Home CERKL alleviates ischemia reperfusion-induced nervous system injury through modulating the SIRT1/PINK1/Parkin pathway and mitophagy induction
Article
Licensed
Unlicensed Requires Authentication

CERKL alleviates ischemia reperfusion-induced nervous system injury through modulating the SIRT1/PINK1/Parkin pathway and mitophagy induction

  • Shaoyue Huang , Zhen Hong , Leguo Zhang , Jian Guo , Yanhua Li and Kuo Li ORCID logo EMAIL logo
Published/Copyright: March 2, 2022

Abstract

Recent studies showed that Ceramide Kinase-Like Protein (CERKL)was expressed in the nerve cells and could regulate autophagy. Sirtuin-1 (SIRT1) is the regulator of the mitophagy, which can be stabilized by CERKL. Furthermore, the study also revealed that the SIRT1 induced mitophagy by activating PINK1/Parkin signaling. Therefore, we speculated that CERKL has potential to activate the SIRT1/PINK1/Parkin pathway to induce mitophagy. In this study, cerebral ischemia reperfusion mouse model was established. CERKL was overexpressed in those mice and human neuroblastoma cells. Tunel staining and flow cytometry were applied for the detection of cell apoptosis. The ratios of LC3Ⅱ to LC3Ⅰ and the expression of LC3Ⅱ in mitochondria were determined by gel electrophoresis. Overexpression of CERKL alleviated the cerebral ischemia reperfusion injury and damage to OGD/R human neuroblastoma cells. Overexpression of CERKL enhanced the expression of LC3 Ⅱ in mitochondria and induced occurrence of mitophagy. Overexpression of CERKL promoted the stability of SIRT1 and facilitated the expression of PINK1 and Parkin in those cells. Knockdown of PINK1 impeded the mitophagy and suppressed the expression of LC3 Ⅱ in mitochondria. It can be concluded that CERKL alleviated the ischemia reperfusion induced nervous system injury through inducing mitophagy in a SIRT1/PINK1/Parkin dependent pathway.


Corresponding author: Kuo Li, Department of Neurology Cangzhou Central Hospital, No. 16 Xinhua Western Road, Cangzhou 061000, Hebei, China, E-mail:

  1. Author contributions: Shaoyue Huang and Zhen Hong designed the study, supervised the data collection, Leguo Zhang analyzed the data, interpreted the data, Jian Guo, Yanhua Li and Kuo Li prepare the manuscript for publication and reviewed the draft of the manuscript. All authors have read and approved the manuscript.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

  4. Ethics approval: Ethical approval was obtained from the Ethics Committee of Cangzhou Central Hospital.

  5. Availability of Data and Materials: All data generated or analyzed during this study are included in this published article.

References

An, J., Haile, W.B., Wu, F., Torre, E., and Yepes, M. (2014). Tissue-type plasminogen activator mediates neuroglial coupling in the central nervous system. Neuroscience 257: 41–48, https://doi.org/10.1016/j.neuroscience.2013.10.060.Search in Google Scholar

Bornancin, F., Mechtcheriakova, D., Stora, S., Graf, C., Wlachos, A., Dévay, P., Urtz, N., Baumruker, T., and Billich, A. (2005). Characterization of a ceramide kinase-like protein. Biochim. Biophys. Acta 1687: 31–43, https://doi.org/10.1016/j.bbalip.2004.11.012.Search in Google Scholar

Bueno, M., Lai, Y.C., Romero, Y., Brands, J., St Croix, C.M., Kamga, C., Corey, C., Herazo-Maya, J.D., Sembrat, J., Lee, J.S., et al.. (2015). PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis. J. Clin. Invest. 125: 521–538, https://doi.org/10.1172/jci74942.Search in Google Scholar

Cai, Y., Yang, E., Yao, X., Zhang, X., Wang, Q., Wang, Y., Liu, J., Fan, W., Yi, K., Kang, C., et al.. (2021). FUNDC1-dependent mitophagy induced by tPA protects neurons against cerebral ischemia-reperfusion injury. Redox Biol. 38: 101792, https://doi.org/10.1016/j.redox.2020.101792.Search in Google Scholar

Campbell, B.C., Mitchell, P.J., Kleinig, T.J., Dewey, H.M., Churilov, L., Yassi, N., Yan, B., Dowling, R.J., Parsons, M.W., Oxley, T.J., et al.. (2015). Endovascular therapy for ischemic stroke with perfusion-imaging selection. N. Engl. J. Med. 372: 1009–1018, https://doi.org/10.1056/nejmoa1414792.Search in Google Scholar

