Home Role of the gut microbiota in airway immunity and host defense against respiratory infections
Article
Licensed
Unlicensed Requires Authentication

Role of the gut microbiota in airway immunity and host defense against respiratory infections

  • Maike Willers

    Maike Willers completed her bachelor’s program at the University of Erlangen-Nürnberg. She received her M.Sc. degree at the Hannover Medical School, Germany and is currently PhD student of “Infection Biology/Dynamics of host-pathogen interactions – DEWIN” at the Center for Infection Biology (ZIB) of Hannover Medical School, Germany. In her doctoral studies she focuses on the postnatal maturation of the immune system with respect to susceptibility towards respiratory diseases.

    ORCID logo
    and Dorothee Viemann

    Dorothee Viemann received her MD at the University of Bochum, Germany. She is currently full professor of Translational Pediatrics at the University Hospital of Würzburg. Her work is centered on the postnatal maturation of the immune system and the mechanisms of immune adaptation. She has been member of the IZKF from 2001 to 2009.

    EMAIL logo
Published/Copyright: October 4, 2021

Abstract

Colonization of the intestine with commensal bacteria is known to play a major role in the maintenance of human health. An altered gut microbiome is associated with various ensuing diseases including respiratory diseases. Here, we summarize current knowledge on the impact of the gut microbiota on airway immunity with a focus on consequences for the host defense against respiratory infections. Specific gut commensal microbiota compositions and functions are depicted that mediate protection against respiratory infections with bacterial and viral pathogens. Lastly, we highlight factors that have imprinting effects on the establishment of the gut microbiota early in life and are potentially relevant in the context of respiratory infections. Deepening our understanding of these relationships will allow to exploit the knowledge on how gut microbiome maturation needs to be modulated to ensure lifelong enhanced resistance towards respiratory infections.


Corresponding author: Dorothee Viemann, Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, D-30625 Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, D-30625 Hannover, Germany; and Department of Pediatrics, Translational Pediatrics, University Hospital Würzburg, Zinklesweg 10, D-97078 Würzburg, Germany, E-mail:

This article is a contribution to the issue highlighting the 25th Anniversary of the Interdisciplinary Centre for Clinical Research (IZKF) Münster.


Funding source: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659

Award Identifier / Grant number: VI 538/6-3

Award Identifier / Grant number: VI 538/9-1

About the authors

Maike Willers

Maike Willers completed her bachelor’s program at the University of Erlangen-Nürnberg. She received her M.Sc. degree at the Hannover Medical School, Germany and is currently PhD student of “Infection Biology/Dynamics of host-pathogen interactions – DEWIN” at the Center for Infection Biology (ZIB) of Hannover Medical School, Germany. In her doctoral studies she focuses on the postnatal maturation of the immune system with respect to susceptibility towards respiratory diseases.

Dorothee Viemann

Dorothee Viemann received her MD at the University of Bochum, Germany. She is currently full professor of Translational Pediatrics at the University Hospital of Würzburg. Her work is centered on the postnatal maturation of the immune system and the mechanisms of immune adaptation. She has been member of the IZKF from 2001 to 2009.

Acknowledgments

Maike Willers was supported by the Hannover Biomedical Research School (HBRS) and the Center for Infection Biology (ZIB).

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by grants to D.V. from the Deutsche Forschungsgemeinschaft (DFG) (VI 538/6-3 and VI 538/9-1) and by the DFG under Germany’s Excellence Strategy – EXC 2155 ‘RESIST’ – Project ID 39087428.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Abrahamsson, T.R., Jakobsson, H.E., Andersson, A.F., Björkstén, B., Engstrand, L., and Jenmalm, M.C. (2014). Low gut microbiota diversity in early infancy precedes asthma at school age. Clin. Exp. Allergy 44: 842–850, https://doi.org/10.1111/cea.12253.Search in Google Scholar PubMed

Abt, M.C., Osborne, L.C., Monticelli, L.A., Doering, T.A., Alenghat, T., Sonnenberg, G.F., Paley, M.A., Antenus, M., Williams, K.L., Erikson, J., et al.. (2012). Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity 37: 158–170, https://doi.org/10.1016/j.immuni.2012.04.011.Search in Google Scholar PubMed PubMed Central

Ang, Q.Y., Alexander, M., Newman, J.C., Tian, Y., Cai, J., Upadhyay, V., Turnbaugh, J.A., Verdin, E., Hall, K.D., Leibel, R.L., et al.. (2020). Ketogenic diets alter the gut microbiome resulting in decreased intestinal Th17 cells. Cell 181: 1263–1275.e16, https://doi.org/10.1016/j.cell.2020.04.027.Search in Google Scholar PubMed PubMed Central

Antunes, K.H., Fachi, J.L., de Paula, R., da Silva, E.F., Pral, L.P., Dos Santos, A.Á., Dias, G.B.M., Vargas, J.E., Puga, R., Mayer, F.Q., et al.. (2019). Microbiota-derived acetate protects against respiratory syncytial virus infection through a GPR43-type 1 interferon response. Nat. Commun. 10: 3273, https://doi.org/10.1038/s41467-019-11152-6.Search in Google Scholar PubMed PubMed Central

Arboleya, S., Sánchez, B., Milani, C., Duranti, S., Solís, G., Fernández, N., de los Reyes-Gavilán, C.G., Ventura, M., Margolles, A., and Gueimonde, M. (2015). Intestinal microbiota development in preterm neonates and effect of perinatal antibiotics. J. Pediatr. 166: 538–544, https://doi.org/10.1016/j.jpeds.2014.09.041.Search in Google Scholar PubMed

