PubMed Central
Crow, Y.J. (2011). Type I interferonopathies: a novel set of inborn errors of immunity. Ann. N. Y. Acad. Sci. 1238: 91–98, https://doi.org/10.1111/j.1749-6632.2011.06220.x.Search in Google Scholar PubMed
Cugno, M., Meroni, P.L., Gualtierotti, R., Griffini, S., Grovetti, E., Torri, A., Panigada, M., Aliberti, S., Blasi, F., Tedesco, F., et al.. (2020). Complement activation in patients with COVID-19: a novel therapeutic target. J. Allergy Clin. Immunol. 146: 215–217, https://doi.org/10.1016/j.jaci.2020.05.006.Search in Google Scholar PubMed PubMed Central
de Masson, A., Bouaziz, J.-D., Sulimovic, L., Cassius, C., Jachiet, M., Ionescu, M.-A., Rybojad, M., Bagot, M., and Duong, T.-A. (2020). Chilblains are a common cutaneous finding during the COVID-19 pandemic: a retrospective nationwide study from France. J. Am. Acad. Dermatol. 83: 667–670, https://doi.org/10.1016/j.jaad.2020.04.161.Search in Google Scholar PubMed PubMed Central
El Hachem, M., Diociaiuti, A., Concato, C., Carsetti, R., Carnevale, C., Ciofi Degli Atti, M., Giovannelli, L., Latella, E., Porzio, O., Rossi, S., et al.. (2020). A clinical, histopathological and laboratory study of 19 consecutive Italian paediatric patients with chilblain-like lesions: lights and shadows on the relationship with COVID-19 infection. J. Eur. Acad. Dermatol. Venereol. 34: 2620–2629, https://doi.org/10.1111/jdv.16682.Search in Google Scholar PubMed PubMed Central
Espinola, R.G., Pierangeli, S.S., Ghara, A.E., and Harris, E.N. (2002). Hydroxychloroquine reverses platelet activation induced by human IgG antiphospholipid antibodies. Thromb. Haemostasis 87: 518–522, https://doi.org/10.1055/s-0037-1613033.Search in Google Scholar
Estébanez, A., Pérez-Santiago, L., Silva, E., Guillen-Climent, S., García-Vázquez, A., and Ramón, M.D. (2020). Cutaneous manifestations in COVID-19: a new contribution. J. Eur. Acad. Dermatol. Venereol. 34: e250–e251, https://doi.org/10.1111/jdv.16474.Search in Google Scholar PubMed PubMed Central
Evans, P.C., Ed Rainger, G., Mason, J.C., Guzik, T.J., Osto, E., Stamataki, Z., Neil, D., Hoefer, I.E., Fragiadaki, M., Waltenberger, J., et al.. (2020). Endothelial dysfunction in COVID-19: a position paper of the ESC Working Group for Atherosclerosis and Vascular Biology, and the ESC Council of Basic Cardiovascular Science. Cardiovasc. Res. 116: 2177–2184, https://doi.org/10.1093/cvr/cvaa230.Search in Google Scholar PubMed PubMed Central
Froldi, G. and Dorigo, P. (2020). Endothelial dysfunction in coronavirus disease 2019 (COVID-19): gender and age influences. Med. Hypotheses 144: 110015, https://doi.org/10.1016/j.mehy.2020.110015.Search in Google Scholar PubMed PubMed Central
Fuchs, T.A., Brill, A., Duerschmied, D., Schatzberg, D., and Monestier, M. (2010). Extracellular DNA traps promote thrombosis. Sci. Rep. 107: 15880–15885, https://doi.org/10.1073/pnas.1005743107.Search in Google Scholar PubMed PubMed Central
Furchgott, F. (1989). Endothelium-derived relaxing and contracting factors. Faseb. J. 3: 2007–2018, https://doi.org/10.1096/fasebj.3.9.2545495.Search in Google Scholar
Gagliardi, M.C., Tieri, P., Ortona, E., and Ruggieri, A. (2020). ACE2 expression and sex disparity in COVID-19. Cell Death Dis. 6: 1–2, https://doi.org/10.1038/s41420-020-0276-1.Search in Google Scholar PubMed PubMed Central
Galván Casas, C., Català, A., Carretero Hernández, G., Rodríguez-Jiménez, P., Fernández-Nieto, D., Rodríguez-Villa Lario, A., Navarro Fernández, I., Ruiz-Villaverde, R., Falkenhain-López, D., Llamas Velasco, M., et al.. (2020). Classification of the cutaneous manifestations of COVID-19: a rapid prospective nationwide consensus study in Spain with 375 cases. Br. J. Dermatol. 183: 71–77, https://doi.org/10.1111/bjd.19163.Search in Google Scholar PubMed PubMed Central
Gao, T., Hu, M., Zhang, X., Li, H., Zhu, L., Liu, H., Dong, Q., Zhang, Z., Wang, Z., Hu, Y., et al.. (2020). Highly pathogenic coronavirus N protein aggravates lung injury by MASP-2-mediated complement over-activation. medRxiv, https://doi.org/10.1101/2020.03.29.20041962, (preprint).Search in Google Scholar
Gebhard, C., Regitz-Zagrosek, V., Neuhauser, H.K., Morgan, R., and Klein, S.L. (2020). Impact of sex and gender on COVID-19 outcomes in Europe. Biol. Sex Differ. 11: 1–13, https://doi.org/10.1186/s13293-020-00304-9.Search in Google Scholar PubMed PubMed Central
Gu, S.X., Tyagi, T., Jain, K., Gu, V.W., Lee, S.H., Hwa, J.M., Kwan, J.M., Krause, D.S., Lee, A.I., Halene, S., et al.. (2021). Thrombocytopathy and endotheliopathy: crucial contributors to COVID-19 thromboinflammation. Nat. Rev. Cardiol. 18: 194–209, https://doi.org/10.1038/s41569-020-00469-1.Search in Google Scholar PubMed PubMed Central
