Abstract
Chemerin is a small chemotactic protein and a key player in initiating the early immune response. As an adipokine, chemerin is also involved in energy homeostasis and the regulation of reproductive functions. Secreted as inactive prochemerin, it relies on proteolytic activation by serine proteases to exert biological activity. Chemerin binds to three distinct G protein-coupled receptors (GPCR), namely chemokine-like receptor 1 (CMKLR1, recently named chemerin1), G protein-coupled receptor 1 (GPR1, recently named chemerin2), and CC-motif chemokine receptor-like 2 (CCRL2). Only CMKLR1 displays conventional G protein signaling, while GPR1 only recruits arrestin in response to ligand stimulation, and no CCRL2-mediated signaling events have been described to date. However, GPR1 undergoes constitutive endocytosis, making this receptor perfectly adapted as decoy receptor. Here, we discuss expression pattern, activation, and receptor binding of chemerin. Moreover, we review the current literature regarding the involvement of chemerin in cancer and several obesity-related diseases, as well as recent developments in therapeutic targeting of the chemerin system.
Funding source: Deutsche Forschungsgemeinschaft
Award Identifier / Grant number: 209933838 – SFB1052 – Z05
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This study was financially supported by the Deutsche Forschungsgemeinschaft (DFG), German Research Foundation, project number 209933838 – SFB1052 – Z05.
-
Conflict of interest statement: The authors declare no competing financial interests.
References
Abruzzese, G.A., Gamez, J., Belli, S.H., Levalle, O.A., Mormandi, E., Otero, P., Graffigna, M.N., Cerrone, G.E., and Motta, A.B. (2020). Increased chemerin serum levels in hyperandrogenic and normoandrogenic women from Argentina with polycystic ovary syndrome. Gynecol. Endocrinol. 36: 1057–1061, https://doi.org/10.1080/09513590.2020.1769061.Search in Google Scholar
Allen, S.J., Zabel, B.A., Kirkpatrick, J., Butcher, E.C., Nietlispach, D., and Handel, T.M. (2007). NMR assignment of human chemerin, a novel chemoattractant. Biomol. NMR Assign. 1: 171–173, https://doi.org/10.1007/s12104-007-9047-7.Search in Google Scholar
Arita, M., Bianchini, F., Aliberti, J., Sher, A., Chiang, N., Hong, S., Yang, R., Petasis, N.A., and Serhan, C.N. (2005). Stereochemical assignment, antiinflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1. J. Exp. Med. 201: 713–722, https://doi.org/10.1084/jem.20042031.Search in Google Scholar
Armstrong, A.W. and Read, C. (2020). Pathophysiology, clinical presentation, and treatment of psoriasis: a review. J. Am. Med. Assoc. 323: 1945–1960, https://doi.org/10.1001/jama.2020.4006.Search in Google Scholar
Auer, J., Bläss, M., Schulze-Koops, H., Russwurm, S., Nagel, T., Kalden, J.R., Röllinghoff, M., and Beuscher, H.U. (2007). Expression and regulation of CCL18 in synovial fluid neutrophils of patients with rheumatoid arthritis. Arthritis Res. Ther. 9: R94, https://doi.org/10.1186/ar2294.Search in Google Scholar
Ballesteros, J.A. and Weinstein, H. (1995). Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. In: Sealfon, S.C. (Ed.), Methods in neurosciences: receptor molecular biology. Academic Press, Cambridge, Massachusetts, USA, pp. 366–428.10.1016/S1043-9471(05)80049-7Search in Google Scholar
Baltoumas, F.A., Theodoropoulou, M.C., and Hamodrakas, S.J. (2013). Interactions of the α-subunits of heterotrimeric G-proteins with GPCRs, effectors and RGS proteins: a critical review and analysis of interacting surfaces, conformational shifts, structural diversity and electrostatic potentials. J. Struct. Biol. 182: 209–218, https://doi.org/10.1016/j.jsb.2013.03.004.Search in Google Scholar PubMed
Banas, M., Zabieglo, K., Kasetty, G., Kapinska-Mrowiecka, M., Borowczyk, J., Drukala, J., Murzyn, K., Zabel, B.A., Butcher, E.C., Schroeder, J.M., et al.. (2013). Chemerin is an antimicrobial agent in human epidermis. PLoS One 8: e58709, https://doi.org/10.1371/journal.pone.0058709.Search in Google Scholar PubMed PubMed Central
Banas, M., Zegar, A., Kwitniewski, M., Zabieglo, K., Marczynska, J., Kapinska-Mrowiecka, M., LaJevic, M., Zabel, B.A., and Cichy, J. (2015). The expression and regulation of chemerin in the epidermis. PLoS One 10: e0117830, https://doi.org/10.1371/journal.pone.0117830.Search in Google Scholar PubMed PubMed Central
Bandholtz, S., Wichard, J., Kühne, R., and Grötzinger, C. (2012). Molecular evolution of a peptide GPCR ligand driven by artificial neural networks. PLoS One 7: e36948, https://doi.org/10.1371/journal.pone.0036948.Search in Google Scholar PubMed PubMed Central
Barnea, G., Strapps, W., Herrada, G., Berman, Y., Ong, J., Kloss, B., Axel, R., and Lee, K.J. (2008). The genetic design of signaling cascades to record receptor activation. Proc. Natl. Acad. Sci. U.S.A. 105: 64–69, https://doi.org/10.1073/pnas.0710487105.Search in Google Scholar PubMed PubMed Central
Berg, V., Sveinbjörnsson, B., Bendiksen, S., Brox, J., Meknas, K., and Figenschau, Y. (2010). Human articular chondrocytes express ChemR23 and chemerin; ChemR23 promotes inflammatory signalling upon binding the ligand chemerin 21-157. Arthritis Res. Ther. 12: 1–12, https://doi.org/10.1186/ar3215.Search in Google Scholar PubMed PubMed Central
Bondue, B., Wittamer, V., and Parmentier, M. (2011). Chemerin and its receptors in leukocyte trafficking, inflammation and metabolism. Cytokine Growth Factor Rev. 22: 331–338, https://doi.org/10.1016/j.cytogfr.2011.11.004.Search in Google Scholar PubMed
Bozaoglu, K., Bolton, K., McMillan, J., Zimmet, P., Jowett, J., Collier, G., Walder, K., and Segal, D. (2007). Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology 148: 4687–4694, https://doi.org/10.1210/en.2007-0175.Search in Google Scholar PubMed
Bozaoglu, K., Segal, D., Shields, K.A., Cummings, N., Curran, J.E., Comuzzie, A.G., Mahaney, M.C., Rainwater, D.L., VandeBerg, J.L., MacCluer, J.W., et al.. (2009). Chemerin is associated with metabolic syndrome phenotypes in a Mexican-American population. J. Clin. Endocrinol. Metab. 94: 3085–3088, https://doi.org/10.1210/jc.2008-1833.Search in Google Scholar PubMed PubMed Central
Burkert, K., Zellmann, T., Meier, R., Kaiser, A., Stichel, J., Meiler, J., Mittapalli, G.K., Roberts, E., and Beck-Sickinger, A.G. (2017). A deep hydrophobic binding cavity is the main interaction for different Y2 R antagonists. ChemMedChem 12: 75–85, https://doi.org/10.1002/cmdc.201600433.Search in Google Scholar PubMed
Cash, J.L., Bass, M.D., Campbell, J., Barnes, M., Kubes, P., and Martin, P. (2014). Resolution mediator chemerin15 reprograms the wound microenvironment to promote repair and reduce scarring. Curr. Biol. 24: 1406–1414, https://doi.org/10.1016/j.cub.2014.05.006.Search in Google Scholar PubMed PubMed Central
Cash, J.L., Hart, R., Russ, A., Dixon, J.P.C., Colledge, W.H., Doran, J., Hendrick, A.G., Carlton, M.B.L., and Greaves, D.R. (2008). Synthetic chemerin-derived peptides suppress inflammation through ChemR23. J. Exp. Med. 205: 767–775, https://doi.org/10.1084/jem.20071601.Search in Google Scholar PubMed PubMed Central