Azad, M.B., Bridgman, S.L., Becker, A.B., and Kozyrskyj, A.L. (2014). Infant antibiotic exposure and the development of childhood overweight and central adiposity. Int. J. Obes. 38: 1290–1298, https://doi.org/10.1038/ijo.2014.119.Search in Google Scholar PubMed

Azad, M.B., Konya, T., Maughan, H., Guttman, D.S., Field, C.J., Chari, R.S., Sears, M.R., Becker, A.B., Scott, J.A., and Kozyrskyj, A.L. (2013). Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. CMAJ (Can. Med. Assoc. J.) 185: 385–394, https://doi.org/10.1503/cmaj.121189.Search in Google Scholar PubMed PubMed Central

Azcarate-Peril, M.A., Butz, N., Cadenas, M.B., Koci, M., Ballou, A., Mendoza, M., Ali, R., and Hassan, H. (2018). An attenuated Salmonella enterica serovar typhimurium strain and galacto-oligosaccharides accelerate clearance of Salmonella infections in poultry through modifications to the gut microbiome. Appl. Environ. Microbiol. 84, https://doi.org/10.1128/AEM.02526-17.Search in Google Scholar PubMed PubMed Central

Balmer, S.E. and Wharton, B.A. (1989). Diet and faecal flora in the newborn: breast milk and infant formula. Arch. Dis. Child. 64: 1672–1677, https://doi.org/10.1136/adc.64.12.1672.Search in Google Scholar PubMed PubMed Central

Bezirtzoglou, E., Tsiotsias, A., and Welling, G.W. (2011). Microbiota profile in feces of breast- and formula-fed newborns by using fluorescence in situ hybridization (FISH). Anaerobe 17: 478–482, https://doi.org/10.1016/j.anaerobe.2011.03.009.Search in Google Scholar PubMed

Biasucci, G., Benenati, B., Morelli, L., Bessi, E., and Boehm, G. (2008). Cesarean delivery may affect the early biodiversity of intestinal bacteria. J. Nutr. 138: 1796S–1800S, https://doi.org/10.1093/jn/138.9.1796s.Search in Google Scholar

Bisgaard, H., Li, N., Bonnelykke, K., Chawes, B.L.K., Skov, T., Paludan-Müller, G., Stokholm, J., Smith, B., and Krogfelt, K.A. (2011). Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. J. Allergy Clin. Immunol. 128: 646–652.e1-5, https://doi.org/10.1016/j.jaci.2011.04.060.Search in Google Scholar PubMed

Blumberg, R. and Powrie, F. (2012). Microbiota, disease, and back to health: a metastable journey. Sci. Transl. Med. 4: 137rv7, https://doi.org/10.1126/scitranslmed.3004184.Search in Google Scholar PubMed PubMed Central

Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., Lieber, A.D., Wu, F., Perez-Perez, G.I., Chen, Y., et al.. (2016). Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci. Transl. Med. 8: 343ra82, https://doi.org/10.1126/scitranslmed.aad7121.Search in Google Scholar PubMed PubMed Central

Bradley, K.C., Finsterbusch, K., Schnepf, D., Crotta, S., Llorian, M., Davidson, S., Fuchs, S.Y., Staeheli, P., and Wack, A. (2019). Microbiota-driven tonic interferon signals in lung stromal cells protect from influenza virus infection. Cell Rep. 28: 245–256.e4, https://doi.org/10.1016/j.celrep.2019.05.105.Search in Google Scholar PubMed

Brown, R.L., Sequeira, R.P., and Clarke, T.B. (2017). The microbiota protects against respiratory infection via GM-CSF signaling. Nat. Commun. 8: 1512, https://doi.org/10.1038/s41467-017-01803-x.Search in Google Scholar PubMed PubMed Central

Chen, L.-W., Chen, P.-H., and Hsu, C.-M. (2011). Commensal microflora contribute to host defense against Escherichia coli pneumonia through toll-like receptors. Shock 36: 67–75, https://doi.org/10.1097/shk.0b013e3182184ee7.Search in Google Scholar

Claud, E.C., Lu, L., Anton, P.M., Savidge, T., Walker, W.A., and Cherayil, B.J. (2004). Developmentally regulated IκB expression in intestinal epithelium and susceptibility to flagellin-induced inflammation. Proc. Natl. Acad. Sci. U. S. A. 101: 7404–7408, https://doi.org/10.1073/pnas.0401710101.Search in Google Scholar PubMed PubMed Central

Cryan, J.F., O’Riordan, K.J., Cowan, C.S.M., Sandhu, K.V., Bastiaanssen, T.F.S., Boehme, M., Codagnone, M.G., Cussotto, S., Fulling, C., Golubeva, A.V., et al.. (2019). The microbiota-gut-brain axis. Physiol. Rev. 99: 1877–2013, https://doi.org/10.1152/physrev.00018.2018.Search in Google Scholar PubMed

Das, Q., Shay, J., Gauthier, M., Yin, X., Hasted, T.-L., Ross, K., Julien, C., Yacini, H., Kennes, Y.M., Warriner, K., et al.. (2021). Effects of vaccination against coccidiosis on gut microbiota and immunity in broiler fed bacitracin and berry pomace. Front. Immunol. 12: 621803, https://doi.org/10.3389/fimmu.2021.621803.Search in Google Scholar PubMed PubMed Central

Deriu, E., Boxx, G.M., He, X., Pan, C., Benavidez, S.D., Cen, L., Rozengurt, N., Shi, W., and Cheng, G. (2016). Influenza virus affects intestinal microbiota and secondary Salmonella infection in the gut through type I interferons. PLoS Pathog. 12: e1005572, https://doi.org/10.1371/journal.ppat.1005572.Search in Google Scholar PubMed PubMed Central

de Oliveira, G.L.V., Leite, A.Z., Higuchi, B.S., Gonzaga, M.I., and Mariano, V.S. (2017). Intestinal dysbiosis and probiotic applications in autoimmune diseases. Immunology 152: 1–12, https://doi.org/10.1111/imm.12765.Search in Google Scholar PubMed PubMed Central