Guan, W., Ni, Z., Hu, Y., Liang, W., Ou, C., He, J., Liu, L., Shan, H., Lei, C., Hui, D.S.C., et al.. (2020). Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 382: 1708–1720, https://doi.org/10.1056/nejmoa2002032.Search in Google Scholar PubMed PubMed Central
Günther, C., Aschoff, R., and Beissert, S. (2020). Cutaneous autoimmune diseases during COVID-19 pandemic. J. Eur. Acad. Dermatol. Venereol. 34: e667–e670, https://doi.org/10.1111/jdv.16753.Search in Google Scholar PubMed PubMed Central
Günther, C., Schmidt, F., König, N., and Lee-Kirsch, M.A. (2016). Typ-I-Interferonopathien: Durch Typ-1-Interferone bedingte entzündliche Systemerkrankungen. Z. Rheumatol. 75: 134–140, https://doi.org/10.1007/s00393-015-0027-5.Search in Google Scholar PubMed
Hadi, H.A.R., Carr, C.S., and Al Suwaidi, J. (2005). Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. Vasc. Health Risk Manag. 1: 183–198.Search in Google Scholar
Hamilos, M., Petousis, S., and Parthenakis, F. (2018). Interaction between platelets and endothelium: from pathophysiology to new therapeutic options. Cardiovasc. Diagn. Ther. 8: 568–580, https://doi.org/10.21037/cdt.2018.07.01.Search in Google Scholar PubMed PubMed Central
Harrison, D.G., Guzik, T.J., Lob, H.E., Madhur, M.S., Marvar, P.J., Thabet, S.R., Vinh, A., and Weyand, C.M. (2011). Inflammation, immunity, and hypertension. Hypertension 57: 132–140, https://doi.org/10.1161/hypertensionaha.110.163576.Search in Google Scholar
Heurich, A., Hofmann-Winkler, H., Gierer, S., Liepold, T., Jahn, O., and Pohlmann, S. (2014). TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J. Virol. 88: 1293–1307, https://doi.org/10.1128/jvi.02202-13.Search in Google Scholar PubMed PubMed Central
Hilliard, L.M., Sampson, A.K., Brown, R.D., and Denton, K.M. (2013). The ‘his and hers’ of the renin-angiotensin system. Curr. Hypertens. Rep. 15: 71–79, https://doi.org/10.1007/s11906-012-0319-y.Search in Google Scholar PubMed
Hoffmann, M., Kleine-Weber, H., Schroeder, S., Mü, M.A., Drosten, C., and Pö, S. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181: 271–280, https://doi.org/10.1016/j.cell.2020.02.052.Search in Google Scholar PubMed PubMed Central
Hong, P.J., Look, D.C., Tan, P., Shi, L., Hickey, M., Gakhar, L., Chappell, M.C., Wohlford-Lenane, C., and McCray, P.B. (2009). Ectodomain shedding of angiotensin converting enzyme 2 in human airway epithelia. Am. J. Physiol. Lung Cell Mol. Physiol. 297: 84–96, https://doi.org/10.1152/ajplung.00071.2009.Search in Google Scholar
Honke, N., Shaabani, N., Merches, K., Gassa, A., Kraft, A., Ehrhardt, K., Häussinger, D., Löhning, M., Dittmer, U., Hengel, H., et al.. (2016). Immunoactivation induced by chronic viral infection inhibits viral replication and drives immunosuppression through sustained IFN-I responses. Eur. J. Immunol. 46: 372–380, https://doi.org/10.1002/eji.201545765.Search in Google Scholar
Hopfner, K.P. and Hornung, V. (2020). Molecular mechanisms and cellular functions of cGAS–STING signalling. Nat. Rev. Mol. Cell Biol. 21: 501–521, https://doi.org/10.1038/s41580-020-0244-x.Search in Google Scholar
Hottz, E.D., Azevedo-Quintanilha, I.G., Palhinha, L., Teixeira, L., Barreto, E.A., Pão, C.R.R., Righy, C., Franco, S., Souza, T.M.L., Kurtz, P., et al.. (2020). Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. Blood 136: 1330–1341, https://doi.org/10.1182/blood.2020007252.Search in Google Scholar
Hubiche, T., Cardot-Leccia, N., Le Duff, F., Seitz-Polski, B., Giordana, P., Chiaverini, C., Giordanengo, V., Gonfrier, G., Raimondi, V., Bausset, O., et al.. (2021a). Clinical, laboratory, and interferon-alpha response characteristics of patients with chilblain-like lesions during the COVID-19 pandemic. JAMA Dermatol. 157: 202–206, https://doi.org/10.1001/jamadermatol.2020.4324.Search in Google Scholar
Hubiche, T., Le Duff, F., Chiaverini, C., Giordanengo, V., and Passeron, T. (2021b). Negative SARS-CoV-2 PCR in patients with chilblain-like lesions. Lancet Infect. Dis. 21: 315–316, https://doi.org/10.1016/s1473-3099(20)30518-1.Search in Google Scholar
Java, A., Apicelli, A.J., Kathryn Liszewski, M., Coler-Reilly, A., Atkinson, J.P., Kim, A.H.J., and Kulkarni, H.S. (2020). The complement system in COVID-19: friend and foe? JCI Insight 5: e140711, https://doi.org/10.1172/jci.insight.140711.Search in Google Scholar PubMed PubMed Central