Catusse, J., Leick, M., Groch, M., Clark, D.J., Buchner, M.V., Zirlik, K., and Burger, M. (2010). Role of the atypical chemoattractant receptor CRAM in regulating CCL19 induced CCR7 responses in B-cell chronic lymphocytic leukemia. Mol. Cancer 9: 297, https://doi.org/10.1186/1476-4598-9-297.Search in Google Scholar PubMed PubMed Central
Chakaroun, R., Raschpichler, M., Klöting, N., Oberbach, A., Flehmig, G., Kern, M., Schön, M.R., Shang, E., Lohmann, T., Dreßler, M., et al.. (2012). Effects of weight loss and exercise on chemerin serum concentrations and adipose tissue expression in human obesity. Metab. Clin. Exp. 61: 706–714, doi:https://doi.org/10.1016/j.metabol.2011.10.008.Search in Google Scholar PubMed
Chang, S.-S., Eisenberg, D., Zhao, L., Adams, C., Leib, R., Morser, J., and Leung, L. (2016). Chemerin activation in human obesity. Obesity 24: 1522–1529, https://doi.org/10.1002/oby.21534.Search in Google Scholar PubMed
Chemocentryx (2011). ChemoCentryx initiates phase I clinical trial of CCX832, the first small molecule inhibitor of ChemR23, Available at: <https://ir.chemocentryx.com/news-releases/news-release-details/chemocentryx-initiates-phase-i-clinical-trial-ccx832-first-small>.Search in Google Scholar
Chen, X., Jia, X., Qiao, J., Guan, Y., and Kang, J. (2013). Adipokines in reproductive function: a link between obesity and polycystic ovary syndrome. J. Mol. Endocrinol. 50: 37, https://doi.org/10.1530/JME-12-0247.Search in Google Scholar PubMed
Chen, T., Xiong, M., Zong, X., Ge, Y., Zhang, H., Wang, M., Han, G.W., Yi, C., Ma, L., Ye, R.D., et al.. (2020). Structural basis of ligand binding modes at the human formyl peptide receptor 2. Nat. Commun. 11: 1–9, https://doi.org/10.1038/s41467-020-15009-1.Search in Google Scholar PubMed PubMed Central
Crowson, C.S., Matteson, E.L., Davis, J.M., and Gabriel, S.E. (2013). Contribution of obesity to the rise in incidence of rheumatoid arthritis. Arthritis Care Res. 65: 71–77, https://doi.org/10.1002/acr.21660.Search in Google Scholar PubMed PubMed Central
Del Prete, A., Martínez-Muñoz, L., Mazzon, C., Toffali, L., Sozio, F., Za, L., Bosisio, D., Gazzurelli, L., Salvi, V., Tiberio, L., et al.. (2017). The atypical receptor CCRL2 is required for CXCR2-dependent neutrophil recruitment and tissue damage. Blood 130: 1223–1234, doi:https://doi.org/10.1182/blood-2017-04-777680.Search in Google Scholar PubMed
Del Prete, A., Sozio, F., Schioppa, T., Ponzetta, A., Vermi, W., Calza, S., Bugatti, M., Salvi, V., Bernardini, G., Benvenuti, F., et al.. (2019). The atypical receptor CCRL2 is essential for lung cancer immune surveillance. Cancer Immunol. Res. 7: 1775–1788, doi:https://doi.org/10.1158/2326-6066.cir-19-0168.Search in Google Scholar PubMed PubMed Central
DeMarco, V.G., Aroor, A.R., and Sowers, J.R. (2014). The pathophysiology of hypertension in patients with obesity. Nat. Rev. Endocrinol. 10: 364–376, https://doi.org/10.1038/nrendo.2014.44.Search in Google Scholar PubMed PubMed Central
Döcke, S., Lock, J.F., Birkenfeld, A.L., Hoppe, S., Lieske, S., Rieger, A., Raschzok, N., Sauer, I.M., Florian, S., Osterhoff, M.A., et al.. (2013). Elevated hepatic chemerin mRNA expression in human non-alcoholic fatty liver disease. Eur. J. Endocrinol. 169: 547–557, https://doi.org/10.1530/EJE-13-0112.Search in Google Scholar PubMed
Dranse, H.J., Muruganandan, S., Fawcett, J.P., and Sinal, C.J. (2016). Adipocyte-secreted chemerin is processed to a variety of isoforms and influences MMP3 and chemokine secretion through an NF-κB-dependent mechanism. Mol. Cell. Endocrinol. 436: 114–129, https://doi.org/10.1016/j.mce.2016.07.017.Search in Google Scholar PubMed
Du, X.-Y., Zabel, B.A., Myles, T., Allen, S.J., Handel, T.M., Lee, P.P., Butcher, E.C., and Leung, L.L. (2009). Regulation of chemerin bioactivity by plasma carboxypeptidase N, carboxypeptidase B (activated thrombin-activable fibrinolysis inhibitor), and platelets. J. Biol. Chem. 284: 751–758, https://doi.org/10.1074/jbc.m805000200.Search in Google Scholar
Duan, D.-M., Niu, J.-M., Lei, Q., Lin, X.-H., and Chen, X. (2011). Serum levels of the adipokine chemerin in preeclampsia. J. Perinat. Med. 40: 121–127, https://doi.org/10.1515/JPM.2011.127.Search in Google Scholar PubMed
Erdmann, S., Niederstadt, L., Koziolek, E.J., Gómez, J.D.C., Prasad, S., Wagener, A., von Hacht, J.L., Reinicke, S., Exner, S., Bandholtz, S., et al.. (2019). CMKLR1-targeting peptide tracers for PET/MR imaging of breast cancer. Theranostics 9: 6719–6733, https://doi.org/10.7150/thno.34857.Search in Google Scholar PubMed PubMed Central
Ernst, M.C., Haidl, I.D., Zúñiga, L.A., Dranse, H.J., Rourke, J.L., Zabel, B.A., Butcher, E.C., and Sinal, C.J. (2012). Disruption of the chemokine-like receptor-1 (CMKLR1) gene is associated with reduced adiposity and glucose intolerance. Endocrinology 153: 672–682, https://doi.org/10.1210/en.2011-1490.Search in Google Scholar PubMed PubMed Central
Ernst, M.C., Issa, M., Goralski, K.B., and Sinal, C.J. (2010). Chemerin exacerbates glucose intolerance in mouse models of obesity and diabetes. Endocrinology 151: 1998–2007, https://doi.org/10.1210/en.2009-1098.Search in Google Scholar PubMed
Ernst, M.C. and Sinal, C.J. (2010). Chemerin: at the crossroads of inflammation and obesity. Trends Endocrinol. Metabol. 21: 660–667, https://doi.org/10.1016/j.tem.2010.08.001.Search in Google Scholar PubMed
Fang, P., Han, L., Yu, M., Han, S., Wang, M., Huang, Y., Guo, W., Wei, Q., Shang, W., and Min, W. (2021). Development of metabolic dysfunction in mice lacking chemerin. Mol. Cell. Endocrinol. 535: 111369, https://doi.org/10.1016/j.mce.2021.111369.Search in Google Scholar PubMed
Farzan, M., Choe, H., Martin, K., Marcon, L., Hofmann, W., Karlsson, G., Sun, Y., Barrett, P., Marchand, N., Sullivan, N., et al.. (1997). Two orphan seven-transmembrane segment receptors which are expressed in CD4-positive cells support simian immunodeficiency virus infection. J. Exp. Med. 186: 405–411, https://doi.org/10.1084/jem.186.3.405.Search in Google Scholar PubMed PubMed Central
Feder, S., Bruckmann, A., McMullen, N., Sinal, C.J., and Buechler, C. (2020). Chemerin isoform-specific effects on hepatocyte migration and immune cell inflammation. Int. J. Mol. Sci. 21, https://doi.org/10.3390/ijms21197205.Search in Google Scholar PubMed PubMed Central
Ferland, D.J. and Watts, S.W. (2015). Chemerin: a comprehensive review elucidating the need for cardiovascular research. Pharmacol. Res. 99: 351–361, https://doi.org/10.1016/j.phrs.2015.07.018.Search in Google Scholar PubMed PubMed Central
Fischer, T.F., Czerniak, A.S., Weiß, T., Schoeder, C.T., Wolf, P., Seitz, O., Meiler, J., and Beck-Sickinger, A.G. (2021a). Ligand-binding and -scavenging of the chemerin receptor GPR1. Cell. Mol. Life Sci. 78: 6265–6281, https://doi.org/10.1007/s00018-021-03894-8.Search in Google Scholar PubMed PubMed Central
