Startseite Elucidating the anti-biofilm and anti-quorum sensing potential of selenocystine against respiratory tract infections causing bacteria: in vitro and in silico studies
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Elucidating the anti-biofilm and anti-quorum sensing potential of selenocystine against respiratory tract infections causing bacteria: in vitro and in silico studies

  • Bharti Patel , Subrata Mishra , Indira K. Priyadarsini ORCID logo EMAIL logo und Sirisha L. Vavilala EMAIL logo
Veröffentlicht/Copyright: 19. März 2021

Abstract

Bacteria are increasingly relying on biofilms to develop resistance to antibiotics thereby resulting in their failure in treating many infections. In spite of continuous research on many synthetic and natural compounds, ideal anti-biofilm molecule is still not found thereby warranting search for new class of molecules. The current study focuses on exploring anti-biofilm potential of selenocystine against respiratory tract infection (RTI)-causing bacteria. Anti-bacterial and anti-biofilm assays demonstrated that selenocystine inhibits the growth of bacteria in their planktonic state, and formation of biofilms while eradicating preformed-biofilm effectively. Selenocystine at a MIC50 as low as 42 and 28 μg/mL effectively inhibited the growth of Klebsiella pneumonia and Pseudomonas aeruginosa. The antibacterial effect is further reconfirmed by agar cup diffusion assay and growth-kill assay. Selenocystine showed 30–60% inhibition of biofilm formation in K. pneumonia, and 44–70% in P. aeruginosa respectively. It also distorted the preformed-biofilms by degrading the eDNA component of the Extracellular Polymeric Substance matrix. Molecular docking studies of selenocystine with quorum sensing specific proteins clearly showed that through the carboxylic acid moiety it interacts and inhibits the protein function, thereby confirming its anti-biofilm potential. With further validation selenocystine can be explored as a potential candidate for the treatment of RTIs.


Corresponding authors: Indira K. Priyadarsini and Sirisha L. Vavilala, School of Biological and Chemical Sciences, UM DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santacruz East, Mumbai400098, India, E-mail: ,

Funding source: Department of Atomic Energy

Acknowledgments

This work is supported by Department of Atomic Energy, India. The authors are thankful to Dr V.K. Jain, Director, CEBS for constant support and encouragement.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work is supported by Department of Atomic Energy, India.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Ahmad, A., Viljoen, A.M., and Chenia, H.F. (2014). The impact of plant volatiles on bacterial quorum sensing. Lett. Appl. Microbiol. 60: 8–19. https://doi.org/10.1111/lam.12343.Suche in Google Scholar

Alam, M.F., Safhi, M.M., Moni, S.S., and Jabeen, A. (2016). In vitro antibacterial spectrum of sodium selenite against selected human pathogenic bacterial strains. Scientifica 2016, https://doi.org/10.1155/2016/9176273.Suche in Google Scholar

Al-Haidari, R.A., Shaaban, M.I., Ibrahim, S., and Mohamed, G.A. (2016). Anti-quorum sensing activity of some medicinal plants. Afr. J. Tradit., Complementary Altern. Med. 13: 67–71.10.21010/ajtcam.v13i5.10Suche in Google Scholar

Álvarez-Pérez, M., Ali, W., Marć, M.A., Handzlik, J., and Domínguez-Álvarez, E. (2018). Selenides and diselenides: a review of their anticancer and chemopreventive activity. Molecules 23: 628. https://doi.org/10.3390/molecules23030628.Suche in Google Scholar

Asfour, H.Z. (2018). Anti-quorum sensing natural compounds. J. Microsc. Ultrastruct. 6: 1–10. https://doi.org/10.4103/jmau.jmau_10_18.Suche in Google Scholar

Ashurst, J.V. and Dawson, A. (2019). Klebsiella pneumonia. In: StatPearls. StatPearls Publishing, Treasure Island (FL), Available at: <https://www.ncbi.nlm.nih.gov/pubmed/30085546.Suche in Google Scholar

Bazargani, M.M. and Jens, R. (2015). Anti-biofilm activity of essential oils and plant extracts against Staphylococcus aureus and E. coli biofilms. Food Contr. 61: 156–164.10.1016/j.foodcont.2015.09.036Suche in Google Scholar

Chen, T. and Wong, Y.S. (2008). Selenocystine induces apoptosis of A375 human melanoma cells by activating ROS-mediated mitochondrial pathway and p53 phosphorylation. Cell. Mol. Life Sci. 65: 2763–2775. https://doi.org/10.1007/s00018-008-8329-2.Suche in Google Scholar