Jia, H.P., Look, D.C., Shi, L., Hickey, M., Pewe, L., Netland, J., Farzan, M., Wohlford-Lenane, C., Perlman, S., and McCray, P.B. (2005). ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J. Virol. 79: 14614–14621, https://doi.org/10.1128/jvi.79.23.14614-14621.2005.Search in Google Scholar
Jimenez-Cebrian, A.M., Castro-Mendez, A., García-Podadera, B., Romero-Galisteo, R., Medina-Alcántara, M., Garcia-Paya, I., Páez-Moguer, J., and Córdoba-Fernández, A. (2021). Clinical manifestations of COVID-19 in the feet: a review of reviews. J. Clin. Med. 10: 2201, https://doi.org/10.3390/jcm10102201.Search in Google Scholar PubMed PubMed Central
Jin, R.C., Voetsch, B., and Loscalzo, J. (2005). Endogenous mechanisms of inhibition of platelet function. Microcirculation 12: 247–258, https://doi.org/10.1080/10739680590925493.Search in Google Scholar PubMed
Klein, S.L. and Flanagan, K.L. (2016). Sex differences in immune responses. Nat. Rev. Immunol. 16: 626–638, https://doi.org/10.1038/nri.2016.90.Search in Google Scholar PubMed
Kleina, S.L., Marriott, I., and Fish, E.N. (2014). Sex-based differences in immune function and responses to vaccination. Trans. R. Soc. Trop. Med. Hyg. 109: 9–15, https://doi.org/10.1093/trstmh/tru167.Search in Google Scholar PubMed PubMed Central
Kolivras, A., Dehavay, F., Delplace, D., Feoli, F., Meiers, I., Milone, L., Olemans, C., Sass, U., Theunis, A., Thompson, C.T., et al.. (2020). Coronavirus (COVID-19) infection–induced chilblains: a case report with histopathologic findings. JAAD Case Rep. 6: 489–492, https://doi.org/10.1016/j.jdcr.2020.04.011.Search in Google Scholar PubMed PubMed Central
Kolluru, G.K., Siamwala, J.H., and Chatterjee, S. (2010). ENOS phosphorylation in health and disease. Biochimie 92: 1186–1198, https://doi.org/10.1016/j.biochi.2010.03.020.Search in Google Scholar PubMed
König, N., Fiehn, C., Wolf, C., Schuster, M., Cura Costa, E., Tüngler, V., Alvarez, H.A., Chara, O., Engel, K., Goldbach-Mansky, R., et al.. (2017). Familial chilblain lupus due to a gain-of-function mutation in STING. Ann. Rheum. Dis. 76: 468–472, https://doi.org/10.1136/annrheumdis-2016-209841.Search in Google Scholar PubMed
Kozarcanin, H., Lood, C., Munthe-Fog, L., Sandholm, K., Hamad, O.A., Bengtsson, A.A., Skjoedt, M.O., Huber-Lang, M., Garred, P., Ekdahl, K.N., et al.. (2016). The lectin complement pathway serine proteases (MASPs) represent a possible crossroad between the coagulation and complement systems in thromboinflammation. J. Thromb. Haemostasis 14: 531–545, https://doi.org/10.1111/jth.13208.Search in Google Scholar PubMed
Krarup, A., Wallis, R., Presanis, J.S., Gál, P., and Sim, R.B. (2007). Simultaneous activation of complement and coagulation by MBL-associated serine protease 2. PLoS One 2: 1–8, https://doi.org/10.1371/journal.pone.0000623.Search in Google Scholar PubMed PubMed Central
Kumar, G., Pillai, S., Norwick, P., and Bukulmez, H. (2021). Leucocytoclastic vasculitis secondary to COVID-19 infection in a young child. BMJ Case Rep. 14: 1–4, https://doi.org/10.1136/bcr-2021-242192.Search in Google Scholar PubMed PubMed Central
Lee-Kirsch, M.A. (2017). The type I interferonopathies. Annu. Rev. Med. 68: 297–315, https://doi.org/10.1146/annurev-med-050715-104506.Search in Google Scholar PubMed
Lesort, C., Kanitakis, J., Donzier, L., and Jullien, D. (2021). Chilblain‐like lesions after BNT162b2 mRNA COVID‐19 vaccine: a case report suggesting that ‘COVID toes’ are due to the immune reaction to SARS‐CoV‐2. J. Eur. Acad. Dermatol. Venereol. 35: e630–e632.10.1111/jdv.17451Search in Google Scholar PubMed PubMed Central
Levi, M., Thachil, J., Iba, T., and Levy, J.H. (2020). Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 7: e438–e440, https://doi.org/10.1016/s2352-3026(20)30145-9.Search in Google Scholar
Lilly, B. (2014). We have contact: endothelial cell-smooth muscle cell interactions. Physiology 29: 234–241, https://doi.org/10.1152/physiol.00047.2013.Search in Google Scholar
Liu, Y., Jesus, A., Marrero, B., Yang, D., Ramsey, S., Montealegre Sanchez, G., Tenbrock, K., Wittkowski, H., Jones, O., Kuehn, H., et al.. (2014). Activated STING in a vascular and pulmonary syndrome. N. Engl. J. Med. 371: 507–518, https://doi.org/10.1056/nejmoa1312625.Search in Google Scholar
Ma, L., Sahu, S.K., Cano, M., Kuppuswamy, V., Bajwa, J., McPhatter, J., Pine, A., Meizlish, M.L., Goshua, G., Chang, C.H., et al.. (2021). Increased complement activation is a distinctive feature of severe SARS-CoV-2 infection. Sci. Immunol. 6: 1–13, https://doi.org/10.1126/sciimmunol.abh2259.Search in Google Scholar