Fischer, T.F., Czerniak, A.S., Weiß, T., Zellmann, T., Zielke, L., Els-Heindl, S., and Beck-Sickinger, A.G. (2021b). Cyclic derivatives of the chemerin C-terminus as metabolically stable agonists at the chemokine-like receptor 1 for cancer treatment. Cancers 13: 3788, https://doi.org/10.3390/cancers13153788.Search in Google Scholar PubMed PubMed Central
Fischer, T.F., Schoeder, C.T., Zellmann, T., Stichel, J., Meiler, J., and Beck-Sickinger, A.G. (2021c). Cyclic analogues of the chemerin C-terminus mimic a loop conformation essential for activating the chemokine-like receptor 1. J. Med. Chem. 64: 3048–3058, https://doi.org/10.1021/acs.jmedchem.0c01804.Search in Google Scholar PubMed
Foster, S.R., Hauser, A.S., Vedel, L., Strachan, R.T., Huang, X.-P., Gavin, A.C., Shah, S.D., Nayak, A.P., Haugaard-Kedström, L.M., Penn, R.B., et al.. (2019). Discovery of human signaling systems: pairing peptides to G protein-coupled receptors. Cell 179: 895–908.e21, https://doi.org/10.1016/j.cell.2019.10.010.Search in Google Scholar PubMed PubMed Central
Fredriksson, R., Lagerström, M.C., Lundin, L.-G., and Schiöth, H.B. (2003). The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63: 1256–1272, https://doi.org/10.1124/mol.63.6.1256.Search in Google Scholar PubMed
Galligan, C.L., Matsuyama, W., Matsukawa, A., Mizuta, H., Hodge, D.R., Howard, O.M.Z., and Yoshimura, T. (2004). Up-regulated expression and activation of the orphan chemokine receptor, CCRL2, in rheumatoid arthritis. Arthritis Rheum. 50: 1806–1814, https://doi.org/10.1002/art.20275.Search in Google Scholar PubMed
Gambineri, A., Pelusi, C., Vicennati, V., Pagotto, U., and Pasquali, R. (2002). Obesity and the polycystic ovary syndrome. Int. J. Obes. 26: 883–896, https://doi.org/10.1038/sj.ijo.0801994.Search in Google Scholar PubMed
Garces, M.F., Sanchez, E., Acosta, B.J., Angel, E., Ruíz, A.I., Rubio-Romero, J.A., Diéguez, C., Nogueiras, R., and Caminos, J.E. (2012). Expression and regulation of chemerin during rat pregnancy. Placenta 33: 373–378, https://doi.org/10.1016/j.placenta.2012.02.007.Search in Google Scholar PubMed
Garces, M.F., Sanchez, E., Ruíz-Parra, A.I., Rubio-Romero, J.A., Angel-Müller, E., Suarez, M.A., Bohórquez, L.F., Bravo, S.B., Nogueiras, R., Diéguez, C., et al.. (2013). Serum chemerin levels during normal human pregnancy. Peptides 42: 138–143, https://doi.org/10.1016/j.peptides.2013.01.003.Search in Google Scholar PubMed
Ge, X., Yamaguchi, Y., Zhao, L., Bury, L., Gresele, P., Berube, C., Leung, L.L., and Morser, J. (2018). Prochemerin cleavage by factor XIa links coagulation and inflammation. Blood 131: 353–364, https://doi.org/10.1182/blood-2017-07-792580.Search in Google Scholar PubMed PubMed Central
Godlewska, U., Brzoza, P., Sroka, A., Majewski, P., Jentsch, H., Eckert, M., Eick, S., Potempa, J., Zabel, B.A., and Cichy, J. (2017). Antimicrobial and attractant roles for chemerin in the oral cavity during inflammatory gum disease. Front. Immunol. 8: 353, https://doi.org/10.3389/fimmu.2017.00353.Search in Google Scholar PubMed PubMed Central
Goralski, K.B., McCarthy, T.C., Hanniman, E.A., Zabel, B.A., Butcher, E.C., Parlee, S.D., Muruganandan, S., and Sinal, C.J. (2007). Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. J. Biol. Chem. 282: 28175–28188, https://doi.org/10.1074/jbc.m700793200.Search in Google Scholar
Goudas, V.T. and Dumesic, D.A. (1997). Polycystic ovary syndrome. Endocrinol Metab. Clin. N. Am. 26: 893–912, https://doi.org/10.1016/s0889-8529(05)70286-3.Search in Google Scholar
Graham, K.L., Zhang, J.V., Lewén, S., Burke, T.M., Dang, T., Zoudilova, M., Sobel, R.A., Butcher, E.C., and Zabel, B.A. (2014). A novel CMKLR1 small molecule antagonist suppresses CNS autoimmune inflammatory disease. PLoS One 9: e112925, https://doi.org/10.1371/journal.pone.0112925.Search in Google Scholar PubMed PubMed Central
Grundmann, M., Merten, N., Malfacini, D., Inoue, A., Preis, P., Simon, K., Rüttiger, N., Ziegler, N., Benkel, T., Schmitt, N.K., et al.. (2018). Lack of beta-arrestin signaling in the absence of active G proteins. Nat. Commun. 9: 1–16, https://doi.org/10.1038/s41467-017-02661-3.Search in Google Scholar PubMed PubMed Central
Gu, P., Cheng, M., Hui, X., Lu, B., Jiang, W., and Shi, Z. (2015). Elevating circulation chemerin level is associated with endothelial dysfunction and early atherosclerotic changes in essential hypertensive patients. J. Hypertens. 33: 1624–1632, https://doi.org/10.1097/hjh.0000000000000588.Search in Google Scholar PubMed
Guh, D.P., Zhang, W., Bansback, N., Amarsi, Z., Birmingham, C.L., and Anis, A.H. (2009). The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Publ. Health 9: 88, https://doi.org/10.1186/1471-2458-9-88.Search in Google Scholar PubMed PubMed Central
Guillabert, A., Wittamer, V., Bondue, B., Godot, V., Imbault, V., Parmentier, M., and Communi, D. (2008). Role of neutrophil proteinase 3 and mast cell chymase in chemerin proteolytic regulation. J. Leukoc. Biol. 84: 1530–1538, https://doi.org/10.1189/jlb.0508322.Search in Google Scholar PubMed
Guillerey, C., Huntington, N.D., and Smyth, M.J. (2016). Targeting natural killer cells in cancer immunotherapy. Nat. Immunol. 17: 1025–1036, https://doi.org/10.1038/ni.3518.Search in Google Scholar PubMed
Haberl, E.M., Pohl, R., Rein-Fischboeck, L., Feder, S., Eisinger, K., Krautbauer, S., Sinal, C.J., and Buechler, C. (2018). Ex vivo analysis of serum chemerin activity in murine models of obesity. Cytokine 104: 42–45, https://doi.org/10.1016/j.cyto.2018.02.004.Search in Google Scholar PubMed
Haberl, E.M., Pohl, R., Rein-Fischboeck, L., Feder, S., Sinal, C.J., Bruckmann, A., Hoering, M., Krautbauer, S., Liebisch, G., and Buechler, C. (2019). Overexpression of hepatocyte chemerin-156 lowers tumor burden in a murine model of diethylnitrosamine-induced hepatocellular carcinoma. Int. J. Mol. Sci. 21, https://doi.org/10.3390/ijms21010252.Search in Google Scholar PubMed PubMed Central
Hales, C.M., Carroll, M.D., Fryar, C.D., and Ogden, C.L. (2020). Prevalence of obesity and severe obesity among adults: United States, 2017–2018 NCHS Data Brief. National Center for Health Statistics, Hyattsville, MD, USA.Search in Google Scholar
Hartmann, T.N., Leick, M., Ewers, S., Diefenbacher, A., Schraufstatter, I., Honczarenko, M., and Burger, M. (2008). Human B cells express the orphan chemokine receptor CRAM-A/B in a maturation-stage-dependent and CCL5-modulated manner. Immunology 125: 252–262, https://doi.org/10.1111/j.1365-2567.2008.02836.x.Search in Google Scholar PubMed PubMed Central
Hauser, A.S., Attwood, M.M., Rask-Andersen, M., Schiöth, H.B., and Gloriam, D.E. (2017). Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov. 16: 829–842, https://doi.org/10.1038/nrd.2017.178.Search in Google Scholar PubMed PubMed Central
Helfer, G. and Wu, Q.-F. (2018). Chemerin: a multifaceted adipokine involved in metabolic disorders. J. Endocrinol. 238: R79–R94, https://doi.org/10.1530/joe-18-0174.Search in Google Scholar PubMed PubMed Central