Chen, T. and Wong, Y.S. (2009). Selenocystine induces caspase-independent apoptosis in MCF-7 human breast carcinoma cells with involvement of p53 phosphorylation and reactive oxygen species generation. Int. J. Biochem. Cell Biol. 41: 666–676. https://doi.org/10.1016/j.biocel.2008.07.014.Suche in Google Scholar

Di Martino, P. (2018). Extracellular polymeric substances, a key element in understanding biofilm phenotype. AIMS Microbiol. 4: 274–288. https://doi.org/10.3934/microbiol.2018.2.274.Suche in Google Scholar

Di Martino, P., Cafferini, N., Joly, B., and Darfeuille-Michaud, A. (2003). Klebsiella pneumoniae type 3 pili facilitate adherence and biofilm formation on abiotic surfaces. Res. Microbiol. 154: 9–16.10.1016/S0923-2508(02)00004-9Suche in Google Scholar

Dong, C., Zhou, J., Wang, P., Li, T., Zhao, Y., Ren, X., Lu, J., Wang, J., Holmgren, A., and Zou, L. (2020). Topical therapeutic efficacy of Ebselen against multidrug-resistant Staphylococcus aureus LT-1 targeting thioredoxin reductase. Front. Microbiol. 10: 3016. https://doi.org/10.3389/fmicb.2019.03016.Suche in Google Scholar

Flohe, L., Günzler, W.A., and Schock, H.H. (1973). Glutathione peroxidase: a selenoenzyme. FEBS Lett. 32: 132–134.10.1016/0014-5793(73)80755-0Suche in Google Scholar

Geier, H., Mostowy, S., Cangelosi, G.A., Behr, M.A., and Timothy, E.F. (2008). Autoinducer-2 triggers the oxidative stress response in Mycobacterium avium, leading to biofilm formation. Appl. Environ. Microbiol. 74: 1798–1804. https://doi.org/10.1128/aem.02066-07.Suche in Google Scholar

Getahun, A., Abraham, A., Alemayehu, S., Solomon, G., Bekele, F., Dawit, W., and Håkan, M. (2004). Evaluation of direct colorimetric assay for rapid detection of Rifampicin resistant Mycobacterium tuberculosis. J. Clin. Microbiol. 42: 871–873.10.1128/JCM.42.2.871-873.2004Suche in Google Scholar PubMed PubMed Central

Gómez-Gómez, B., Arregui, L., Serrano, S., Santos, A., Pérez-Corona, T., and Madrid, Y. (2019). Selenium and tellurium-based nanoparticles as interfering factors in quorum sensing-regulated processes: violacein production and bacterial biofilm formation. Metallomics 11: 1104–1114. https://doi.org/10.1039/c9mt00044e.Suche in Google Scholar

González, J.E. and Keshavan, N.D. (2006). Messing with bacterial quorum sensing. Microbiol. Mol. Biol. Rev. 70: 859–875.10.1128/MMBR.00002-06Suche in Google Scholar PubMed PubMed Central

Graziano, T.S., Cuzzullin, M.C., Franco, G.C., Schwartz-Filho, H.O., de Andrade, E.D., Groppo, F.C., and Cogo-Müller, K. (2015). Statins and antimicrobial effects: simvastatin as a potential drug against Staphylococcus aureus bioflm. PloS One 10: e0128098. https://doi.org/10.1371/journal.pone.0128098.Suche in Google Scholar

Heatley, N.G. (1944). A method for the assay of pencillin. Biochem. J. 38: 62–65. https://doi.org/10.1042/bj0380061.Suche in Google Scholar

Hesketh, J. (2008). Nutrigenomics and selenium: gene expression patterns, physiological targets, and genetics. Ann. Rev. Nutri. 28: 157–177.10.1146/annurev.nutr.28.061807.155446Suche in Google Scholar PubMed

Ho Sui, S.J., Lo, R., Fernandes, A.R., Caulfield, M.D.G., Lerman, J.A., Xie, L., Bourne, P.E., Baillie, D.L., and Brinkman, F.S.L. (2012). Raloxifene attenuates Pseudomonas aeruginosa pyocyanin production and virulence. Int. J. Antimicrob. Agents 40: 246–251. https://doi.org/10.1016/j.ijantimicag.2012.05.009.Suche in Google Scholar

