Startseite Lebenswissenschaften SRPK1 promotes cell proliferation and tumor growth of osteosarcoma through activation of the NF-κB signaling pathway
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

SRPK1 promotes cell proliferation and tumor growth of osteosarcoma through activation of the NF-κB signaling pathway

  • Yubao Gong ORCID logo EMAIL logo , Chen Yang , Zhengren Wei und Jianguo Liu
Veröffentlicht/Copyright: 29. Dezember 2021

Abstract

To explore the expression and the functions of SRPK1 in osteosarcoma, we retrieved transcription profiling dataset by array of human bone specimens from patients with osteosarcoma from ArrayExpress (accession E-MEXP-3628) and from Gene Expression Omnibus (accession GSE16102) and analyzed expression level of SRPK1 and prognostic value in human osteosarcoma. Then we examined the effect of differential SRPK1 expression levels on the progression of osteosarcoma, including cell proliferation, cell cycle, apoptosis, and investigated its underlying molecular mechanism using in vitro osteosarcoma cell lines and in vivo nude mouse xenograft models. High expression level of SRPK1 was found in human osteosarcoma tissues and cell lines as compared to the normal bone tissues and osteoblast cells, and predicted poor prognosis of human osteosarcoma. Overexpression of SRPK1 in osteosarcoma U2OS cells led to cell proliferation but inhibition of apoptosis. In contrast, knockdown of SRPK1 in HOS cells impeded cell viability and induction of apoptosis. Moreover, silencing SRPK1 inhibited osteosarcoma tumor growth in nude mice. Mechanistic studies revealed that SRPK1 promoted cell cycle transition in osteosarcoma cells and activation of NF-κB is required for SRPK1 expression and its pro-survival signaling. SRPK1 promoted human osteosarcoma cell proliferation and tumor growth by regulating NF-κB signaling pathway.


Corresponding author: Yubao Gong, Department of Orthopedics, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun 130021, China, E-mail:

  1. Author contributions: Yubao Gong designed the study. Yubao Gong, Chen Yang and Zhengren Wei, performed the experiments. Yubao Gong and Chen Yang contributed to the writing of the manuscript. Yubao Gong, Chen Yang and Jianguo Liu performed the analyses and calculations. All authors read and approved the final manuscript.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

  4. Conflict of interest statement Ethics approval: This study was approved by the Institutional Animal Care and Use Committee of the First Hospital of Jilin University.

  5. Conflict of interest statement Availability of data and materials: Please contact the corresponding author (Yubao Gong) for data requests.

References

Amin, E.M., Oltean, S., Hua, J., Gammons, M.V., Hamdollah-Zadeh, M., Welsh, G.I., Cheung, M.K., Ni, L., Kase, S., Rennel, E.S., et al.. (2011). WT1 mutants reveal SRPK1 to be a downstream angiogenesis target by altering VEGF splicing. Cancer Cell 20: 768–780, https://doi.org/10.1016/j.ccr.2011.10.016.Suche in Google Scholar PubMed PubMed Central

Bielack, S.S., Kempf-Bielack, B., Delling, G., Exner, G.U., Flege, S., Helmke, K., Kotz, R., Salzer-Kuntschik, M., Werner, M., Winkelmann, W., et al.. (2002). Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J. Clin. Oncol. 20: 776–790, https://doi.org/10.1200/jco.2002.20.3.776.Suche in Google Scholar

Bielli, P., Bordi, M., Di Biasio, V., and Sette, C. (2014). Regulation of BCL-X splicing reveals a role for the polypyrimidine tract binding protein (PTBP1/hnRNP I) in alternative 5′ splice site selection. Nucl. Acids Res. 42: 12070–12081, https://doi.org/10.1093/nar/gku922.Suche in Google Scholar PubMed PubMed Central

Catz, S.D. and Johnson, J.L. (2001). Transcriptional regulation of bcl-2 by nuclear factor kappa B and its significance in prostate cancer. Oncogene 20: 7342–7351, https://doi.org/10.1038/sj.onc.1204926.Suche in Google Scholar PubMed

Chang, Y., Wu, Q., Tian, T., Li, L., Guo, X., Feng, Z., Zhou, J., Zhang, L., Zhou, S., Feng, G., et al.. (2015). The influence of SRPK1 on glioma apoptosis, metastasis, and angiogenesis through the PI3K/Akt signaling pathway under normoxia. Tumour Biol. 36: 6083–6093, https://doi.org/10.1007/s13277-015-3289-2.Suche in Google Scholar PubMed