Dominguez-Bello, M.G., Costello, E.K., Contreras, M., Magris, M., Hidalgo, G., Fierer, N., and Knight, R. (2010). Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl. Acad. Sci. U. S. A. 107: 11971–11975, https://doi.org/10.1073/pnas.1002601107.Search in Google Scholar PubMed PubMed Central

Dumas, A., Corral, D., Colom, A., Levillain, F., Peixoto, A., Hudrisier, D., Poquet, Y., and Neyrolles, O. (2018). The host microbiota contributes to early protection against lung colonization by Mycobacterium tuberculosis. Front. Immunol. 9: 2656, https://doi.org/10.3389/fimmu.2018.02656.Search in Google Scholar PubMed PubMed Central

Enaud, R., Prevel, R., Ciarlo, E., Beaufils, F., Wieërs, G., Guery, B., and Delhaes, L. (2020). The gut-lung axis in health and respiratory diseases: a place for inter-organ and inter-kingdom crosstalks. Front. Cell. Infect. Microbiol. 10: 9, https://doi.org/10.3389/fcimb.2020.00009.Search in Google Scholar PubMed PubMed Central

Fagundes, C.T., Amaral, F.A., Vieira, A.T., Soares, A.C., Pinho, V., Nicoli, J.R., Vieira, L.Q., Teixeira, M.M., and Souza, D.G. (2012). Transient TLR activation restores inflammatory response and ability to control pulmonary bacterial infection in germfree mice. J. Immunol. 188: 1411–1420, https://doi.org/10.4049/jimmunol.1101682.Search in Google Scholar PubMed

Galazzo, G., van Best, N., Bervoets, L., Dapaah, I.O., Savelkoul, P.H., Hornef, M.W., Lau, S., Hamelmann, E., and Penders, J. (2020). Development of the microbiota and associations with birth mode, diet, and atopic disorders in a longitudinal analysis of stool samples, collected from infancy through early childhood. Gastroenterology 158: 1584–1596, https://doi.org/10.1053/j.gastro.2020.01.024.Search in Google Scholar PubMed

Garioud, A.L.d.B., Skoven, F.H., Gregersen, R., Lange, T., Buchvald, F., and Greisen, G. (2020). The increased susceptibility to airway infections after preterm birth does not persist into adolescence. PLoS One 15: e0238382, https://doi.org/10.1371/journal.pone.0238382.Search in Google Scholar PubMed PubMed Central

Gauguet, S., D’Ortona, S., Ahnger-Pier, K., Duan, B., Surana, N.K., Lu, R., Cywes-Bentley, C., Gadjeva, M., Shan, Q., Priebe, G.P., et al.. (2015). Intestinal microbiota of mice influences resistance to Staphylococcus aureus pneumonia. Infect. Immun. 83: 4003–4014, https://doi.org/10.1128/iai.00037-15.Search in Google Scholar PubMed PubMed Central

Gensollen, T., Iyer, S.S., Kasper, D.L., and Blumberg, R.S. (2016). How colonization by microbiota in early life shapes the immune system. Science 352: 539–544, https://doi.org/10.1126/science.aad9378.Search in Google Scholar PubMed PubMed Central

Goldberg, E.L., Molony, R.D., Kudo, E., Sidorov, S., Kong, Y., Dixit, V.D., and Iwasaki, A. (2019). Ketogenic diet activates protective γδ T cell responses against influenza virus infection. Sci. Immunol. 4, https://doi.org/10.1126/sciimmunol.aav2026.Search in Google Scholar PubMed PubMed Central

Goldberg, E.L., Shchukina, I., Asher, J.L., Sidorov, S., Artyomov, M.N., and Dixit, V.D. (2020). Ketogenesis activates metabolically protective γδ T cells in visceral adipose tissue. Nat. Metab. 2: 50–61, https://doi.org/10.1038/s42255-019-0160-6.Search in Google Scholar PubMed

Gray, J., Oehrle, K., Worthen, G., Alenghat, T., Whitsett, J., and Deshmukh, H. (2017). Intestinal commensal bacteria mediate lung mucosal immunity and promote resistance of newborn mice to infection. Sci. Transl. Med. 9, https://doi.org/10.1126/scitranslmed.aaf9412.Search in Google Scholar PubMed PubMed Central

Grayson, M.H., Camarda, L.E., Hussain, S.-R.A., Zemple, S.J., Hayward, M., Lam, V., Hunter, D.A., Santoro, J.L., Rohlfing, M., Cheung, D.S., et al.. (2018). Intestinal microbiota disruption reduces regulatory T cells and increases respiratory viral infection mortality through increased IFNγ production. Front. Immunol. 9: 1587, https://doi.org/10.3389/fimmu.2018.01587.Search in Google Scholar PubMed PubMed Central

Grönlund, M.M., Lehtonen, O.P., Eerola, E., and Kero, P. (1999). Fecal microflora in healthy infants born by different methods of delivery: permanent changes in intestinal flora after cesarean delivery. J. Pediatr. Gastroenterol. Nutr. 28: 19–25, https://doi.org/10.1097/00005176-199901000-00007.Search in Google Scholar PubMed

Groves, H.T., Cuthbertson, L., James, P., Moffatt, M.F., Cox, M.J., and Tregoning, J.S. (2018). Respiratory disease following viral lung infection alters the murine gut microbiota. Front. Immunol. 9: 182, https://doi.org/10.3389/fimmu.2018.00182.Search in Google Scholar PubMed PubMed Central