de Henau, O., Degroot, G.-N., Imbault, V., Robert, V., de Poorter, C., Mcheik, S., Galés, C., Parmentier, M., and Springael, J.-Y. (2016). Signaling properties of chemerin receptors CMKLR1, GPR1 and CCRL2. PLoS One 11: e0164179, https://doi.org/10.1371/journal.pone.0164179.Search in Google Scholar PubMed PubMed Central
Huang, R., Yue, J., Sun, Y., Zheng, J., Tao, T., Li, S., and Liu, W. (2015). Increased serum chemerin concentrations in patients with polycystic ovary syndrome: relationship between insulin resistance and ovarian volume. Clin. Chim. Acta 450: 366–369, https://doi.org/10.1016/j.cca.2015.09.015.Search in Google Scholar PubMed
Imaizumi, T., Kobayashi, A., Otsubo, S., Komai, M., Magara, M., and Otsubo, N. (2019). The discovery and optimization of a series of 2-aminobenzoxazole derivatives as ChemR23 inhibitors. Bioorg. Med. Chem. 27: 115091, https://doi.org/10.1016/j.bmc.2019.115091.Search in Google Scholar PubMed
Imaizumi, T., Otsubo, S., Komai, M., Takada, H., Maemoto, M., Kobayashi, A., and Otsubo, N. (2020). The design, synthesis and evaluation of 2-aminobenzoxazole analogues as potent and orally efficacious ChemR23 inhibitors. Bioorg. Med. Chem. 28: 115622, https://doi.org/10.1016/j.bmc.2020.115622.Search in Google Scholar PubMed
Jensen, P. and Skov, L. (2016). Psoriasis and obesity. Dermatology (Basel) 232: 633–639, https://doi.org/10.1159/000455840.Search in Google Scholar PubMed
Jia, J., Yu, F., Xiong, Y., Wei, W., Ma, H., Nisi, F., Song, X., Yang, L., Wang, D., Yuan, G., et al.. (2020). Chemerin enhances the adhesion and migration of human endothelial progenitor cells and increases lipid accumulation in mice with atherosclerosis. Lipids Health Dis. 19: 207, https://doi.org/10.1186/s12944-020-01378-5.Search in Google Scholar PubMed PubMed Central
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.. (2021). Highly accurate protein structure prediction with AlphaFold. Nature 596: 583–589, https://doi.org/10.1038/s41586-021-03819-2.Search in Google Scholar PubMed PubMed Central
Kahn, S.E., Hull, R.L., and Utzschneider, K.M. (2006). Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444: 840–846, https://doi.org/10.1038/nature05482.Search in Google Scholar PubMed
Kaneko, K., Miyabe, Y., Takayasu, A., Fukuda, S., Miyabe, C., Ebisawa, M., Yokoyama, W., Watanabe, K., Imai, T., Muramoto, K., et al.. (2011). Chemerin activates fibroblast-like synoviocytes in patients with rheumatoid arthritis. Arthritis Res. Ther. 13: 1–14, https://doi.org/10.1186/ar3475.Search in Google Scholar PubMed PubMed Central
Kashem, S.W., Haniffa, M., and Kaplan, D.H. (2017). Antigen-presenting cells in the skin. Annu. Rev. Immunol. 35: 469–499, https://doi.org/10.1146/annurev-immunol-051116-052215.Search in Google Scholar PubMed
Kelley, L.A., Mezulis, S., Yates, C.M., Wass, M.N., and Sternberg, M.J.E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10: 845–858, https://doi.org/10.1038/nprot.2015.053.Search in Google Scholar PubMed PubMed Central
Kennedy, A.J. and Davenport, A.P. (2018). International union of basic and clinical pharmacology CIII: chemerin receptors CMKLR1 (Chemerin1) and GPR1 (Chemerin2) nomenclature, pharmacology, and function. Pharmacol. Rev. 70: 174–196, https://doi.org/10.1124/pr.116.013177.Search in Google Scholar PubMed PubMed Central
Kennedy, A.J., Yang, P., Read, C., Kuc, R.E., Yang, L., Taylor, E.J.A., Taylor, C.W., Maguire, J.J., and Davenport, A.P. (2016). Chemerin elicits potent constrictor actions via chemokine-like receptor 1 (CMKLR1), not G-protein-coupled receptor 1 (GPR1), in human and rat vasculature. J. Am. Heart Assoc. 5: e004421, doi:https://doi.org/10.1161/JAHA.116.004421.Search in Google Scholar PubMed PubMed Central
Kiczmer, P., Seńkowska, A.P., Kula, A., Dawidowicz, M., Strzelczyk, J.K., Zajdel, E.N., Walkiewicz, K., Waniczek, D., Ostrowska, Z., and Świętochowska, E. (2020). Assessment of CMKLR1 level in colorectal cancer and its correlation with angiogenic markers. Exp. Mol. Pathol. 113: 104377, https://doi.org/10.1016/j.yexmp.2020.104377.Search in Google Scholar PubMed
Kim, J.Y., Xue, K., Cao, M., Wang, Q., Liu, J.-Y., Leader, A., Han, J.Y., and Tsang, B.K. (2013). Chemerin suppresses ovarian follicular development and its potential involvement in follicular arrest in rats treated chronically with dihydrotestosterone. Endocrinology 154: 2912–2923, https://doi.org/10.1210/en.2013-1001.Search in Google Scholar PubMed
Konieczny, A., Braun, D., Wifling, D., Bernhardt, G., and Keller, M. (2020). Oligopeptides as neuropeptide Y Y4 receptor ligands: identification of a high-affinity tetrapeptide agonist and a hexapeptide antagonist. J. Med. Chem. 63: 8198–8215, https://doi.org/10.1021/acs.jmedchem.0c00426.Search in Google Scholar PubMed
Kralisch, S., Weise, S., Sommer, G., Lipfert, J., Lossner, U., Bluher, M., Stumvoll, M., and Fasshauer, M. (2009). Interleukin-1β induces the novel adipokine chemerin in adipocytes in vitro. Regul. Pept. 154: 102–106, https://doi.org/10.1016/j.regpep.2009.02.010.Search in Google Scholar PubMed
Krautbauer, S., Wanninger, J., Eisinger, K., Hader, Y., Beck, M., Kopp, A., Schmid, A., Weiss, T.S., Dorn, C., and Buechler, C. (2013). Chemerin is highly expressed in hepatocytes and is induced in non-alcoholic steatohepatitis liver. Exp. Mol. Pathol. 95: 199–205, https://doi.org/10.1016/j.yexmp.2013.07.009.Search in Google Scholar PubMed
Krishnamoorthy, S., Recchiuti, A., Chiang, N., Yacoubian, S., Lee, C.-H., Yang, R., Petasis, N.A., and Serhan, C.N. (2010). Resolvin D1 binds human phagocytes with evidence for proresolving receptors. Proc. Natl. Acad. Sci. U.S.A. 107: 1660–1665, https://doi.org/10.1073/pnas.0907342107.Search in Google Scholar PubMed PubMed Central
Kukla, M., Zwirska-Korczala, K., Hartleb, M., Waluga, M., Chwist, A., Kajor, M., Ciupinska-Kajor, M., Berdowska, A., Wozniak-Grygiel, E., and Buldak, R. (2010). Serum chemerin and vaspin in non-alcoholic fatty liver disease. Scand. J. Gastroenterol. 45: 235–242, https://doi.org/10.3109/00365520903443852.Search in Google Scholar PubMed
Kumar, J.D., Kandola, S., Tiszlavicz, L., Reisz, Z., Dockray, G.J., and Varro, A. (2016). The role of chemerin and ChemR23 in stimulating the invasion of squamous oesophageal cancer cells. Br. J. Cancer 114: 1152–1159, https://doi.org/10.1038/bjc.2016.93.Search in Google Scholar PubMed PubMed Central
Kumar, V., LaJevic, M., Pandrala, M., Jacobo, S.A., Malhotra, S.V., and Zabel, B.A. (2019). Novel CMKLR1 inhibitors for application in demyelinating disease. Sci. Rep. 9: 7178, https://doi.org/10.1038/s41598-019-43428-8.Search in Google Scholar PubMed PubMed Central
Kunimoto, H., Kazama, K., Takai, M., Oda, M., Okada, M., and Yamawaki, H. (2015). Chemerin promotes the proliferation and migration of vascular smooth muscle and increases mouse blood pressure. Am. J. Physiol. Heart Circ. Physiol. 309: H1017–H1028, https://doi.org/10.1152/ajpheart.00820.2014.Search in Google Scholar PubMed
Li, J.-J., Yin, H.-K., Guan, D.-X., Zhao, J.-S., Feng, Y.-X., Deng, Y.-Z., Wang, X., Li, N., Wang, X.-F., Cheng, S.-Q., et al.. (2018). Chemerin suppresses hepatocellular carcinoma metastasis through CMKLR1-PTEN-Akt axis. Br. J. Cancer 118: 1337–1348, https://doi.org/10.1038/s41416-018-0077-y.Search in Google Scholar PubMed PubMed Central