Cheng, S., Hsia, C.Y., Leone, G., and Liou, H.C. (2003). Cyclin E and Bcl-xL cooperatively induce cell cycle progression in c-Rel−/− B cells. Oncogene 22: 8472–8486, https://doi.org/10.1038/sj.onc.1206917.Suche in Google Scholar PubMed

Cramer, M., Nagy, I., Murphy, B.J., Gassmann, M., Hottiger, M.O., Georgiev, O., and Schaffner, W. (2005). NF-kappaB contributes to transcription of placenta growth factor and interacts with metal responsive transcription factor-1 in hypoxic human cells. Biol. Chem. 386: 865–872, https://doi.org/10.1515/bc.2005.101.Suche in Google Scholar PubMed

Duyao, M.P., Buckler, A.J., and Sonenshein, G.E. (1990). Interaction of an NF-kappa B-like factor with a site upstream of the c-myc promoter. Proc. Natl. Acad. Sci. U.S.A. 87: 4727–4731, https://doi.org/10.1073/pnas.87.12.4727.Suche in Google Scholar PubMed PubMed Central

Guttridge, D.C., Albanese, C., Reuther, J.Y., Pestell, R.G., and Baldwin, A.S.Jr. (1999). NF-kappaB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol. Cell Biol. 19: 5785–5799, https://doi.org/10.1128/mcb.19.8.5785.Suche in Google Scholar PubMed PubMed Central

Han, X., Yang, J., Jia, Z., Wei, P., Zhang, H., Lv, W., Sun, J., and Huo, Q. (2017). Knockdown of serine-arginine protein kinase 1 inhibits the growth and migration in renal cell carcinoma cells. Oncol. Res. 25: 389–395, https://doi.org/10.3727/096504016x14743324568129.Suche in Google Scholar

Hanahan, D. and Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. Cell 144: 646–674, https://doi.org/10.1016/j.cell.2011.02.013.Suche in Google Scholar PubMed

Hayden, M.S. and Ghosh, S. (2008). Shared principles in NF-kappaB signaling. Cell 132: 344–362, https://doi.org/10.1016/j.cell.2008.01.020.Suche in Google Scholar PubMed

Huang, T.T., Kudo, N., Yoshida, M., and Miyamoto, S. (2000). A nuclear export signal in the N-terminal regulatory domain of IkappaB alpha controls cytoplasmic localization of inactive NF-kappaB/IkappaB alpha complexes. Proc. Natl. Acad. Sci. U.S.A. 97: 1014–1019, https://doi.org/10.1073/pnas.97.3.1014.Suche in Google Scholar PubMed PubMed Central

Janeway, K.A., Barkauskas, D.A., Krailo, M.D., Meyers, P.A., Schwartz, C.L., Ebb, D.H., Seibel, N.L., Grier, H.E., Gorlick, R., and Marina, N. (2012). Outcome for adolescent and young adult patients with osteosarcoma: a report from the Children’s Oncology Group. Cancer 118: 4597–4605, https://doi.org/10.1002/cncr.27414.Suche in Google Scholar PubMed PubMed Central

Karin, M. (2006). Nuclear factor-kappaB in cancer development and progression. Nature 441: 431–436, https://doi.org/10.1038/nature04870.Suche in Google Scholar PubMed

Karin, M., Cao, Y., Greten, F.R., and Li, Z.W. (2002). NF-kappaB in cancer: from innocent bystander to major culprit. Nat. Rev. Cancer 2: 301–310, https://doi.org/10.1038/nrc780.Suche in Google Scholar PubMed

Lee, J.H., Jo, Y.S., Kim, M.S., Yoo, N.J., and Lee, S.H. (2017). Inactivating frameshift mutation of putative tumor suppressor genes PLA2R1 and SRPK1 in gastric and colorectal cancers. Cancer Genet 210: 34–35, https://doi.org/10.1016/j.cancergen.2016.11.005.Suche in Google Scholar PubMed

Li, Z.W., Chen, H., Campbell, R.A., Bonavida, B., and Berenson, J.R. (2008). NF-kappaB in the pathogenesis and treatment of multiple myeloma. Curr. Opin. Hematol. 15: 391–399, https://doi.org/10.1097/moh.0b013e328302c7f4.Suche in Google Scholar

Liu, H., Hu, X., Zhu, Y., Jiang, G., and Chen, S. (2016). Up-regulation of SRPK1 in non-small cell lung cancer promotes the growth and migration of cancer cells. Tumour Biol. 37: 7287–7293, https://doi.org/10.1007/s13277-015-4510-z.Suche in Google Scholar PubMed