Griffiths, H.R., Gao, D., and Pararasa, C. (2017). Redox regulation in metabolic programming and inflammation. Redox Biol. 12: 50–57, https://doi.org/10.1016/j.redox.2017.01.023.Search in Google Scholar

Hankey, G.J. (2014). Secondary stroke prevention. Lancet Neurol. 13: 178–194, https://doi.org/10.1016/s1474-4422(13)70255-2.Search in Google Scholar

Hu, X., Lu, Z., Yu, S., Reilly, J., Liu, F., Jia, D., Qin, Y., Han, S., Liu, X., Qu, Z., et al.. (2019). CERKL regulates autophagy via the NAD-dependent deacetylase SIRT1. Autophagy 15: 453–465, https://doi.org/10.1080/15548627.2018.1520548.Search in Google Scholar PubMed PubMed Central

Kalpage, H.A., Bazylianska, V., Recanati, M.A., Fite, A., Liu, J., Wan, J., Mantena, N., Malek, M.H., Podgorski, I., Heath, E.I., et al.. (2019). Tissue-specific regulation of cytochrome c by post-translational modifications: respiration, the mitochondrial membrane potential, ROS, and apoptosis. Faseb. J. 33: 1540–1553, https://doi.org/10.1096/fj.201801417r.Search in Google Scholar

Li, L., Tan, J., Miao, Y., Lei, P., and Zhang, Q. (2015). ROS and autophagy: interactions and molecular regulatory mechanisms. Cell. Mol. Neurobiol. 35: 615–621, https://doi.org/10.1007/s10571-015-0166-x.Search in Google Scholar PubMed

Li, W., Li, Y., Siraj, S., Jin, H., Fan, Y., Yang, X., Huang, X., Wang, X., Wang, J., Liu, L., et al.. (2019). FUN14 domain-containing 1-mediated mitophagy suppresses hepatocarcinogenesis by inhibition of inflammasome activation in mice. Hepatology 69: 604–621, https://doi.org/10.1002/hep.30191.Search in Google Scholar PubMed

Liberale, L., Carbone, F., Montecucco, F., Gebhard, C., Lüscher, T.F., Wegener, S., and Camici, G.G. (2018). Ischemic stroke across sexes: what is the status quo? Front. Neuroendocrinol. 50: 3–17, doi:https://doi.org/10.1016/j.yfrne.2018.04.001.Search in Google Scholar PubMed

Luo, Q., Fan, Y., Lin, L., Wei, J., Li, Z., Li, Y., Nakae, S., Lin, W., and Chen, Q. (2018). Interleukin-33 protects ischemic brain injury by regulating specific microglial activities. Neuroscience 385: 75–89, https://doi.org/10.1016/j.neuroscience.2018.05.047.Search in Google Scholar PubMed

Meyer, J.M., Lee, E., Celli, A., Park, K., Cho, R., Lambert, W., Pitchford, M., Gordon, M., Tsai, K., Cleaver, J., et al.. (2021). CERKL is upregulated in cutaneous squamous cell carcinoma and maintains cellular sphingolipids and resistance to oxidative stress. Br. J. Dermatol. 185: 147–152, doi:https://doi.org/10.1111/bjd.19707.Search in Google Scholar PubMed PubMed Central

Mirra, S., García-Arroyo, R., Domènech, E.B., Gavaldà-Navarro, A., Herrera-Úbeda, C., Oliva, C., Garcia-Fernàndez, J., Artuch, R., Villarroya, F., and Marfany, G. (2021). CERKL, a retinal dystrophy gene, regulates mitochondrial function and dynamics in the mammalian retina. Neurobiol. Dis. 156: 105405, https://doi.org/10.1016/j.nbd.2021.105405.Search in Google Scholar PubMed

Tuson, M., Garanto, A., Gonzàlez-Duarte, R., and Marfany, G. (2009). Overexpression of CERKL, a gene responsible for retinitis pigmentosa in humans, protects cells from apoptosis induced by oxidative stress. Mol. Vis. 15: 168–180.Search in Google Scholar

Tuson, M., Marfany, G., and Gonzàlez-Duarte, R. (2004). Mutation of CERKL, a novel human ceramide kinase gene, causes autosomal recessive retinitis pigmentosa (RP26). Am. J. Hum. Genet. 74: 128–138, https://doi.org/10.1086/381055.Search in Google Scholar PubMed PubMed Central