Mackman, N., Antoniak, S., Wolberg, A.S., Kasthuri, R., and Key, N.S. (2020). Coagulation abnormalities and thrombosis in patients infected with SARS-CoV-2 and other pandemic viruses. Arterioscler. Thromb. Vasc. Biol. 40: 2033–2044, https://doi.org/10.1161/atvbaha.120.314514.Search in Google Scholar
Magro, C., Mulvey, J.J., Berlin, D., Nuovo, G., Salvatore, S., Harp, J., Baxter-Stoltzfus, A., and Laurence, J. (2020). Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl. Res. 220: 1–13, https://doi.org/10.1016/j.trsl.2020.04.007.Search in Google Scholar
Mak, A., Kow, N.Y., Schwarz, H., Gong, L., Tay, S.H., and Ling, L.H. (2017). Endothelial dysfunction in systemic lupus erythematosus - a case-control study and an updated meta-analysis and meta-regression. Sci. Rep. 7: 1–10, https://doi.org/10.1038/s41598-017-07574-1.Search in Google Scholar
Manne, B.K., Denorme, F., Middleton, E.A., Portier, I., Rowley, J.W., Stubben, C., Petrey, A.C., Tolley, N.D., Guo, L., Cody, M., et al.. (2020). Platelet gene expression and function in patients with COVID-19. Blood 136: 1317–1329, https://doi.org/10.1182/blood.2020007214.Search in Google Scholar
McGonagle, D., Bridgewood, C., and Meaney, J.F.M. (2021a). A tricompartmental model of lung oxygenation disruption to explain pulmonary and systemic pathology in severe COVID-19. Lancet Respir. Med. 9: 665–672, https://doi.org/10.1016/s2213-2600(21)00213-7.Search in Google Scholar
McGonagle, D., Bridgewood, C., Ramanan, A.V., Meaney, J.F.M., and Watad, A. (2021b). COVID-19 vasculitis and novel vasculitis mimics. Lancet Rheumatol. 3: e224–e33, https://doi.org/10.1016/s2665-9913(20)30420-3.Search in Google Scholar
Mendelsohn, M.E., O’Neill, S., George, D., and Loscalzo, J. (1990). Inhibition of fibrinogen binding to human platelets by S-nitroso-N-acetylcysteine. J. Biol. Chem. 265: 19028–19034, https://doi.org/10.1016/s0021-9258(17)30619-1.Search in Google Scholar
Moreau, K.L. (2018). Intersection between gonadal function and vascular aging in women. J. Appl. Physiol. 125: 1881–1887, https://doi.org/10.1152/japplphysiol.00117.2018.Search in Google Scholar
Morrell, C.N., Aggrey, A.A., Chapman, L.M., and Modjeski, K.L. (2014). Emerging roles for platelets as immune and inflammatory cells. Blood 123: 2759–2767, https://doi.org/10.1182/blood-2013-11-462432.Search in Google Scholar
Murohara, T., Parkinson, S.J., Waldman, S.A., and Lefer, A.M. (1995). Inhibition of nitric oxide biosynthesis promotes P-selectin expression in platelets: role of protein kinase C. Arterioscler. Thromb. Vasc. Biol. 15: 2068–2075, https://doi.org/10.1161/01.atv.15.11.2068.Search in Google Scholar
Najafi, S., Rajaei, E., Moallemian, R., and Nokhostin, F. (2020). The potential similarities of COVID-19 and autoimmune disease pathogenesis and therapeutic options: new insights approach. Clin. Rheumatol. 39: 3223–3235, https://doi.org/10.1007/s10067-020-05376-x.Search in Google Scholar
Namsolleck, P., Recarti, C., Foulquier, S., Steckelings, U.M., and Unger, T. (2014). AT2 receptor and tissue injury: therapeutic implications. Curr. Hypertens. Rep. 16: 416, https://doi.org/10.1007/s11906-013-0416-6.Search in Google Scholar
Nardi, M., Tomlinson, S., Greco, M.A., and Karpatkin, S. (2001). Complement-independent, peroxide-induced antibody lysis of platelets in HIV-1-related immune thrombocytopenia. Cell 106: 551–561, doi:https://doi.org/10.1016/s0092-8674(01)00477-9.Search in Google Scholar
Nazy, I., Jevtic, S.D., Moore, J.C., Huynh, A., Smith, J.W., Kelton, J.G., and Arnold, D.M. (2021). Platelet-activating immune complexes identified in critically ill COVID-19 patients suspected of heparin-induced thrombocytopenia. J. Thromb. Haemostasis 19: 1342–1347, https://doi.org/10.1111/jth.15283.Search in Google Scholar PubMed PubMed Central
Nguyen Dinh Cat, A. and Touyz, R.M. (2011). A new look at the renin-angiotensin system--focusing on the vascular system. Peptides 32: 2141–2150, https://doi.org/10.1016/j.peptides.2011.09.010.Search in Google Scholar PubMed
Noris, M., Benigni, A., and Remuzzi, G. (2020). The case of complement activation in COVID-19 multiorgan impact. Kidney Int. 98: 314–322, https://doi.org/10.1016/j.kint.2020.05.013.Search in Google Scholar PubMed PubMed Central
Onabajo, O.O., Banday, A.R., Stanifer, M.L., Yan, W., Obajemu, A., Santer, D.M., Florez-Vargas, O., Piontkivska, H., Vargas, J.M., Ring, T.J., et al.. (2020). Interferons and viruses induce a novel truncated ACE2 isoform and not the full-length SARS-CoV-2 receptor. Nat. Genet. 52: 1283–1293, https://doi.org/10.1038/s41588-020-00731-9.Search in Google Scholar PubMed