Long, J.C. and Caceres, J.F. (2009). The SR protein family of splicing factors: master regulators of gene expression. Biochem. J. 417: 15–27, https://doi.org/10.1042/bj20081501.Suche in Google Scholar PubMed

Longhi, A., Errani, C., Gonzales-Arabio, D., Ferrari, C., and Mercuri, M. (2008). Osteosarcoma in patients older than 65 years. J. Clin. Oncol. 26: 5368–5373, https://doi.org/10.1200/jco.2007.14.9104.Suche in Google Scholar PubMed

Mavrou, A. and Oltean, S. (2016). SRPK1 inhibition in prostate cancer: a novel anti-angiogenic treatment through modulation of VEGF alternative splicing. Pharmacol. Res. 107: 276–281, https://doi.org/10.1016/j.phrs.2016.03.013.Suche in Google Scholar PubMed PubMed Central

McKenna, R.J., Schwinn, C.P., Soong, K.Y., and Higinbotham, N.L. (1966). Sarcomata of the osteogenic series (osteosarcoma, fibrosarcoma, chondrosarcoma, parosteal osteogenic sarcoma, and sarcomata arising in abnormal bone): an analysis of 552 cases. J. Bone Joint Surg. Am. 48: 1–26, https://doi.org/10.2106/00004623-196648010-00001.Suche in Google Scholar

Mirabello, L., Troisi, R.J., and Savage, S.A. (2009). Osteosarcoma incidence and survival rates from 1973 to 2004: data from the surveillance, epidemiology, and end results program. Cancer 115: 1531–1543, https://doi.org/10.1002/cncr.24121.Suche in Google Scholar PubMed PubMed Central

Moon, D.O., Kim, M.O., Kang, S.H., Choi, Y.H., and Kim, G.Y. (2009). Sulforaphane suppresses TNF-α-mediated activation of NF-kappaB and induces apoptosis through activation of reactive oxygen species-dependent caspase-3. Cancer Lett. 274: 132–142, https://doi.org/10.1016/j.canlet.2008.09.013.Suche in Google Scholar PubMed

Olshavsky, N.A., Comstock, C.E., Schiewer, M.J., Augello, M.A., Hyslop, T., Sette, C., Zhang, J., Parysek, L.M., and Knudsen, K.E. (2010). Identification of ASF/SF2 as a critical, allele-specific effector of the cyclin D1b oncogene. Cancer Res. 70: 3975–3984, https://doi.org/10.1158/0008-5472.can-09-3468.Suche in Google Scholar

Ottaviani, G. and Jaffe, N. (2009). The epidemiology of osteosarcoma. Cancer Treat Res. 152: 3–13, https://doi.org/10.1007/978-1-4419-0284-9_1.Suche in Google Scholar PubMed

Papoutsopoulou, S., Nikolakaki, E., Chalepakis, G., Kruft, V., Chevaillier, P., and Giannakouros, T. (1999). SR protein-specific kinase 1 is highly expressed in testis and phosphorylates protamine 1. Nucl. Acids Res. 27: 2972–2980, https://doi.org/10.1093/nar/27.14.2972.Suche in Google Scholar PubMed PubMed Central

Patel, M., Sachidanandan, M., and Adnan, M. (2019). Serine arginine protein kinase 1 (SRPK1): a moonlighting protein with theranostic ability in cancer prevention. Mol. Biol. Rep. 46: 1487–1497, https://doi.org/10.1007/s11033-018-4545-5.Suche in Google Scholar PubMed

Peng, Y., Lv, S., Li, Y., Zhu, J., Chen, S., Zhen, G., Cao, X., Wu, S., and Crane, J.L. (2020). Glucocorticoids disrupt skeletal angiogenesis through transrepression of NF-kappaB-Mediated preosteoclast pdgfb transcription in young mice. J. Bone Miner. Res. 35: 1188–1202, https://doi.org/10.1002/jbmr.3987.Suche in Google Scholar PubMed PubMed Central

Sen, R. and Baltimore, D. (1986). Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. Cell 47: 921–928, https://doi.org/10.1016/0092-8674(86)90807-x.Suche in Google Scholar

Sissons, H.A. (1976). The WHO classification of bone tumors. Recent Results Cancer Res. 54: 104–108, doi:https://doi.org/10.1007/978-3-642-80997-2_8.Suche in Google Scholar