Gu, S., Chen, Y., Wu, Z., Chen, Y., Gao, H., Lv, L., Guo, F., Zhang, X., Luo, R., Huang, C., et al.. (2020). Alterations of the gut microbiota in patients with coronavirus disease 2019 or H1N1 influenza. Clin. Infect. Dis. 71: 2669–2678, https://doi.org/10.1093/cid/ciaa709.Search in Google Scholar PubMed PubMed Central

Guaraldi, F. and Salvatori, G. (2012). Effect of breast and formula feeding on gut microbiota shaping in newborns. Front. Cell. Infect. Microbiol. 2: 94, https://doi.org/10.3389/fcimb.2012.00094.Search in Google Scholar PubMed PubMed Central

Haak, B.W., Littmann, E.R., Chaubard, J.-L., Pickard, A.J., Fontana, E., Adhi, F., Gyaltshen, Y., Ling, L., Morjaria, S.M., Peled, J.U., et al.. (2018). Impact of gut colonization with butyrate-producing microbiota on respiratory viral infection following allo-HCT. Blood 131: 2978–2986, https://doi.org/10.1182/blood-2018-01-828996.Search in Google Scholar PubMed PubMed Central

Harding, J.N., Siefker, D., Vu, L., You, D., DeVincenzo, J., Pierre, J.F., and Cormier, S.A. (2020). Altered gut microbiota in infants is associated with respiratory syncytial virus disease severity. BMC Microbiol. 20: 140, https://doi.org/10.1186/s12866-020-01816-5.Search in Google Scholar PubMed PubMed Central

Harmsen, H.J., Wildeboer-Veloo, A.C., Raangs, G.C., Wagendorp, A.A., Klijn, N., Bindels, J.G., and Welling, G.W. (2000). Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J. Pediatr. Gastroenterol. Nutr. 30: 61–67, https://doi.org/10.1097/00005176-200001000-00019.Search in Google Scholar PubMed

Hirschberger, S., Strauß, G., Effinger, D., Marstaller, X., Ferstl, A., Müller, M.B., Wu, T., Hübner, M., Rahmel, T., Mascolo, H., et al.. (2021). Very-low-carbohydrate diet enhances human T-cell immunity through immunometabolic reprogramming. EMBO Mol. Med. 13: e14323, https://doi.org/10.15252/emmm.202114323.Search in Google Scholar PubMed PubMed Central

Hooper, L.V., Littman, D.R., and Macpherson, A.J. (2012). Interactions between the microbiota and the immune system. Science 336: 1268–1273, https://doi.org/10.1126/science.1223490.Search in Google Scholar PubMed PubMed Central

Hornef, M.W. and Torow, N. (2020). ‘Layered immunity’ and the ‘neonatal window of opportunity’ – timed succession of non-redundant phases to establish mucosal host-microbial homeostasis after birth. Immunology 159: 15–25, https://doi.org/10.1111/imm.13149.Search in Google Scholar PubMed PubMed Central

Hufnagl, K., Pali-Schöll, I., Roth-Walter, F., and Jensen-Jarolim, E. (2020). Dysbiosis of the gut and lung microbiome has a role in asthma. Semin. Immunopathol. 42: 75–93, https://doi.org/10.1007/s00281-019-00775-y.Search in Google Scholar PubMed PubMed Central

Human Microbiome Project Consortium (2012). Structure, function and diversity of the healthy human microbiome. Nature 486: 207–214, https://doi.org/10.1038/nature11234.Search in Google Scholar PubMed PubMed Central

Ichinohe, T., Pang, I.K., Kumamoto, Y., Peaper, D.R., Ho, J.H., Murray, T.S., and Iwasaki, A. (2011). Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc. Natl. Acad. Sci. U. S. A. 108: 5354–5359, https://doi.org/10.1073/pnas.1019378108.Search in Google Scholar PubMed PubMed Central

Jacquot, A., Neveu, D., Aujoulat, F., Mercier, G., Marchandin, H., Jumas-Bilak, E., and Picaud, J.-C. (2011). Dynamics and clinical evolution of bacterial gut microflora in extremely premature patients. J. Pediatr. 158: 390–396, https://doi.org/10.1016/j.jpeds.2010.09.007.Search in Google Scholar PubMed

Jakobsson, H.E., Abrahamsson, T.R., Jenmalm, M.C., Harris, K., Quince, C., Jernberg, C., Björkstén, B., Engstrand, L., and Andersson, A.F. (2014). Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut 63: 559–566, https://doi.org/10.1136/gutjnl-2012-303249.Search in Google Scholar PubMed

Karagiannis, F., Masouleh, S.K., Wunderling, K., Surendar, J., Schmitt, V., Kazakov, A., Michla, M., Hölzel, M., Thiele, C., and Wilhelm, C. (2020). Lipid-droplet formation drives pathogenic group 2 innate lymphoid cells in airway inflammation. Immunity 52: 620–634.e6, https://doi.org/10.1016/j.immuni.2020.03.003.Search in Google Scholar PubMed

Kasahara, K., Matsumura, Y., Ui, K., Kasahara, K., Komatsu, Y., Mikasa, K., and Kita, E. (2012). Intranasal priming of newborn mice with microbial extracts increases opsonic factors and mature CD11c+ cells in the airway. Am. J. Physiol. Lung Cell Mol. Physiol. 303: L834–L843, https://doi.org/10.1152/ajplung.00031.2012.Search in Google Scholar PubMed