Otto, S., Deussen, A., Zatschler, B., Müller, B., Neisser, A., Barth, K., Morawietz, H., and Kopaliani, I. (2016). A novel role of endothelium in activation of latent pro-membrane type 1 MMP and pro-MMP-2 in rat aorta. Cardiovasc. Res. 109: 409–418, https://doi.org/10.1093/cvr/cvv256.Search in Google Scholar PubMed
Papayannopoulos, V. (2018). Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 18: 134–147, https://doi.org/10.1038/nri.2017.105.Search in Google Scholar PubMed
Peckham, H., de Gruijter, N.M., Raine, C., Radziszewska, A., Ciurtin, C., Wedderburn, L.R., Rosser, E.C., Webb, K., and Deakin, C.T. (2020). Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nat. Commun. 11: 1–10, https://doi.org/10.1038/s41467-020-19741-6.Search in Google Scholar PubMed PubMed Central
Piccolo, V. and Bassi, A. (2020). Acral findings during the COVID-19 outbreak: chilblain-like lesions should be preferred to acroischemic lesions. J. Am. Acad. Dermatol. 83: e233–e234, https://doi.org/10.1016/j.jaad.2020.05.077.Search in Google Scholar PubMed PubMed Central
Piccolo, V., Bassi, A., Argenziano, G., Mazzatenta, C., Cutrone, M., Neri, I., Grimalt, R., and Russo, T. (2021). BNT162b2 mRNA COVID-19 vaccine-induced chilblain-like lesions reinforces the hypothesis of their relationship with SARS-CoV-2. J. Eur. Acad. Dermatol. Venereol. 35: 3493–3494, https://doi.org/10.1111/jdv.17320.Search in Google Scholar PubMed PubMed Central
Piccolo, V., Neri, I., Filippeschi, C., Oranges, T., Argenziano, G., Battarra, V.C., Berti, S., Manunza, F., Belloni Fortina, A., Di Lernia, V., et al.. (2020). Chilblain‐like lesions during COVID‐19 epidemic: a preliminary study on 63 patients. J. Eur. Acad. Dermatol. Venereol. 34: e291–e293, https://doi.org/10.1111/jdv.16526.Search in Google Scholar PubMed PubMed Central
Pradhan, A. and Olsson, P.E. (2020). Sex differences in severity and mortality from COVID-19: are males more vulnerable? Biol. Sex Differ. 11: 1–11, https://doi.org/10.1186/s13293-020-00330-7.Search in Google Scholar PubMed PubMed Central
Puelles, V.G., Lütgehetmann, M., Lindenmeyer, M.T., Sperhake, J.P., Wong, M.N., Allweiss, L., Chilla, S., Heinemann, A., Wanner, N., Liu, S., et al.. (2020). Multiorgan and renal tropism of SARS-CoV-2. N. Engl. J. Med. 383: 589–590, https://doi.org/10.1056/NEJMc2011400.Search in Google Scholar PubMed PubMed Central
Rajagopalan, S., Somers, E.C., Brook, R.D., Kehrer, C., Pfenninger, D., Lewis, E., Chakrabarti, A., Richardson, B.C., Shelden, E., McCune, W.J., et al.. (2004). Endothelial cell apoptosis in systemic lupus erythematosus: a common pathway for abnormal vascular function and thrombosis propensity. Blood 103: 3677–3683, https://doi.org/10.1182/blood-2003-09-3198.Search in Google Scholar PubMed
Riphagen, S., Gomez, X., Gonzalez-Martinez, C., Wilkinson, N., and Theocharis, P. (2020). Hyperinflammatory shock in children during COVID-19 pandemic. Lancet 395: 1607–1608, https://doi.org/10.1016/S0140-6736(20)31094-1.Search in Google Scholar
Roberts, W., Riba, R., Homer-Vanniasinkam, S., Farndale, R.W., and Naseem, K.M. (2008). Nitric oxide specifically inhibits integrin-mediated platelet adhesion and spreading on collagen. J. Thromb. Haemostasis 6: 2175–2185, https://doi.org/10.1111/j.1538-7836.2008.03190.x.Search in Google Scholar PubMed
Sacharidou, A., Shaul, P.W., and Mineo, C. (2018). New insights in the pathophysiology of antiphospholipid syndrome. Semin. Thromb. Hemost. 44: 475–482, https://doi.org/10.1055/s-0036-1597286.Search in Google Scholar PubMed PubMed Central
Sang, E.R., Tian, Y., and Miller, L.C. (2021). Interferon-stimulated genes correlate to COVID-19 susceptibility in vertebrates. Genes 12: 154, https://doi.org/10.3390/genes12020154.Search in Google Scholar PubMed PubMed Central
Scaradavou, A. (2002). HIV-related thrombocytopenia. Blood Rev. 16: 73–76, https://doi.org/10.1054/blre.2001.0188.Search in Google Scholar PubMed
Schaller, T., Hirschbühl, K., Burkhardt, K., Braun, G., Trepel, M., Märkl, B., and Claus, R. (2020). Postmortem examination of patients with COVID-19. J. Am. Med. Assoc. 323: 2518–2520, https://doi.org/10.1001/jama.2020.8907.Search in Google Scholar PubMed PubMed Central
Schnapp, A., Abulhija, H., Maly, A., Armoni-Weiss, G., Levin, Y., Faitatziadou, S.M., and Molho-Pessach, V. (2020). Introductory histopathological findings may shed light on COVID-19 paediatric hyperinflammatory shock syndrome. J. Eur. Acad. Dermatol. Venereol. 34: e665–e667, https://doi.org/10.1111/jdv.16749.Search in Google Scholar PubMed PubMed Central