Stacey, D.W. (2003). Cyclin D1 serves as a cell cycle regulatory switch in actively proliferating cells. Curr. Opin. Cell Biol. 15: 158–163, https://doi.org/10.1016/s0955-0674(03)00008-5.Suche in Google Scholar

Stiller, C.A., Bielack, S.S., Jundt, G., and Steliarova-Foucher, E. (2006). Bone tumours in European children and adolescents, 1978–1997. Report from the automated childhood cancer information system project. Eur. J. Cancer 42: 2124–2135, https://doi.org/10.1016/j.ejca.2006.05.015.Suche in Google Scholar PubMed

Tsai, P.W., Shiah, S.G., Lin, M.T., Wu, C.W., and Kuo, M.L. (2003). Up-regulation of vascular endothelial growth factor C in breast cancer cells by heregulin-beta 1. A critical role of p38/nuclear factor-κB signaling pathway. J. Biol. Chem. 278: 5750–5759, https://doi.org/10.1074/jbc.m204863200.Suche in Google Scholar PubMed

Tsuruta, F., Masuyama, N., and Gotoh, Y. (2002). The phosphatidylinositol 3-kinase (PI3K)-Akt pathway suppresses Bax translocation to mitochondria. J. Biol. Chem. 277: 14040–14047, https://doi.org/10.1074/jbc.m108975200.Suche in Google Scholar

Tzelepis, K., De Braekeleer, E., Aspris, D., Barbieri, I., Vijayabaskar, M.S., Liu, W.H., Gozdecka, M., Metzakopian, E., Toop, H.D., Dudek, M., et al.. (2018). SRPK1 maintains acute myeloid leukemia through effects on isoform usage of epigenetic regulators including BRD4. Nat. Commun. 9: 5378, https://doi.org/10.1038/s41467-018-07620-0.Suche in Google Scholar PubMed PubMed Central

van Roosmalen, W., Le Devedec, S.E., Golani, O., Smid, M., Pulyakhina, I., Timmermans, A.M., Look, M.P., Zi, D., Pont, C., de Graauw, M., et al.. (2015). Tumor cell migration screen identifies SRPK1 as breast cancer metastasis determinant. J. Clin. Invest. 125: 1648–1664, https://doi.org/10.1172/jci74440.Suche in Google Scholar

Wang, P., Zhou, Z., Hu, A., Ponte de Albuquerque, C., Zhou, Y., Hong, L., Sierecki, E., Ajiro, M., Kruhlak, M., Harris, C., et al.. (2014). Both decreased and increased SRPK1 levels promote cancer by interfering with PHLPP-mediated dephosphorylation of Akt. Mol. Cell. 54: 378–391, https://doi.org/10.1016/j.molcel.2014.03.007.Suche in Google Scholar PubMed PubMed Central

Wang, F., Zhou, J., Xie, X., Hu, J., Chen, L., Hu, Q., Guo, H., and Yu, C. (2015). Involvement of SRPK1 in cisplatin resistance related to long non-coding RNA UCA1 in human ovarian cancer cells. Neoplasma 62: 432–438, https://doi.org/10.4149/neo_2015_051.Suche in Google Scholar PubMed

Wang, H., Ge, W., Jiang, W., Li, D., and Ju, X. (2018). SRPK1siRNA suppresses K562 cell growth and induces apoptosis via the PARPcaspase3 pathway. Mol. Med. Rep. 17: 2070–2076, https://doi.org/10.3892/mmr.2017.8032.Suche in Google Scholar PubMed

Warren, C.F.A., Wong-Brown, M.W., and Bowden, N.A. (2019). BCL-2 family isoforms in apoptosis and cancer. Cell Death Dis. 10: 177, https://doi.org/10.1038/s41419-019-1407-6.Suche in Google Scholar PubMed PubMed Central

Xu, Q., Liu, X., Liu, Z., Zhou, Z., Wang, Y., Tu, J., Li, L., Bao, H., Yang, L., and Tu, K. (2017). MicroRNA-1296 inhibits metastasis and epithelial-mesenchymal transition of hepatocellular carcinoma by targeting SRPK1-mediated PI3K/AKT pathway. Mol. Cancer 16: 103, https://doi.org/10.1186/s12943-017-0675-y.Suche in Google Scholar PubMed PubMed Central


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2020-0394).


Received: 2020-12-23
Accepted: 2021-12-20
Published Online: 2021-12-29
Published in Print: 2022-06-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2020-0394/html?lang=de
Button zum nach oben scrollen