Li, L., Huang, C., Zhang, X., Wang, J., Ma, P., Liu, Y., Xiao, T., Zabel, B.A., and Zhang, J.V. (2014a). Chemerin-derived peptide C-20 suppressed gonadal steroidogenesis. Am. J. Reprod. Immunol. 71: 265–277, https://doi.org/10.1111/aji.12164.Search in Google Scholar PubMed PubMed Central
Li, L., Ma, P., Huang, C., Liu, Y., Zhang, Y., Gao, C., Xiao, T., Ren, P.-G., Zabel, B.A., and Zhang, J.V. (2014b). Expression of chemerin and its receptors in rat testes and its action on testosterone secretion. J. Endocrinol. 220: 155–163, https://doi.org/10.1530/joe-13-0275.Search in Google Scholar PubMed PubMed Central
Li, X., Zhu, Q., Wang, W., Qi, J., He, Y., Wang, Y., Lu, Y., Wu, H., Ding, Y., and Sun, Y. (2019a). Elevated chemerin induces insulin resistance in human granulosa-lutein cells from polycystic ovary syndrome patients. Faseb. J. 33, https://doi.org/10.1096/fj.201802829R.Search in Google Scholar PubMed
Li, X.X., Lee, J.D., Kemper, C., and Woodruff, T.M. (2019b). The complement receptor C5aR2: a powerful modulator of innate and adaptive immunity. J. Immunol. 202: 3339–3348, https://doi.org/10.4049/jimmunol.1900371.Search in Google Scholar PubMed
Lima, P.D.A., Nivet, A.-L., Wang, Q., Chen, Y.-A., Leader, A., Cheung, A., Tzeng, C.-R., and Tsang, B.K. (2018). Polycystic ovary syndrome: possible involvement of androgen-induced, chemerin-mediated ovarian recruitment of monocytes/macrophages. Biol. Reprod. 99: 838–852, https://doi.org/10.1093/biolre/ioy096.Search in Google Scholar
Lora, V., Bonaguri, C., Gisondi, P., Sandei, F., Battistelli, L., Russo, A., Melegari, A., Trenti, T., Lippi, G., and Girolomoni, G. (2013). Autoantibody induction and adipokine levels in patients with psoriasis treated with infliximab. Immunol. Res. 56: 382–389, https://doi.org/10.1007/s12026-013-8410-2.Search in Google Scholar
Luangsay, S., Wittamer, V., Bondue, B., de Henau, O., Rouger, L., Brait, M., Franssen, J.-D., de Nadai, P., Huaux, F., and Parmentier, M. (2009). Mouse ChemR23 is expressed in dendritic cell subsets and macrophages, and mediates an anti-inflammatory activity of chemerin in a lung disease model. J. Immunol. 183: 6489–6499, https://doi.org/10.4049/jimmunol.0901037.Search in Google Scholar
Marchese, A., Docherty, J., Nguyen, T., Heiber, M., Cheng, R., Heng, H., Tsui, L.-C., Shi, X., George, S., and O’Dowd, B. (1994). Cloning of human genes encoding novel G protein-coupled receptors. Genomics 23: 609–618, https://doi.org/10.1006/geno.1994.1549.Search in Google Scholar
Martínez-Muñoz, L., Villares, R., Rodríguez-Fernández, J.L., Rodríguez-Frade, J.M., and Mellado, M. (2018). Remodeling our concept of chemokine receptor function: from monomers to oligomers. J. Leukoc. Biol. 104: 323–331.10.1002/JLB.2MR1217-503RSearch in Google Scholar
Mattern, A., Zellmann, T., and Beck-Sickinger, A.G. (2014). Processing, signaling, and physiological function of chemerin. IUBMB Life 66: 19–26, https://doi.org/10.1002/iub.1242.Search in Google Scholar
Mazzotti, C., Gagliostro, V., Bosisio, D., Del Prete, A., Tiberio, L., Thelen, M., and Sozzani, S. (2017). The atypical receptor CCRL2 (C-C chemokine receptor-like 2) does not act as a decoy receptor in endothelial cells. Front. Immunol. 8: 1233, https://doi.org/10.3389/fimmu.2017.01233.Search in Google Scholar
Meder, W., Wendland, M., Busmann, A., Kutzleb, C., Spodsberg, N., John, H., Richter, R., Schleuder, D., Meyer, M., and Forssmann, W.G. (2003). Characterization of human circulating TIG2 as a ligand for the orphan receptor ChemR23. FEBS Lett. 555: 495–499, https://doi.org/10.1016/s0014-5793(03)01312-7.Search in Google Scholar
Migeotte, I., Franssen, J.-D., Goriely, S., Willems, F., and Parmentier, M. (2002). Distribution and regulation of expression of the putative human chemokine receptor HCR in leukocyte populations. Eur. J. Immunol. 32: 494–501, https://doi.org/10.1002/1521-4141(200202)32:2<494::aid-immu494>3.0.co;2-y.10.1002/1521-4141(200202)32:2<494::AID-IMMU494>3.0.CO;2-YSearch in Google Scholar
Monnier, J., Lewén, S., O’Hara, E., Huang, K., Tu, H., Butcher, E.C., and Zabel, B.A. (2012). Expression, regulation, and function of atypical chemerin receptor CCRL2 on endothelial cells. J. Immunol. 189: 956–967, https://doi.org/10.4049/jimmunol.1102871.Search in Google Scholar PubMed PubMed Central
Muruganandan, S., Roman, A.A., and Sinal, C.J. (2010). Role of chemerin/CMKLR1 signaling in adipogenesis and osteoblastogenesis of bone marrow stem cells. J. Bone Miner. Res. 25: 222–234, https://doi.org/10.1359/jbmr.091106.Search in Google Scholar PubMed
Nagpal, S., Patel, S., Jacobe, H., DiSepio, D., Ghosn, C., Malhotra, M., Teng, M., Duvic, M., and Chandraratna, R.A. (1997). Tazarotene-induced gene 2 (TIG2), a novel retinoid-responsive gene in skin. J. Invest. Dermatol. 109: 91–95, https://doi.org/10.1111/1523-1747.ep12276660.Search in Google Scholar PubMed
Nakajima, H., Nakajima, K., Nagano, Y., Yamamoto, M., Tarutani, M., Takahashi, M., Takahashi, Y., and Sano, S. (2010). Circulating level of chemerin is upregulated in psoriasis. J. Dermatol. Sci. 60: 45–47, https://doi.org/10.1016/j.jdermsci.2010.07.013.Search in Google Scholar PubMed
Nakamura, N., Naruse, K., Kobayashi, Y., Miyabe, M., Saiki, T., Enomoto, A., Takahashi, M., and Matsubara, T. (2018). Chemerin promotes angiogenesis in vivo. Phys. Rep. 6: e13962, https://doi.org/10.14814/phy2.13962.Search in Google Scholar PubMed PubMed Central
Nati, M., Haddad, D., Birkenfeld, A.L., Koch, C.A., Chavakis, T., and Chatzigeorgiou, A. (2016). The role of immune cells in metabolism-related liver inflammation and development of non-alcoholic steatohepatitis (NASH). Rev. Endocr. Metab. Disord. 17: 29–39, https://doi.org/10.1007/s11154-016-9339-2.Search in Google Scholar PubMed
Neuschwander-Tetri, B.A. (2017). Non-alcoholic fatty liver disease. BMC Med. 15: 45, https://doi.org/10.1186/s12916-017-0806-8.Search in Google Scholar PubMed PubMed Central
Neves, K.B., Nguyen Dinh Cat, A., Alves-Lopes, R., Harvey, K.Y., Costa, R.M.d., Lobato, N.S., Montezano, A.C., Oliveira, A.M.d., Touyz, R.M., and Tostes, R.C. (2018). Chemerin receptor blockade improves vascular function in diabetic obese mice via redox-sensitive and Akt-dependent pathways. Am. J. Physiol. Heart Circ. Physiol. 315: H1851–H1860, https://doi.org/10.1152/ajpheart.00285.2018.Search in Google Scholar PubMed PubMed Central
Ohira, T., Arita, M., Omori, K., Recchiuti, A., van Dyke, T.E., and Serhan, C.N. (2010). Resolvin E1 receptor activation signals phosphorylation and phagocytosis. J. Biol. Chem. 285: 3451–3461, https://doi.org/10.1074/jbc.m109.044131.Search in Google Scholar PubMed PubMed Central
Oostendorp, J., Hylkema, M.N., Luinge, M., Geerlings, M., Meurs, H., Timens, W., Zagsma, J., Postma, D.S., Boddeke, H.W., and Biber, K. (2004). Localization and enhanced mRNA expression of the orphan chemokine receptor L-CCR in the lung in a murine model of ovalbumin-induced airway inflammation. J. Histochem. Cytochem. 52: 401–410, https://doi.org/10.1177/002215540405200311.Search in Google Scholar PubMed