Hochbaum, A.I., Kolodkly-Gal, L., Foulston, L., Kolter, R., Aizenberg, J., and Losick, R. (2011). Inhibitory effects of D-amino acids on Staphylococcus aureus biofilm development. J. Bactreiol. 193: 5616–5622. https://doi.org/10.1128/jb.05534-11.Suche in Google Scholar

Hotterbeekx, A., Xavier, B., Bielen, K., Lammens, C., Moons, P., Schepens, T., Ieven, M., Jorens, P.G., Goossens, H., Singh, S.K., et al.. (2016). The endotracheal tube microbiome associated with Pseudomonas aeruginosa or Staphylococcus epidermidis. Sci. Rep. 6: 36507. https://doi.org/10.1038/srep36507.Suche in Google Scholar

Huang, T., Holden, J.A., Heath, D.E., O’Brien-Simpsonb, N.M., and O’Connor, A.J. (2019). Engineering highly effective antimicrobial selenium nanoparticles through control of particle size. Nanoscale 11: 14937–14951. https://doi.org/10.1039/c9nr04424h.Suche in Google Scholar

Ibrahim, M., Hassan, W., Anwar, J., Deobald, A.M., Kamdem, J.P., Souza, D.O., and Rocha, J.B. (2014). 1-(2-(2-(2-(1-Aminoethyl)phenyl)diselanyl)phenyl) ethanamine: an amino organoselenium compound with interesting antioxidant profile. Toxicol. Vitro 28: 524–530. https://doi.org/10.1016/j.tiv.2013.12.010.Suche in Google Scholar

Jasim, S.T., Noori, A.M., Sadiq, S.T., and Flayyih, M.T. (2020). Antimicrobial and antibiofilm activity of D-amino acids combined with nanoparticles against Candida albicans. Sys. Rev. Pharm. 11: 274–280.10.31838/srp.2020.5.40Suche in Google Scholar

Johansson, L., Gafvelin, G., and Arnér, E.S.J. (2005). Selenocysteine in proteins properties and biotechnological use. Biochim. Biophys. Acta Gen. Subj. 1726: 1–13. https://doi.org/10.1016/j.bbagen.2005.05.010.Suche in Google Scholar

Kamal, A., Nazari, V.M., Yaseen, M., Iqbal, M.A., Ahamed, M.B.K., Majid, A.S.A., and Bhatti, H.N. (2019). Green synthesis of selenium-N-heterocyclic carbene compounds: evaluation of antimicrobial and anticancer potential. Bioorg. Chem. 90: 103042, https://doi.org/10.1016/j.bioorg.2019.103042.Suche in Google Scholar

Kim, H.S., Lee, S.H., Byun, Y., and Park, H.D. (2015). 6-gingerol reduces Pseudomonas aeruginosa biofilm formation and virulence via quorum sensing inhibition. Sci. Rep. 5: 8656. https://doi.org/10.1038/srep08656.Suche in Google Scholar

Maryland, H. (1994). Selenium in plant and animal nutrition. In: Frankenberger, W.T., Benson, S., and Dekker, M. (Eds.), Selenium in the environment. Marcel Dekker Inc., New York, NY, USA, pp. 29–45.Suche in Google Scholar

Meng, X.Y., Zhang, H.X., Mezei, M., and Cui, M. (2011). Molecular docking: a powerful approach for structure-based drug discovery. Curr. Comput. Aided Drug Des. 7: 146–157. https://doi.org/10.2174/157340911795677602.Suche in Google Scholar

Munita, J.M., and Arias, C.A. (2015). Mechanisms of antibiotic resistance. Microbiol. Spectr. 4: 481–511, https://doi.org/10.1128/microbiolspec.VMBF-0016-2015.Suche in Google Scholar

Narajj, C., Karvekar, M.D., and Das, A.K. (2007). Biological importance of organoselenium compounds. Indian J. Pharmaceut. Sci. 69: 344–351.10.4103/0250-474X.34541Suche in Google Scholar

Nie, Y., Zhong, M., Li, S., Li, X., Zhang, Y., Zhang, Y., and He, X. (2020). Synthesis and potential anticancer activity of some novel selenocyanates and diselenides. Chem. Biodivers. 17: e1900603. https://doi.org/10.1002/cbdv.201900603.Suche in Google Scholar

Nithya, C., Lewis Oscar, F., Kanaga, S., Kavitha, R., Dhamodharan, B., Kumar, A., Alharbi, N., Chinnathambi, A., Alharbi, S., and Thajuddin, N. (2014). Biofilm inhibitory potential of Chlamydomonas sp. extract against Pseudomonas aeruginosa. J. Algal Biomass Util. 5: 74–81.Suche in Google Scholar