Keely, S., Talley, N.J., and Hansbro, P.M. (2012). Pulmonary-intestinal cross-talk in mucosal inflammatory disease. Mucosal Immunol. 5: 7–18, https://doi.org/10.1038/mi.2011.55.Search in Google Scholar PubMed PubMed Central

Khan, N., Mendonca, L., Dhariwal, A., Fontes, G., Menzies, D., Xia, J., Divangahi, M., and King, I.L. (2019). Intestinal dysbiosis compromises alveolar macrophage immunity to Mycobacterium tuberculosis. Mucosal Immunol. 12: 772–783, https://doi.org/10.1038/s41385-019-0147-3.Search in Google Scholar PubMed

Khan, N., Vidyarthi, A., Nadeem, S., Negi, S., Nair, G., and Agrewala, J.N. (2016). Alteration in the gut microbiota provokes susceptibility to tuberculosis. Front. Immunol. 7: 529, https://doi.org/10.3389/fimmu.2016.00529.Search in Google Scholar PubMed PubMed Central

Korpela, K., Salonen, A., Saxen, H., Nikkonen, A., Peltola, V., Jaakkola, T., de Vos, W., and Kolho, K.-L. (2020). Antibiotics in early life associate with specific gut microbiota signatures in a prospective longitudinal infant cohort. Pediatr. Res. 88: 438–443, https://doi.org/10.1038/s41390-020-0761-5.Search in Google Scholar PubMed

Kostic, A.D., Gevers, D., Siljander, H., Vatanen, T., Hyötyläinen, T., Hämäläinen, A.-M., Peet, A., Tillmann, V., Pöhö, P., Mattila, I., et al.. (2015). The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe 17: 260–273, https://doi.org/10.1016/j.chom.2015.01.001.Search in Google Scholar PubMed PubMed Central

Kuzela, L., Vavrecka, A., Prikazska, M., Drugda, B., Hronec, J., Senkova, A., Drugdova, M., Oltman, M., Novotna, T., Brezina, M., et al.. (1999). Pulmonary complications in patients with inflammatory bowel disease. Hepato-Gastroenterology 46: 1714–1719.Search in Google Scholar

Ley, R.E., Bäckhed, F., Turnbaugh, P., Lozupone, C.A., Knight, R.D., and Gordon, J.I. (2005). Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. U. S. A. 102: 11070–11075, https://doi.org/10.1073/pnas.0504978102.Search in Google Scholar PubMed PubMed Central

Ling, Z., Li, Z., Liu, X., Cheng, Y., Luo, Y., Tong, X., Yuan, L., Wang, Y., Sun, J., Li, L., et al.. (2014). Altered fecal microbiota composition associated with food allergy in infants. Appl. Environ. Microbiol. 80: 2546–2554, https://doi.org/10.1128/aem.00003-14.Search in Google Scholar PubMed PubMed Central

Macpherson, A.J., de Agüero, M.G., and Ganal-Vonarburg, S.C. (2017). How nutrition and the maternal microbiota shape the neonatal immune system. Nat. Rev. Immunol. 17: 508–517, https://doi.org/10.1038/nri.2017.58.Search in Google Scholar PubMed

McDermott, A.J. and Huffnagle, G.B. (2014). The microbiome and regulation of mucosal immunity. Immunology 142: 24–31, https://doi.org/10.1111/imm.12231.Search in Google Scholar PubMed PubMed Central

Melendi, G.A., Coviello, S., Bhat, N., Zea-Hernandez, J., Ferolla, F.M., and Polack, F.P. (2010). Breastfeeding is associated with the production of type I interferon in infants infected with influenza virus. Acta Paediatr. 99: 1517–1521, https://doi.org/10.1111/j.1651-2227.2010.01862.x.Search in Google Scholar PubMed PubMed Central

Menckeberg, C.L., Hol, J., Simons-Oosterhuis, Y., Raatgeep, H.R.C., de Ruiter, L.F., Lindenbergh-Kortleve, D.J., Korteland-van Male, A.M., El Aidy, S., van Lierop, P.P.E., Kleerebezem, M., et al.. (2015). Human buccal epithelium acquires microbial hyporesponsiveness at birth, a role for secretory leukocyte protease inhibitor. Gut 64: 884–893, https://doi.org/10.1136/gutjnl-2013-306149.Search in Google Scholar PubMed

Meng, C., Bai, C., Brown, T.D., Hood, L.E., and Tian, Q. (2018). Human gut microbiota and gastrointestinal cancer. Dev. Reprod. Biol. 16: 33–49, https://doi.org/10.1016/j.gpb.2017.06.002.Search in Google Scholar PubMed PubMed Central

Mir, R.A., Schaut, R.G., Allen, H.K., Looft, T., Loving, C.L., Kudva, I.T., and Sharma, V.K. (2019). Cattle intestinal microbiota shifts following Escherichia coli O157:H7 vaccination and colonization. PLoS One 14: e0226099, https://doi.org/10.1371/journal.pone.0226099.Search in Google Scholar PubMed PubMed Central

Morrow, L.E., Kollef, M.H., and Casale, T.B. (2010). Probiotic prophylaxis of ventilator-associated pneumonia: a blinded, randomized, controlled trial. Am. J. Respir. Crit. Care Med. 182: 1058–1064, https://doi.org/10.1164/rccm.200912-1853oc.Search in Google Scholar

Negi, S., Pahari, S., Bashir, H., and Agrewala, J.N. (2019). Gut microbiota regulates mincle mediated activation of lung dendritic cells to protect against Mycobacterium tuberculosis. Front. Immunol. 10: 1142, https://doi.org/10.3389/fimmu.2019.01142.Search in Google Scholar PubMed PubMed Central