Otero, K., Vecchi, A., Hirsch, E., Kearley, J., Vermi, W., Del Prete, A., Gonzalvo-Feo, S., Garlanda, C., Azzolino, O., Salogni, L., et al.. (2010). Nonredundant role of CCRL2 in lung dendritic cell trafficking. Blood 116: 2942–2949, doi:https://doi.org/10.1182/blood-2009-12-259903.Search in Google Scholar PubMed PubMed Central
Pachynski, R.K., Wang, P., Salazar, N., Zheng, Y., Nease, L., Rosalez, J., Leong, W.-I., Virdi, G., Rennier, K., Shin, W.J., et al.. (2019). Chemerin suppresses breast cancer growth by recruiting immune effector cells into the tumor microenvironment. Front. Immunol. 10: 983, https://doi.org/10.3389/fimmu.2019.00983.Search in Google Scholar PubMed PubMed Central
Pachynski, R.K., Zabel, B.A., Kohrt, H.E., Tejeda, N.M., Monnier, J., Swanson, C.D., Holzer, A.K., Gentles, A.J., Sperinde, G.V., Edalati, A., et al.. (2012). The chemoattractant chemerin suppresses melanoma by recruiting natural killer cell antitumor defenses. J. Exp. Med. 209: 1427–1435, https://doi.org/10.1084/jem.20112124.Search in Google Scholar PubMed PubMed Central
Pandey, S., Maharana, J., Li, X.X., Woodruff, T.M., and Shukla, A.K. (2020). Emerging insights into the structure and function of complement C5a receptors. Trends Biochem. Sci. 4: 693–705, https://doi.org/10.1016/j.tibs.2020.04.004.Search in Google Scholar PubMed
Parlee, S.D., McNeil, J.O., Muruganandan, S., Sinal, C.J., and Goralski, K.B. (2012). Elastase and tryptase govern TNFα-mediated production of active chemerin by adipocytes. PLoS One 7: e51072, https://doi.org/10.1371/journal.pone.0051072.Search in Google Scholar PubMed PubMed Central
Parolini, S., Santoro, A., Marcenaro, E., Luini, W., Massardi, L., Facchetti, F., Communi, D., Parmentier, M., Majorana, A., Sironi, M., et al.. (2007). The role of chemerin in the colocalization of NK and dendritic cell subsets into inflamed tissues. Blood 109: 3625–3632, https://doi.org/10.1182/blood-2006-08-038844.Search in Google Scholar PubMed
Patel, L., Charlton, S.J., Chambers, J.K., and Macphee, C.H. (2001). Expression and functional analysis of chemokine receptors in human peripheral blood leukocyte populations. Cytokine 14: 27–36, https://doi.org/10.1006/cyto.2000.0851.Search in Google Scholar PubMed
Pazgier, M., Ericksen, B., Ling, M., Toth, E., Shi, J., Li, X., Galliher-Beckley, A., Lan, L., Zou, G., Zhan, C., et al.. (2013). Structural and functional analysis of the pro-domain of human cathelicidin, LL-37. Biochemistry 52: 1547–1558, https://doi.org/10.1021/bi301008r.Search in Google Scholar PubMed PubMed Central
Peyrassol, X., Laeremans, T., Gouwy, M., Lahura, V., Debulpaep, M., van Damme, J., Steyaert, J., Parmentier, M., and Langer, I. (2016). Development by genetic immunization of monovalent antibodies (nanobodies) behaving as antagonists of the human ChemR23 receptor. J. Immunol. 196: 2893–2901, https://doi.org/10.4049/jimmunol.1500888.Search in Google Scholar PubMed
Rawlings, N.D. and Barrett, A.J. (1990). Evolution of proteins of the cystatin superfamily. J. Mol. Evol. 30: 60–71, https://doi.org/10.1007/bf02102453.Search in Google Scholar
Regan-Komito, D., Valaris, S., Kapellos, T.S., Recio, C., Taylor, L., Greaves, D.R., and Iqbal, A.J. (2017). Absence of the non-signalling chemerin receptor CCRL2 exacerbates acute inflammatory responses in vivo. Front. Immunol. 8: 1621, https://doi.org/10.3389/fimmu.2017.01621.Search in Google Scholar PubMed PubMed Central
Reilly, S.M. and Saltiel, A.R. (2017). Adapting to obesity with adipose tissue inflammation. Nat. Rev. Endocrinol. 13: 633–643, https://doi.org/10.1038/nrendo.2017.90.Search in Google Scholar PubMed
Rennier, K., Shin, W.J., Krug, E., Virdi, G., and Pachynski, R.K. (2020). Chemerin reactivates PTEN and suppresses PD-L1 in tumor cells via modulation of a novel CMKLR1-mediated signaling cascade. Clin. Cancer Res. 26: 5019–5035, https://doi.org/10.1158/1078-0432.ccr-19-4245.Search in Google Scholar PubMed
Reverchon, M., Cornuau, M., Ramé, C., Guerif, F., Royère, D., and Dupont, J. (2012). Chemerin inhibits IGF-1-induced progesterone and estradiol secretion in human granulosa cells. Hum. Reprod. 27: 1790–1800, https://doi.org/10.1093/humrep/des089.Search in Google Scholar PubMed
Reyes, N., Benedetti, I., Rebollo, J., Correa, O., and Geliebter, J. (2017). Atypical chemokine receptor CCRL2 is overexpressed in prostate cancer cells. J. Biomed. Res., https://doi.org/10.7555/JBR.32.20170057 (Epub ahead of print).Search in Google Scholar PubMed PubMed Central
Rocha, V.Z. and Libby, P. (2009). Obesity, inflammation, and atherosclerosis. Nat. Rev. Cardiol. 6: 399–409, https://doi.org/10.1038/nrcardio.2009.55.Search in Google Scholar PubMed
Roh, S., Song, S.-H., Choi, K.-C., Katoh, K., Wittamer, V., Parmentier, M., and Sasaki, S. (2007). Chemerin--a new adipokine that modulates adipogenesis via its own receptor. Biochem. Biophys. Res. Commun. 362: 1013–1018, https://doi.org/10.1016/j.bbrc.2007.08.104.Search in Google Scholar PubMed
Rouger, L., Denis, G.R., Luangsay, S., and Parmentier, M. (2013). ChemR23 knockout mice display mild obesity but no deficit in adipocyte differentiation. J. Endocrinol. 219: 279–289, https://doi.org/10.1530/joe-13-0106.Search in Google Scholar
Rourke, J. (2015). The chemerin receptor GPR1 signals through a RhoA/ROCK pathway and contributes to glucose homeostasis in obese mice, Ph.D. thesis, Halifax, Canada: Dalhousie University.Search in Google Scholar
Rourke, J.L., Dranse, H.J., and Sinal, C.J. (2015). CMKLR1 and GPR1 mediate chemerin signaling through the RhoA/ROCK pathway. Mol. Cell. Endocrinol. 417: 36–51, https://doi.org/10.1016/j.mce.2015.09.002.Search in Google Scholar PubMed
Rourke, J.L., Muruganandan, S., Dranse, H.J., McMullen, N.M., and Sinal, C.J. (2014). Gpr1 is an active chemerin receptor influencing glucose homeostasis in obese mice. J. Endocrinol. 222: 201–215, https://doi.org/10.1530/joe-14-0069.Search in Google Scholar PubMed
Sablinski, T. (2019). A multicenter, double-masked, parallel-group, vehicle-controlled study to assess the efficacy and safety of RX-10045 nanomicellar ophthalmic solution for treatment of ocular inflammation and pain in subjects undergoing cataract surgery. NCT02329743, ATR-45-1401, Available at: <https://clinicaltrials.gov/ct2/show/NCT02329743>.Search in Google Scholar
Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., Colagiuri, S., Guariguata, L., Motala, A.A., Ogurtsova, K., et al.. (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 157: 107843, https://doi.org/10.1016/j.diabres.2019.107843.Search in Google Scholar PubMed
Sarmadi, P., Tunali, G., Esendagli-Yilmaz, G., Yilmaz, K.B., and Esendagli, G. (2015). CRAM-A indicates IFN-γ-associated inflammatory response in breast cancer. Mol. Immunol. 68: 692–698, https://doi.org/10.1016/j.molimm.2015.10.019.Search in Google Scholar PubMed