Sebag, S.C., Bastarache, J.A., and Ware, L.B. (2011). Therapeutic modulation of coagulation and fibrinolysis in acute lung injury and the acute respiratory distress syndrome. Curr. Pharmaceut. Biotechnol. 12: 1481–1496, https://doi.org/10.2174/138920111798281171.Search in Google Scholar PubMed PubMed Central
Sinkovits, G., Mező, B., Réti, M., Müller, V., Iványi, Z., Gál, J., Gopcsa, L., Reményi, P., Szathmáry, B., Lakatos, B., et al.. (2021). Complement overactivation and consumption predicts in-hospital mortality in SARS-CoV-2 infection. Front. Immunol. 12: 866, https://doi.org/10.3389/fimmu.2021.663187.Search in Google Scholar PubMed PubMed Central
Skendros, P., Mitsios, A., Chrysanthopoulou, A., Mastellos, D.C., Metallidis, S., Rafailidis, P., Ntinopoulou, M., Sertaridou, E., Tsironidou, V., Tsigalou, C., et al.. (2020). Complement and tissue factor–enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis. J. Clin. Invest. 130: 6151–6157, https://doi.org/10.1172/jci141374.Search in Google Scholar
Souyris, M., Cenac, C., Azar, P., Daviaud, D., Canivet, A., Grunenwald, S., Pienkowski, C., Chaumeil, J., Mejía, J.E., and Guéry, J.C. (2018). TLR7 escapes X chromosome inactivation in immune cells. Sci. Immunol. 3: 1–11, https://doi.org/10.1126/sciimmunol.aap8855.Search in Google Scholar PubMed
Spihlman, A.P., Gadi, N., Wu, S.C., and Moulton, V.R. (2020). COVID-19 and systemic lupus erythematosus: focus on immune response and therapeutics. Front. Immunol. 11: 1–12, https://doi.org/10.3389/fimmu.2020.589474.Search in Google Scholar PubMed PubMed Central
Spolarics, Z., Peña, G., Qin, Y., Donnelly, R.J., and Livingston, D.H. (2017). Inherent X-linked genetic variability and cellular mosaicism unique to females contribute to sex-related differences in the innate immune response. Front. Immunol. 8: 1–13, https://doi.org/10.3389/fimmu.2017.01455.Search in Google Scholar PubMed PubMed Central
Stakos, D., Skendros, P., Konstantinides, S., and Ritis, K. (2020). Traps N’ clots: NET-mediated thrombosis and related diseases. Thromb. Haemostasis 120: 373–383, https://doi.org/10.1055/s-0039-3402731.Search in Google Scholar PubMed
Stoica, G., Macarie, E., Michiu, V., and Stoica, R.C. (1980). Biologic variation of human immunoglobulin concentration. I. Sex-age specific effects on serum levels of IgG, IgA, IgM and IgD. Med. Interne. 18: 323–332.Search in Google Scholar
Su, S. and Jiang, S. (2020). A suspicious role of interferon in the pathogenesis of SARS-CoV-2 by enhancing expression of ACE2. Signal Transduct. Targeted Ther. 5: 3–4, https://doi.org/10.1038/s41392-020-0185-z.Search in Google Scholar PubMed PubMed Central
Taha, M. and Samavati, L. (2021). Antiphospholipid antibodies in COVID-19: a meta-analysis and systematic review. RMD Open 7: 1–8, https://doi.org/10.1136/rmdopen-2021-001580.Search in Google Scholar PubMed PubMed Central
Takahashi, M., Ikeda, U., Masuyama, J.-I., Funayama, H., Kano, S., and Shimada, K. (1996). Nitric oxide attenuates adhesion molecule expression in human endothelial cells. Cytokine 8: 817–821, https://doi.org/10.1006/cyto.1996.0109.Search in Google Scholar PubMed
Takahashi, T., Ellingson, M.K., Wong, P., Israelow, B., Lucas, C., Klein, J., Silva, J., Mao, T., Oh, J.E., Tokuyama, M., et al.. (2020). Sex differences in immune responses that underlie COVID-19 disease outcomes. Nature 588: 315–320, https://doi.org/10.1038/s41586-020-2700-3.Search in Google Scholar PubMed PubMed Central
Takahashi, Y., Haga, S., Ishizaka, Y., and Mimori, A. (2010). Autoantibodies to angiotensin-converting enzyme 2 in patients with connective tissue diseases. Arthritis Res. Ther. 12: R85, https://doi.org/10.1186/ar3012.Search in Google Scholar PubMed PubMed Central
Tang, X., Geng, L., Feng, X., and Sun, L. (2021). Decreased serum ACE2 levels in patients with connective tissue diseases. Rheumatology 60: 1–6, doi:https://doi.org/10.1093/rheumatology/keaa898.Search in Google Scholar PubMed
Tchoumi, A., Erikson, U., and Krasniqi, N. (2020). SARS-CoV-2 und das Renin-Angiotensin-System: was wir wissen. Cardiovasc. Med. 23: w02116, https://doi.org/10.4414/cvm.2020.02116.Search in Google Scholar
Tersalvi, G., Vicenzi, M., Calabretta, D., Mdphd, L.B., Pedrazzini, G., Winterton, D., Biasco, L., Pedrazzini, G., and Winterton, D. (2020). Elevated troponin in patients with coronavirus disease 2019: possible mechanisms. J. Card. Fail. 26: 470–475, https://doi.org/10.1016/j.cardfail.2020.04.009.Search in Google Scholar