Neuman, H., Forsythe, P., Uzan, A., Avni, O., and Koren, O. (2018). Antibiotics in early life: dysbiosis and the damage done. FEMS Microbiol. Rev. 42: 489–499, https://doi.org/10.1093/femsre/fuy018.Search in Google Scholar PubMed

Newsome, R.C., Gauthier, J., Hernandez, M.C., Abraham, G.E., Robinson, T.O., Williams, H.B., Sloan, M., Owings, A., Laird, H., Christian, T., et al.. (2021). The gut microbiome of COVID-19 recovered patients returns to uninfected status in a minority-dominated United States cohort. Gut Microb. 13: 1–15, https://doi.org/10.1080/19490976.2021.1926840.Search in Google Scholar PubMed PubMed Central

Nicholson, J.K., Holmes, E., Kinross, J., Burcelin, R., Gibson, G., Jia, W., and Pettersson, S. (2012). Host-gut microbiota metabolic interactions. Science 336: 1262–1267, https://doi.org/10.1126/science.1223813.Search in Google Scholar PubMed

Nishimura, T., Suzue, J., and Kaji, H. (2009). Breastfeeding reduces the severity of respiratory syncytial virus infection among young infants: a multi-center prospective study. Pediatr. Int. 51: 812–816, https://doi.org/10.1111/j.1442-200x.2009.02877.x.Search in Google Scholar PubMed

Panigrahi, P., Parida, S., Nanda, N.C., Satpathy, R., Pradhan, L., Chandel, D.S., Baccaglini, L., Mohapatra, A., Mohapatra, S.S., Misra, P.R., et al.. (2017). A randomized synbiotic trial to prevent sepsis among infants in rural India. Nature 548: 407–412, https://doi.org/10.1038/nature23480.Search in Google Scholar PubMed

Pannaraj, P.S., Li, F., Cerini, C., Bender, J.M., Yang, S., Rollie, A., Adisetiyo, H., Zabih, S., Lincez, P.J., Bittinger, K., et al.. (2017). Association between breast milk bacterial communities and establishment and development of the infant gut microbiome. JAMA Pediatr. 171: 647–654, https://doi.org/10.1001/jamapediatrics.2017.0378.Search in Google Scholar PubMed PubMed Central

Paoli, A., Mancin, L., Bianco, A., Thomas, E., Mota, J.F., and Piccini, F. (2019). Ketogenic diet and microbiota: friends or enemies? Genes 10, https://doi.org/10.3390/genes10070534.Search in Google Scholar PubMed PubMed Central

Park, S.H., Kim, S.A., Rubinelli, P.M., Roto, S.M., and Ricke, S.C. (2017). Microbial compositional changes in broiler chicken cecal contents from birds challenged with different Salmonella vaccine candidate strains. Vaccine 35: 3204–3208, https://doi.org/10.1016/j.vaccine.2017.04.073.Search in Google Scholar PubMed

Patterson, E., Ryan, P.M., Cryan, J.F., Dinan, T.G., Ross, R.P., Fitzgerald, G.F., and Stanton, C. (2016). Gut microbiota, obesity and diabetes. Postgrad. Med. J. 92: 286–300, https://doi.org/10.1136/postgradmedj-2015-133285.Search in Google Scholar PubMed

Penders, J., Thijs, C., Vink, C., Stelma, F.F., Snijders, B., Kummeling, I., van den Brandt, P.A., and Stobberingh, E.E. (2006). Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118: 511–521, https://doi.org/10.1542/peds.2005-2824.Search in Google Scholar PubMed

Pirr, S. and Viemann, D. (2020). Host factors of favorable intestinal microbial colonization. Front. Immunol. 11: 584288, https://doi.org/10.3389/fimmu.2020.584288.Search in Google Scholar PubMed PubMed Central

Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., Nielsen, T., Pons, N., Levenez, F., Yamada, T., et al.. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464: 59–65, https://doi.org/10.1038/nature08821.Search in Google Scholar PubMed PubMed Central

Redweik, G.A.J., Daniels, K., Severin, A.J., Lyte, M., and Mellata, M. (2019). Oral treatments with probiotics and live Salmonella vaccine induce unique changes in gut neurochemicals and microbiome in chickens. Front. Microbiol. 10: 3064, https://doi.org/10.3389/fmicb.2019.03064.Search in Google Scholar PubMed PubMed Central

Reyman, M., van Houten, M.A., van Baarle, D., Bosch, A.A.T.M., Man, W.H., Chu, M.L.J.N., Arp, K., Watson, R.L., Sanders, E.A.M., Fuentes, S., et al.. (2019). Impact of delivery mode-associated gut microbiota dynamics on health in the first year of life. Nat. Commun. 10: 4997, https://doi.org/10.1038/s41467-019-13014-7.Search in Google Scholar PubMed PubMed Central

Robak, O.H., Heimesaat, M.M., Kruglov, A.A., Prepens, S., Ninnemann, J., Gutbier, B., Reppe, K., Hochrein, H., Suter, M., Kirschning, C.J., et al.. (2018). Antibiotic treatment-induced secondary IgA deficiency enhances susceptibility to Pseudomonas aeruginosa pneumonia. J. Clin. Invest. 128: 3535–3545, https://doi.org/10.1172/jci97065.Search in Google Scholar

Rogier, E.W., Frantz, A.L., Bruno, M.E.C., Wedlund, L., Cohen, D.A., Stromberg, A.J., and Kaetzel, C.S. (2014). Secretory antibodies in breast milk promote long-term intestinal homeostasis by regulating the gut microbiota and host gene expression. Proc. Natl. Acad. Sci. U. S. A. 111: 3074–3079, https://doi.org/10.1073/pnas.1315792111.Search in Google Scholar PubMed PubMed Central