Scheja, L. and Heeren, J. (2019). The endocrine function of adipose tissues in health and cardiometabolic disease. Nat. Rev. Endocrinol. 15: 507–524, https://doi.org/10.1038/s41574-019-0230-6.Search in Google Scholar PubMed
Schioppa, T., Sozio, F., Barbazza, I., Scutera, S., Bosisio, D., Sozzani, S., and Del Prete, A. (2020). Molecular basis for CCRL2 regulation of leukocyte migration. Front. Cell Dev. Biol. 8: 615031, https://doi.org/10.3389/fcell.2020.615031.Search in Google Scholar PubMed PubMed Central
Schultz, S., Saalbach, A., Heiker, J.T., Meier, R., Zellmann, T., Simon, J.C., and Beck-Sickinger, A.G. (2013). Proteolytic activation of prochemerin by kallikrein 7 breaks an ionic linkage and results in C-terminal rearrangement. Biochem. J. 452: 271–280, https://doi.org/10.1042/bj20121880.Search in Google Scholar
Scola, A.-M., Johswich, K.-O., Morgan, B.P., Klos, A., and Monk, P.N. (2009). The human complement fragment receptor, C5L2, is a recycling decoy receptor. Mol. Immunol. 46: 1149–1162, https://doi.org/10.1016/j.molimm.2008.11.001.Search in Google Scholar PubMed PubMed Central
Sell, H., Divoux, A., Poitou, C., Basdevant, A., Bouillot, J.-L., Bedossa, P., Tordjman, J., Eckel, J., and Clément, K. (2010). Chemerin correlates with markers for fatty liver in morbidly obese patients and strongly decreases after weight loss induced by bariatric surgery. J. Clin. Endocrinol. Metab. 95: 2892–2896, https://doi.org/10.1210/jc.2009-2374.Search in Google Scholar PubMed
Serafin, D.S., Allyn, B., Sassano, M.F., Timoshchenko, R.G., Mattox, D., Brozowski, J.M., Siderovski, D.P., Truong, Y.K., Esserman, D., Tarrant, T.K., et al.. (2019). Chemerin-activated functions of CMKLR1 are regulated by G protein-coupled receptor kinase 6 (GRK6) and β-arrestin 2 in inflammatory macrophages. Mol. Immunol. 106: 12–21, https://doi.org/10.1016/j.molimm.2018.12.016.Search in Google Scholar PubMed PubMed Central
Shimamura, K., Matsuda, M., Miyamoto, Y., Yoshimoto, R., Seo, T., and Tokita, S. (2009). Identification of a stable chemerin analog with potent activity toward ChemR23. Peptides 30: 1529–1538, https://doi.org/10.1016/j.peptides.2009.05.030.Search in Google Scholar PubMed
Shin, W.J., Zabel, B.A., and Pachynski, R.K. (2018). Mechanisms and functions of chemerin in cancer: potential roles in therapeutic intervention. Front. Immunol. 9: 2772, https://doi.org/10.3389/fimmu.2018.02772.Search in Google Scholar PubMed PubMed Central
Siciliano, S.J., Rollins, T.E., DeMartino, J., Konteatis, Z., Malkowitz, L., van Riper, G., Bondy, S., Rosen, H., and Springer, M.S. (1994). Two-site binding of C5a by its receptor: an alternative binding paradigm for G protein-coupled receptors. Proc. Natl. Acad. Sci. U.S.A. 91: 1214–1218, https://doi.org/10.1073/pnas.91.4.1214.Search in Google Scholar
Sledzinski, T., Korczynska, J., Hallmann, A., Kaska, L., Proczko-Markuszewska, M., Stefaniak, T., Sledzinski, M., and Swierczynski, J. (2013). The increase of serum chemerin concentration is mainly associated with the increase of body mass index in obese, non-diabetic subjects. J. Endocrinol. Invest. 36: 428–434, doi:https://doi.org/10.3275/8770.Search in Google Scholar
Smolen, J.S., Aletaha, D., and McInnes, I.B. (2016). Rheumatoid arthritis. Lancet 388: 2023–2038, https://doi.org/10.1016/s0140-6736(16)30173-8.Search in Google Scholar
Sriram, K. and Insel, P.A. (2018). G protein-coupled receptors as targets for approved drugs: how many targets and how many drugs? Mol. Pharmacol. 93: 251–258, https://doi.org/10.1124/mol.117.111062.Search in Google Scholar PubMed PubMed Central
Stefanov, T., Blüher, M., Vekova, A., Bonova, I., Tzvetkov, S., Kurktschiev, D., and Temelkova-Kurktschiev, T. (2014). Circulating chemerin decreases in response to a combined strength and endurance training. Endocrine 45: 382–391, doi:https://doi.org/10.1007/s12020-013-0003-2.Search in Google Scholar PubMed
Taheri Chadorneshin, H., Cheragh-Birjandi, S., Goodarzy, S., and Ahmadabadi, F. (2019). The impact of high intensity interval training on serum chemerin, tumor necrosis factor-alpha and insulin resistance in overweight women. Obes. Med. 14: 100101, https://doi.org/10.1016/j.obmed.2019.100101.Search in Google Scholar
Takahashi, M., Takahashi, Y., Takahashi, K., Zolotaryov, F.N., Hong, K.S., Kitazawa, R., Iida, K., Okimura, Y., Kaji, H., Kitazawa, S., et al.. (2008). Chemerin enhances insulin signaling and potentiates insulin-stimulated glucose uptake in 3T3-L1 adipocytes. FEBS Lett. 582: 573–578, https://doi.org/10.1016/j.febslet.2008.01.023.Search in Google Scholar PubMed
Tang, M., Huang, C., Wang, Y.-F., Ren, P.-G., Chen, L., Xiao, T.-X., Wang, B.-B., Pan, Y.-F., Tsang, B.K., Zabel, B.A., et al.. (2016). CMKLR1 deficiency maintains ovarian steroid production in mice treated chronically with dihydrotestosterone. Sci. Rep. 6: 21328, https://doi.org/10.1038/srep21328.Search in Google Scholar PubMed PubMed Central
Thiele, S. and Rosenkilde, M.M. (2014). Interaction of chemokines with their receptors--from initial chemokine binding to receptor activating steps. Curr. Med. Chem. 21: 3594–3614, https://doi.org/10.2174/0929867321666140716093155.Search in Google Scholar PubMed
Tu, J., Yang, Y., Zhang, J., Lu, G., Ke, L., Tong, Z., Kasimu, M., Hu, D., Xu, Q., and Li, W. (2020). Regulatory effect of chemerin and therapeutic efficacy of chemerin-9 in pancreatogenic diabetes mellitus. Mol. Med. Rep. 21: 981–988, https://doi.org/10.3892/mmr.2020.10915.Search in Google Scholar PubMed PubMed Central
Tümmler, C., Snapkov, I., Wickström, M., Moens, U., Ljungblad, L., Maria Elfman, L.H., Winberg, J.-O., Kogner, P., Johnsen, J.I., and Sveinbjørnsson, B. (2017). Inhibition of chemerin/CMKLR1 axis in neuroblastoma cells reduces clonogenicity and cell viability in vitro and impairs tumor growth in vivo. Oncotarget 8: 95135–95151.10.18632/oncotarget.19619Search in Google Scholar
van der Vorst, E.P.C., Mandl, M., Müller, M., Neideck, C., Jansen, Y., Hristov, M., Gencer, S., Peters, L.J.F., Meiler, S., Feld, M., et al.. (2019). Hematopoietic ChemR23 (chemerin receptor 23) fuels atherosclerosis by sustaining an M1 macrophage-phenotype and guidance of plasmacytoid dendritic cells to murine lesions-brief report. Arterioscler. Thromb. Vasc. Biol. 39: 685–693, https://doi.org/10.1161/atvbaha.119.312386.Search in Google Scholar
Veale, D.J. and Fearon, U. (2018). The pathogenesis of psoriatic arthritis. Lancet 391: 2273–2284, https://doi.org/10.1016/s0140-6736(18)30830-4.Search in Google Scholar
Wang, L., Zhong, Y., Ding, Y., Shi, X., Huang, J., and Zhu, F. (2014). Elevated serum chemerin in Chinese women with hyperandrogenic PCOS. Gynecol. Endocrinol. 30: 746–750, https://doi.org/10.3109/09513590.2014.928687.Search in Google Scholar PubMed
Watts, S.W., Dorrance, A.M., Penfold, M.E., Rourke, J.L., Sinal, C.J., Seitz, B., Sullivan, T.J., Charvat, T.T., Thompson, J.M., Burnett, R., et al.. (2013). Chemerin connects fat to arterial contraction. Arterioscler. Thromb. Vasc. Biol. 33: 1320–1328, https://doi.org/10.1161/atvbaha.113.301476.Search in Google Scholar PubMed PubMed Central