Wang, H., Chen, S., Zhang, Y., Xu, H., and Sun, H. (2019). Electroacupuncture ameliorates neuronal injury by Pink1/Parkin-mediated mitophagy clearance in cerebral ischemia-reperfusion. Nitric Oxide 91: 23–34, https://doi.org/10.1016/j.niox.2019.07.004.Search in Google Scholar PubMed

Wang, Y., Wang, H., Zhuo, Y., Hu, Y., Zhang, Z., Ye, J., Liu, L., Luo, L., Zhao, C., Zhou, Q., et al.. (2020). SIRT1 alleviates high-magnitude compression-induced senescence in nucleus pulposus cells via PINK1-dependent mitophagy. Aging 12: 16126–16141, https://doi.org/10.18632/aging.103587.Search in Google Scholar PubMed PubMed Central

Wen, L., Liu, L., Li, J., Tong, L., Zhang, K., Zhang, Q., and Li, C. (2019). NDRG4 protects against cerebral ischemia injury by inhibiting p53-mediated apoptosis. Brain Res. Bull. 146: 104–111, https://doi.org/10.1016/j.brainresbull.2018.12.010.Search in Google Scholar PubMed

Wen, Y., Gu, Y., Tang, X., and Hu, Z. (2020). PINK1 overexpression protects against cerebral ischemia through Parkin regulation. Environ. Toxicol. 35: 188–193, https://doi.org/10.1002/tox.22855.Search in Google Scholar PubMed

Wu, R., Li, X., Xu, P., Huang, L., Cheng, J., Huang, X., Jiang, J., Wu, L.J., and Tang, Y. (2017). TREM2 protects against cerebral ischemia/reperfusion injury. Mol. Brain 10: 20, https://doi.org/10.1186/s13041-017-0296-9.Search in Google Scholar PubMed PubMed Central

Yi, S., Zheng, B., Zhu, Y., Cai, Y., Sun, H., and Zhou, J. (2020). Melatonin ameliorates excessive PINK1/Parkin-mediated mitophagy by enhancing SIRT1 expression in granulosa cells of PCOS. Am. J. Physiol. Endocrinol. Metab. 319: e91–e101, https://doi.org/10.1152/ajpendo.00006.2020.Search in Google Scholar PubMed

Zhang, Z. and Yu, J. (2018). NR4A1 promotes cerebral ischemia reperfusion injury by repressing mfn2-mediated mitophagy and inactivating the MAPK-ERK-CREB signaling pathway. Neurochem. Res. 43: 1963–1977, https://doi.org/10.1007/s11064-018-2618-4.Search in Google Scholar PubMed

Zhao, N., Xia, J., and Xu, B. (2021). Physical exercise may exert its therapeutic influence on Alzheimer’s disease through the reversal of mitochondrial dysfunction via SIRT1-FOXO1/3-PINK1-Parkin-mediated mitophagy. J. Sport Health Sci. 10: 1–3, https://doi.org/10.1016/j.jshs.2020.08.009.Search in Google Scholar PubMed PubMed Central

Zhou, H., Ma, Q., Zhu, P., Ren, J., Reiter, R.J., and Chen, Y. (2018). Protective role of melatonin in cardiac ischemia-reperfusion injury: from pathogenesis to targeted therapy. J. Pineal Res. 64: e12471, https://doi.org/10.1111/jpi.12471.Search in Google Scholar PubMed

Zhu, P., Hu, S., Jin, Q., Li, D., Tian, F., Toan, S., Li, Y., Zhou, H., and Chen, Y. (2018). Ripk3 promotes ER stress-induced necroptosis in cardiac IR injury: a mechanism involving calcium overload/XO/ROS/mPTP pathway. Redox Biol. 16: 157–168, https://doi.org/10.1016/j.redox.2018.02.019.Search in Google Scholar PubMed PubMed Central

Zimmermann, M. and Reichert, A.S. (2017). How to get rid of mitochondria: crosstalk and regulation of multiple mitophagy pathways. Biol. Chem. 399: 29–45, https://doi.org/10.1515/hsz-2017-0206.Search in Google Scholar PubMed

Received: 2021-11-08
Accepted: 2022-02-16
Published Online: 2022-03-02
Published in Print: 2022-06-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2021-0411/html
Scroll to top button