Rosshart, S.P., Vassallo, B.G., Angeletti, D., Hutchinson, D.S., Morgan, A.P., Takeda, K., Hickman, H.D., McCulloch, J.A., Badger, J.H., Ajami, N.J., et al.. (2017). Wild mouse gut microbiota promotes host fitness and improves disease resistance. Cell 171: 1015–1028.e13, https://doi.org/10.1016/j.cell.2017.09.016.Search in Google Scholar PubMed PubMed Central

Russell, S.L., Gold, M.J., Hartmann, M., Willing, B.P., Thorson, L., Wlodarska, M., Gill, N., Blanchet, M.-R., Mohn, W.W., McNagny, K.M., et al.. (2012). Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep. 13: 440–447, https://doi.org/10.1038/embor.2012.32.Search in Google Scholar PubMed PubMed Central

Ryu, S., Shchukina, I., Youm, Y.-H., Qing, H., Hilliard, B., Dlugos, T., Zhang, X., Yasumoto, Y., Booth, C.J., Fernández-Hernando, C., et al.. (2021). Ketogenic diet restrains aging-induced exacerbation of coronavirus infection in mice. eLife 10, https://doi.org/10.7554/eLife.66522.Search in Google Scholar PubMed PubMed Central

Samuelson, D.R., Welsh, D.A., and Shellito, J.E. (2015). Regulation of lung immunity and host defense by the intestinal microbiota. Front. Microbiol. 6: 1085, https://doi.org/10.3389/fmicb.2015.01085.Search in Google Scholar PubMed PubMed Central

Schroeder, B.O. and Bäckhed, F. (2016). Signals from the gut microbiota to distant organs in physiology and disease. Nat. Med. 22: 1079–1089, https://doi.org/10.1038/nm.4185.Search in Google Scholar PubMed

Schuijt, T.J., Lankelma, J.M., Scicluna, B.P., de Sousa e Melo, F., Roelofs, J.J.T.H., de Boer, J.D., Hoogendijk, A.J., de Beer, R., de Vos, A., Belzer, C., et al.. (2016). The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut 65: 575–583, https://doi.org/10.1136/gutjnl-2015-309728.Search in Google Scholar PubMed PubMed Central

Shaw, S.Y., Blanchard, J.F., and Bernstein, C.N. (2010). Association between the use of antibiotics in the first year of life and pediatric inflammatory bowel disease. Am. J. Gastroenterol. 105: 2687–2692, https://doi.org/10.1038/ajg.2010.398.Search in Google Scholar PubMed

Shi, H.Y., Zhu, X., Li, W.L., Mak, J.W.Y., Wong, S.H., Zhu, S.T., Guo, S.L., Chan, F.K.L., Zhang, S.T., and Ng, S.C. (2021). Modulation of gut microbiota protects against viral respiratory tract infections: a systematic review of animal and clinical studies. Eur. J. Nutr., https://doi.org/10.1007/s00394-021-02519-x (Epub ahead of print).Search in Google Scholar PubMed PubMed Central

Shi, N., Li, N., Duan, X., and Niu, H. (2017). Interaction between the gut microbiome and mucosal immune system. Mil. Med. Res. 4: 14, https://doi.org/10.1186/s40779-017-0122-9.Search in Google Scholar PubMed PubMed Central

Sitarik, A.R., Bobbitt, K.R., Havstad, S.L., Fujimura, K.E., Levin, A.M., Zoratti, E.M., Kim, H., Woodcroft, K.J., Wegienka, G., Ownby, D.R., et al.. (2017). Breast milk transforming growth factor β is associated with neonatal gut microbial composition. J. Pediatr. Gastroenterol. Nutr. 65: e60–e67, https://doi.org/10.1097/mpg.0000000000001585.Search in Google Scholar

Smith, A.G., Sheridan, P.A., Harp, J.B., and Beck, M.A. (2007). Diet-induced obese mice have increased mortality and altered immune responses when infected with influenza virus. J. Nutr. 137: 1236–1243, https://doi.org/10.1093/jn/137.5.1236.Search in Google Scholar PubMed

Stark, P.L. and Lee, A. (1982). The bacterial colonization of the large bowel of pre-term low birth weight neonates. J. Hyg. 89: 59–67, https://doi.org/10.1017/s0022172400070546.Search in Google Scholar PubMed PubMed Central

Steed, A.L., Christophi, G.P., Kaiko, G.E., Sun, L., Goodwin, V.M., Jain, U., Esaulova, E., Artyomov, M.N., Morales, D.J., Holtzman, M.J., et al.. (2017). The microbial metabolite desaminotyrosine protects from influenza through type I interferon. Science 357: 498–502, https://doi.org/10.1126/science.aam5336.Search in Google Scholar PubMed PubMed Central

Stefan, K.L., Kim, M.V., Iwasaki, A., and Kasper, D.L. (2020). Commensal microbiota modulation of natural resistance to virus infection. Cell 183: 1312–1324.e10, https://doi.org/10.1016/j.cell.2020.10.047.Search in Google Scholar PubMed PubMed Central

Tamburini, S., Shen, N., Wu, H.C., and Clemente, J.C. (2016). The microbiome in early life: implications for health outcomes. Nat. Med. 22: 713–722, https://doi.org/10.1038/nm.4142.Search in Google Scholar PubMed

Tanaka, M. and Nakayama, J. (2017). Development of the gut microbiota in infancy and its impact on health in later life. Allergol. Int. 66: 515–522, https://doi.org/10.1016/j.alit.2017.07.010.Search in Google Scholar PubMed