Tikellis, C., Bernardi, S., and Burns, W.C. (2011). Angiotensin-converting enzyme 2 is a key modulator of the renin-angiotensin system in cardiovascular and renal disease. Curr. Opin. Nephrol. Hypertens. 20: 62–68, https://doi.org/10.1097/mnh.0b013e328341164a.Search in Google Scholar
Tomlins, S.A., Rhodes, D.R., Perner, S., Dhanasekaran, S.M., Mehra, R., Sun, X.-W., Varambally, S., Cao, X., Tchinda, J., Kuefer, R., et al.. (2005). Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310: 644–648, https://doi.org/10.1126/science.1117679.Search in Google Scholar
Tung, M.L., Tan, B., Cherian, R., and Chandra, B. (2021). Anti-phospholipid syndrome and COVID-19 thrombosis: connecting the dots. Rheumatol. Adv. Pract. 5: 1–14, https://doi.org/10.1093/rap/rkaa081.Search in Google Scholar
Varga, Z., Flammer, A.J., Steiger, P., Haberecker, M., Andermatt, R., Zinkernagel, A.S., Mehra, M.R., Schuepbach, R.A., Ruschitzka, F., and Moch, H. (2020). Endothelial cell infection and endotheliitis in COVID-19. Lancet 395: 1417–1418, https://doi.org/10.1016/s0140-6736(20)30937-5.Search in Google Scholar
Velásquez, M., Rojas, M., Abrahams, V.M., Escudero, C., and Cadavid, Á.P. (2018). Mechanisms of endothelial dysfunction in antiphospholipid syndrome: association with clinical manifestations. Front. Physiol. 9: 1840, https://doi.org/10.3389/fphys.2018.01840.Search in Google Scholar PubMed PubMed Central
Veras, F., Pontelli, M., Silva, C., Toller-Kawahisa, J., de Lima, M., Nascimento, D., Schneider, A., Caetité, D., Rosales, R., Colón, D., et al.. (2020). SARS-CoV-2 triggered neutrophil extracellular traps (NETs) mediate COVID-19 pathology. J. Exp. Med. 217, https://doi.org/10.1084/jem.20201129.Search in Google Scholar PubMed PubMed Central
Verdecchia, P., Cavallini, C., Spanevello, A., and Angeli, F. (2020). The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur. J. Intern. Med. 76: 14–20, https://doi.org/10.1016/j.ejim.2020.04.037.Search in Google Scholar PubMed PubMed Central
Versari, D., Daghini, E., Virdis, A., Ghiadoni, L., and Taddei, S. (2009). Endothelial dysfunction as a target for prevention of cardiovascular disease. Diabetes Care 32(Suppl. 2): S314–S321, https://doi.org/10.2337/dc09-S330.Search in Google Scholar PubMed PubMed Central
Vieira, C., Nery, L., Martins, L., Jabour, L., Dias, R., and Simões e Silva, A.C. (2021). Downregulation of membrane-bound angiotensin converting enzyme 2 (ACE2) receptor has a pivotal role in COVID-19 immunopathology. Curr. Drug Targets 22: 254–281, https://doi.org/10.2174/1389450121666201020154033.Search in Google Scholar
Viner, R.M. and Whittaker, E. (2020). Kawasaki-like disease: emerging complication during the COVID-19 pandemic. Lancet 395: 1741–1743, https://doi.org/10.1016/s0140-6736(20)31129-6.Search in Google Scholar
Walport, M.J. (2001). Complement. First of two parts. N. Engl. J. Med. 344: 1058–1066, https://doi.org/10.1056/nejm200104053441406.Search in Google Scholar
Wang, E.Y., Mao, T., Klein, J., Dai, Y., Huck, J.D., Jaycox, J.R., Liu, F., Zhou, T., Israelow, B., Wong, P., et al.. (2021). Diverse functional autoantibodies in patients with COVID-19. Nature 595: 283–288, https://doi.org/10.1038/s41586-021-03631-y.Search in Google Scholar PubMed
Wichmann, D., Sperhake, J.-P., Lütgehetmann, M., Steurer, S., Edler, C., Heinemann, A., Heinrich, F., Mushumba, H., Kniep, I., Schröder, A.S., et al.. (2020). Autopsy findings and venous thromboembolism in patients with COVID-19. Ann. Intern. Med. 173: 268–277, https://doi.org/10.7326/m20-2003.Search in Google Scholar
Wink, D.A., Miranda, K.M., Espey, M.G., Pluta, R.M., Hewett, S.J., Colton, C., Vitek, M., Feelisch, M., and Grisham, M.B. (2001). Mechanisms of the antioxidant effects of nitric oxide. Antioxidants Redox Signal. 3: 203–213, https://doi.org/10.1089/152308601300185179.Search in Google Scholar PubMed
Wu, H., Wang, Y., Zhang, Y., Xu, F., Chen, J., Duan, L., Zhang, T., Wang, J., and Zhang, F. (2020). Breaking the vicious loop between inflammation, oxidative stress and coagulation, a novel anti-thrombus insight of nattokinase by inhibiting LPS-induced inflammation and oxidative stress. Redox Biol. 32: 101500, https://doi.org/10.1016/j.redox.2020.101500.Search in Google Scholar PubMed PubMed Central
Xu, J., Sriramula, S., Xia, H., Moreno-Walton, L., Culicchia, F., Domenig, O., Poglitsch, M., and Lazartigues, E. (2017). Clinical relevance and role of neuronal AT1 receptors in ADAM17-mediated ACE2 shedding in neurogenic hypertension. Circ. Res. 121: 43–55, https://doi.org/10.1161/circresaha.116.310509.Search in Google Scholar PubMed PubMed Central