Weigert, J., Neumeier, M., Wanninger, J., Filarsky, M., Bauer, S., Wiest, R., Farkas, S., Scherer, M.N., Schäffler, A., Aslanidis, C., et al.. (2010). Systemic chemerin is related to inflammation rather than obesity in type 2 diabetes. Clin. Endocrinol. 72: 342–348, https://doi.org/10.1111/j.1365-2265.2009.03664.x.Search in Google Scholar PubMed
Weiß, E. and Kretschmer, D. (2018). Formyl-peptide receptors in infection, inflammation, and cancer. Trends Immunol. 39: 815–829, https://doi.org/10.1016/j.it.2018.08.005.Search in Google Scholar PubMed
Wittamer, V., Bondue, B., Guillabert, A., Vassart, G., Parmentier, M., and Communi, D. (2005). Neutrophil-mediated maturation of chemerin: a link between innate and adaptive immunity. J. Immunol. 175: 487–493, https://doi.org/10.4049/jimmunol.175.1.487.Search in Google Scholar PubMed
Wittamer, V., Franssen, J.-D., Vulcano, M., Mirjolet, J.-F., Le Poul, E., Migeotte, I., Brezillon, S., Tyldesley, R., Blanpain, C., Detheux, M., et al.. (2003). Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. J. Exp. Med. 198: 977–985, https://doi.org/10.1084/jem.20030382.Search in Google Scholar PubMed PubMed Central
Wittamer, V., Gregoire, F., Robberecht, P., Vassart, G., Communi, D., and Parmentier, M. (2004). The C-terminal nonapeptide of mature chemerin activates the chemerin receptor with low nanomolar potency. J. Biol. Chem. 279: 9956–9962, https://doi.org/10.1074/jbc.m313016200.Search in Google Scholar PubMed
Yamaguchi, Y., Du, X.-Y., Zhao, L., Morser, J., and Leung, L.L.K. (2011). Proteolytic cleavage of chemerin protein is necessary for activation to the active form, Chem157S, which functions as a signaling molecule in glioblastoma. J. Biol. Chem. 286: 39510–39519, https://doi.org/10.1074/jbc.m111.258921.Search in Google Scholar PubMed PubMed Central
Yang, Y.-L., Ren, L.-R., Sun, L.-F., Huang, C., Xiao, T.-X., Wang, B.-B., Chen, J., Zabel, B.A., Ren, P., and Zhang, J.V. (2016). The role of GPR1 signaling in mice corpus luteum. J. Endocrinol. 230: 55–65, https://doi.org/10.1530/joe-15-0521.Search in Google Scholar PubMed PubMed Central
Yang, Z., Han, S., Keller, M., Kaiser, A., Bender, B.J., Bosse, M., Burkert, K., Kögler, L.M., Wifling, D., Bernhardt, G., et al.. (2018). Structural basis of ligand binding modes at the neuropeptide Y Y1 receptor. Nature 556: 520–524, https://doi.org/10.1038/s41586-018-0046-x.Search in Google Scholar PubMed PubMed Central
Yu, G. (2020). Using ggtree to visualize data on tree-like structures. Curr. Protoc. Bioinf. 69: e96, https://doi.org/10.1002/cpbi.96.Search in Google Scholar PubMed
Zabel, B.A., Allen, S.J., Kulig, P., Allen, J.A., Cichy, J., Handel, T.M., and Butcher, E.C. (2005). Chemerin activation by serine proteases of the coagulation, fibrinolytic, and inflammatory cascades. J. Biol. Chem. 280: 34661–34666, https://doi.org/10.1074/jbc.m504868200.Search in Google Scholar PubMed
Zabel, B.A., Nakae, S., Zúñiga, L., Kim, J.-Y., Ohyama, T., Alt, C., Pan, J., Suto, H., Soler, D., Allen, S.J., et al.. (2008). Mast cell-expressed orphan receptor CCRL2 binds chemerin and is required for optimal induction of IgE-mediated passive cutaneous anaphylaxis. J. Exp. Med. 205: 2207–2220, https://doi.org/10.1084/jem.20080300.Search in Google Scholar PubMed PubMed Central
Zabel, B.A., Zuniga, L., Ohyama, T., Allen, S.J., Cichy, J., Handel, T.M., and Butcher, E.C. (2006). Chemoattractants, extracellular proteases, and the integrated host defense response. Exp. Hematol. 34: 1021–1032, https://doi.org/10.1016/j.exphem.2006.05.003.Search in Google Scholar PubMed
Zanetti, M. (2004). Cathelicidins, multifunctional peptides of the innate immunity. J. Leukoc. Biol. 75: 39–48, https://doi.org/10.1189/jlb.0403147.Search in Google Scholar PubMed
Zhao, L., Yamaguchi, Y., Ge, X., Robinson, W.H., Morser, J., and Leung, L.L.K. (2018). Chemerin 156F, generated by chymase cleavage of prochemerin, is elevated in joint fluids of arthritis patients. Arthritis Res. Ther. 20: 132, https://doi.org/10.1186/s13075-018-1615-y.Search in Google Scholar PubMed PubMed Central
Zheng, C., Chen, D., Zhang, Y., Bai, Y., Huang, S., Zheng, D., Liang, W., She, S., Peng, X., Wang, P., et al.. (2018). FAM19A1 is a new ligand for GPR1 that modulates neural stem-cell proliferation and differentiation. Faseb. J. 32: 5874–5890, doi:https://doi.org/10.1096/fj.201800020rrr.Search in Google Scholar
Zhou, J., Liao, D., Zhang, S., Cheng, N., He, H., and Ye, R.D. (2014). Chemerin C9 peptide induces receptor internalization through a clathrin-independent pathway. Acta Pharmacol. Sin. 35: 653–663, https://doi.org/10.1038/aps.2013.198.Search in Google Scholar PubMed PubMed Central
Zhuang, Y., Liu, H., Zhou, X. E., Verma, R.K., de Waal, P.W., Jang, W., Xu, T.-H., Wang, L., Meng, X., Zhao, G., et al.. (2020). Structure of formylpeptide receptor 2-Gi complex reveals insights into ligand recognition and signaling. Nat. Commun. 11: 1–12, https://doi.org/10.1038/s41467-020-14728-9.Search in Google Scholar PubMed PubMed Central
Zimny, S., Pohl, R., Rein-Fischboeck, L., Haberl, E.M., Krautbauer, S., Weiss, T.S., and Buechler, C. (2017). Chemokine (CC-motif) receptor-like 2 mRNA is expressed in hepatic stellate cells and is positively associated with characteristics of non-alcoholic steatohepatitis in mice and men. Exp. Mol. Pathol. 103: 1–8, https://doi.org/10.1016/j.yexmp.2017.06.001.Search in Google Scholar PubMed
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review
- Chemerin – exploring a versatile adipokine
- Research Articles/Short Communications
- Protein Structure and Function
- Evolutionary adaptation of DHFR via expression of enzyme isoforms with various binding properties and dynamics behavior: a bioinformatics and computational study
- Cell Biology and Signaling
- SRPK1 promotes cell proliferation and tumor growth of osteosarcoma through activation of the NF-κB signaling pathway
- LINC00520 up-regulates SOX5 to promote cell proliferation and invasion by miR-4516 in human hepatocellular carcinoma
- Long non-coding RNA FAM66C regulates glioma growth via the miRNA/LATS1 signaling pathway
- CERKL alleviates ischemia reperfusion-induced nervous system injury through modulating the SIRT1/PINK1/Parkin pathway and mitophagy induction
Articles in the same Issue
- Frontmatter
- Review
- Chemerin – exploring a versatile adipokine
- Research Articles/Short Communications
- Protein Structure and Function
- Evolutionary adaptation of DHFR via expression of enzyme isoforms with various binding properties and dynamics behavior: a bioinformatics and computational study
- Cell Biology and Signaling
- SRPK1 promotes cell proliferation and tumor growth of osteosarcoma through activation of the NF-κB signaling pathway
- LINC00520 up-regulates SOX5 to promote cell proliferation and invasion by miR-4516 in human hepatocellular carcinoma
- Long non-coding RNA FAM66C regulates glioma growth via the miRNA/LATS1 signaling pathway
- CERKL alleviates ischemia reperfusion-induced nervous system injury through modulating the SIRT1/PINK1/Parkin pathway and mitophagy induction