Tanaka, S., Kobayashi, T., Songjinda, P., Tateyama, A., Tsubouchi, M., Kiyohara, C., Shirakawa, T., Sonomoto, K., and Nakayama, J. (2009). Influence of antibiotic exposure in the early postnatal period on the development of intestinal microbiota. FEMS Immunol. Med. Microbiol. 56: 80–87, https://doi.org/10.1111/j.1574-695x.2009.00553.x.Search in Google Scholar PubMed

Torow, N., Marsland, B.J., Hornef, M.W., and Gollwitzer, E.S. (2017). Neonatal mucosal immunology. Mucosal Immunol. 10: 5–17, https://doi.org/10.1038/mi.2016.81.Search in Google Scholar PubMed

Trompette, A., Gollwitzer, E.S., Pattaroni, C., Lopez-Mejia, I.C., Riva, E., Pernot, J., Ubags, N., Fajas, L., Nicod, L.P., and Marsland, B.J. (2018). Dietary fiber confers protection against flu by shaping Ly6c− patrolling monocyte hematopoiesis and CD8+ T cell metabolism. Immunity 48: 992–1005.e8, https://doi.org/10.1016/j.immuni.2018.04.022.Search in Google Scholar PubMed

Trompette, A., Gollwitzer, E.S., Yadava, K., Sichelstiel, A.K., Sprenger, N., Ngom-Bru, C., Blanchard, C., Junt, T., Nicod, L.P., Harris, N.L., et al.. (2014). Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20: 159–166, https://doi.org/10.1038/nm.3444.Search in Google Scholar PubMed

Turnbaugh, P.J., Bäckhed, F., Fulton, L., and Gordon, J.I. (2008). Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3: 213–223, https://doi.org/10.1016/j.chom.2008.02.015.Search in Google Scholar PubMed PubMed Central

Verheijden, K.A.T., van Bergenhenegouwen, J., Garssen, J., Bezemer, G.F.G., Kraneveld, A.D., and Folkerts, G. (2011). Treatment with specific prebiotics or probiotics prevents the development of lung emphysema in a mouse model of COPD. Eur. J. Pharmacol. 668: e12–e13, https://doi.org/10.1016/j.ejphar.2011.09.220.Search in Google Scholar

Wang, L., Zhu, L., and Qin, S. (2019). Gut microbiota modulation on intestinal mucosal adaptive immunity. J. Immunol. Res. 2019: 4735040, https://doi.org/10.1155/2019/4735040.Search in Google Scholar PubMed PubMed Central

Willers, M., Ulas, T., Völlger, L., Vogl, T., Heinemann, A.S., Pirr, S., Pagel, J., Fehlhaber, B., Halle, O., Schöning, J., et al.. (2020). S100A8 and S100A9 are important for postnatal development of gut microbiota and immune system in mice and infants. Gastroenterology 159: 2130–2145.e5, https://doi.org/10.1053/j.gastro.2020.08.019.Search in Google Scholar PubMed

Yatsunenko, T., Rey, F.E., Manary, M.J., Trehan, I., Dominguez-Bello, M.G., Contreras, M., Magris, M., Hidalgo, G., Baldassano, R.N., Anokhin, A.P., et al.. (2012). Human gut microbiome viewed across age and geography. Nature 486: 222–227, https://doi.org/10.1038/nature11053.Search in Google Scholar PubMed PubMed Central

Yazar, A., Atis, S., Konca, K., Pata, C., Akbay, E., Calikoglu, M., and Hafta, A. (2001). Respiratory symptoms and pulmonary functional changes in patients with irritable bowel syndrome. Am. J. Gastroenterol. 96: 1511–1516, https://doi.org/10.1111/j.1572-0241.2001.03748.x.Search in Google Scholar PubMed

Yildiz, S., Mazel-Sanchez, B., Kandasamy, M., Manicassamy, B., and Schmolke, M. (2018). Influenza A virus infection impacts systemic microbiota dynamics and causes quantitative enteric dysbiosis. Microbiome 6: 9, https://doi.org/10.1186/s40168-017-0386-z.Search in Google Scholar PubMed PubMed Central

Zelaya, H., Alvarez, S., Kitazawa, H., and Villena, J. (2016). Respiratory antiviral immunity and immunobiotics: beneficial effects on inflammation-coagulation interaction during influenza virus infection. Front. Immunol. 7: 633, https://doi.org/10.3389/fimmu.2016.00633.Search in Google Scholar PubMed PubMed Central

Zhang, Q., Hu, J., Feng, J.-W., Hu, X.-T., Wang, T., Gong, W.-X., Huang, K., Guo, Y.-X., Zou, Z., Lin, X., et al.. (2020). Influenza infection elicits an expansion of gut population of endogenous Bifidobacterium animalis which protects mice against infection. Genome Biol. 21: 99, https://doi.org/10.1186/s13059-020-02007-1.Search in Google Scholar PubMed PubMed Central

Zheng, D., Liwinski, T., and Elinav, E. (2020). Interaction between microbiota and immunity in health and disease. Cell Res. 30: 492–506, https://doi.org/10.1038/s41422-020-0332-7.Search in Google Scholar PubMed PubMed Central

Zuo, T., Zhang, F., Lui, G.C.Y., Yeoh, Y.K., Li, A.Y.L., Zhan, H., Wan, Y., Chung, A.C.K., Cheung, C.P., Chen, N., et al.. (2020). Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology 159: 944–955.e8, https://doi.org/10.1053/j.gastro.2020.05.048.Search in Google Scholar PubMed PubMed Central

Received: 2021-06-02
Accepted: 2021-09-27
Published Online: 2021-10-04
Published in Print: 2021-11-25

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 6.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2021-0281/html
Scroll to top button