Xu, P., Zhou, Q., and Xu, J. (2020). Mechanism of thrombocytopenia in COVID-19 patients. Ann. Hematol. 99: 1205–1208, https://doi.org/10.1007/s00277-020-04019-0.Search in Google Scholar PubMed PubMed Central
Yau, J.W., Teoh, H., and Verma, S. (2012). Endothelial cell control of thrombosis. BMC Cardiovasc. Disord. 15, https://doi.org/10.1186/s12872-015-0124-z.Search in Google Scholar PubMed PubMed Central
Yu, J., Yuan, X., Chen, H., Chaturvedi, S., Braunstein, E.M., and Brodsky, R.A. (2020). Direct activation of the alternative complement pathway by SARS-CoV-2 spike proteins is blocked by factor D inhibition. Blood 136: 2080–2089, https://doi.org/10.1182/blood.2020008248.Search in Google Scholar PubMed PubMed Central
Zaid, Y., Puhm, F., Allaeys, I., Naya, A., Oudghiri, M., Khalki, L., Limami, Y., Zaid, N., Sadki, K., and Ben El Haj, R., et al.. (2020). Platelets can associate with SARS-CoV-2 RNA and are hyperactivated in COVID-19. Circ. Res. 127: 1404–1418, doi:https://doi.org/10.1161/circresaha.120.317703.Search in Google Scholar PubMed PubMed Central
Zhang, S., Liu, Y., Wang, X., Yang, L., Li, H., Wang, Y., Liu, M., Zhao, X., Xie, Y., Yang, Y., et al.. (2020). SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. J. Hematol. Oncol. 13: 1–22, https://doi.org/10.1186/s13045-020-00954-7.Search in Google Scholar PubMed PubMed Central
Zuo, Y., Estes, S.K., Ali, R.A., Gandhi, A.A., Yalavarthi, S., Shi, H., Sule, G., Gockman, K., Madison, J.A., Zuo, M., et al.. (2020a). Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci. Transl. Med. 12: eabd3876, https://doi.org/10.1126/scitranslmed.abd3876.Search in Google Scholar PubMed PubMed Central
Zuo, Y., Yalavarthi, S., Shi, H., Gockman, K., Zuo, M., Madison, J.A., Blair, C., Weber, A., Barnes, B.J., Egeblad, M., et al.. (2020b). Neutrophil extracellular traps in COVID-19. JCI Insight 5: e138999.10.1172/jci.insight.138999Search in Google Scholar PubMed PubMed Central
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Highlight: Molecular Determinants of Health and Disease - 25th Anniversary of the InterdisciplinaryCenter Clinical Research Münster
- Molecular determinants of health and disease
- Role of the gut microbiota in airway immunity and host defense against respiratory infections
- Dynamic phospho-modification of viral proteins as a crucial regulatory layer of influenza A virus replication and innate immune responses
- Molecular mechanisms of vasculopathy and coagulopathy in COVID-19
- Astrocytic potassium and calcium channels as integrators of the inflammatory and ischemic CNS microenvironment
- Epitranscriptomic modifications in acute myeloid leukemia: m6A and 2′-O-methylation as targets for novel therapeutic strategies
- Molecular determinants of therapy response of venetoclax-based combinations in acute myeloid leukemia
- Pseudomonas aeruginosa and Staphylococcus aureus virulence factors as biomarkers of infection
- Controllers of cutaneous regulatory T cells: ultraviolet radiation and the skin microbiome
- The paracaspase MALT1 in psoriasis
- The cAMP responsive element modulator (CREM) is a regulator of CD4+ T cell function
- Quantifying salt sensitivity
- Life sciences and mass spectrometry: some personal reflections
Articles in the same Issue
- Frontmatter
- Highlight: Molecular Determinants of Health and Disease - 25th Anniversary of the InterdisciplinaryCenter Clinical Research Münster
- Molecular determinants of health and disease
- Role of the gut microbiota in airway immunity and host defense against respiratory infections
- Dynamic phospho-modification of viral proteins as a crucial regulatory layer of influenza A virus replication and innate immune responses
- Molecular mechanisms of vasculopathy and coagulopathy in COVID-19
- Astrocytic potassium and calcium channels as integrators of the inflammatory and ischemic CNS microenvironment
- Epitranscriptomic modifications in acute myeloid leukemia: m6A and 2′-O-methylation as targets for novel therapeutic strategies
- Molecular determinants of therapy response of venetoclax-based combinations in acute myeloid leukemia
- Pseudomonas aeruginosa and Staphylococcus aureus virulence factors as biomarkers of infection
- Controllers of cutaneous regulatory T cells: ultraviolet radiation and the skin microbiome
- The paracaspase MALT1 in psoriasis
- The cAMP responsive element modulator (CREM) is a regulator of CD4+ T cell function
- Quantifying salt sensitivity
- Life sciences and mass spectrometry: some personal reflections