Pietka-Ottlik, M., Wójtowicz-Młochowska, H., Kołodziejczyk, K., Piasecki, E., and Młochowski, J. (2008). New organoselenium compounds active against pathogenic bacteria, fungi and viruses. Chem. Pharm. Bull. 56: 1423–1427. https://doi.org/10.1248/cpb.56.1423.Suche in Google Scholar

Pinto, N.C.C., Silva, J.B., Menegati, L.M., Guedes, M.C.M.R., Marques, L.B., Silva, T.P.D., Melo, R.C.N., Souza-Fagundes, E.M., Salvador, M.J., Scio, E., et al.. (2017). Cytotoxicity and bacterial membrane destabilization induced by Annona squamosa L. extracts. An Acad. Bras Ciências 89: 2053–2073. https://doi.org/10.1590/0001-3765201720150702.Suche in Google Scholar

Pinzi, L. and Rastelli, G. (2019). Molecular docking: shifting paradigms in drug discovery. Int. J. Mol. Sci. 20: 4331. https://doi.org/10.3390/ijms20184331.Suche in Google Scholar

Pirushi, R. and Zavalani, F. (2014). Management of nosocomial respiratory infections. Int. J. Sci. Res. 3: 2562–2564.Suche in Google Scholar

Prateeksha, Singh, B.R., Shoeb, M., Sharma, S., Naqvi, A.H., Gupta, V.K., and Singh, B.N. (2017). Scaffold of selenium nanovectors and honey phytochemicals for inhibition of Pseudomonas aeruginosa quorum sensing and biofilm formation. Front. Cell. Infect. Microbiol. 7: 93. https://doi.org/10.3389/fcimb.2017.00093.Suche in Google Scholar

Qifeng, B., Li, L., Shanhui, L., Shujun, X., and Yu, G. (2018). Drug design progress of in silico, in vitro and in vivo researches. In-vitro In-vivo In-silico J. 1: 16–37.Suche in Google Scholar

Radhakrishna, P., Sharada, K.C., Vagdevi, M., Abhilekha, M., Mubeen, R., and Nischal, K. (2010). Synthesis and antibacterial activity of novel organoselenium compounds. Int. J. Chem. 2: 149–154, https://doi.org/10.5539/ijc.v2n2p149.Suche in Google Scholar

Ramon-Perez, M.L., Diaz-Cedillo, F., Ibarra, J.A., Torales-Cardeña, A., Rodríguez-Martínez, S., Jan-Roblero, J., Cancino-Diaz, M.E., and Cancino-Diaz, J.C. (2014). D-amino acids inhibit bioflm formation in Staphylococcus epidermidisstrains from ocular infections. J. Med. Microbiol. 63: 1369–1376. https://doi.org/10.1099/jmm.0.075796-0.Suche in Google Scholar

Riquelme, S.A., Ahn, D., and Prince, A. (2018). Pseudomonas aeruginosa and Klebsiella pneumoniae adaptation to innate immune clearance mechanisms in the lung. J. Innate Immun. 10: 442–454. https://doi.org/10.1159/000487515.Suche in Google Scholar

Rode, D.K.H., Singh, P.K., and Drescher, K. (2020). Multicellular and unicellular responses of microbial biofilms to stress. Biol. Chem. 401: 1365–1374. https://doi.org/10.1515/hsz-2020-0213.Suche in Google Scholar

Romero, D., Vlamakis, H., Losick, R., and Kolter, R. (2011). An accessory protein required for anchoring and assembly of amyloid fibres in B. subtilis biofilms. Mol. Microbiol. 80: 1155–1168. https://doi.org/10.1111/j.1365-2958.2011.07653.x.Suche in Google Scholar

Rotruck, J.T., Pope, A.L., Ganther, H.E., Swanson, A.B., Hafeman, D.G., and Hoekstra, W.G. (1973). Selenium: biochemical role as a component of glatathione peroxidase. Science 179: 588–590.10.1126/science.179.4073.588Suche in Google Scholar PubMed

Sadikot, R.T., Blackwell, T.S., Christman, J.W., and Prince, A.S. (2005). Pathogen–host interactions in Pseudomonas aeruginosa pneumonia. Am. J. Respir. Crit. Care Med. 171: 1209–1223. https://doi.org/10.1164/rccm.200408-1044so.Suche in Google Scholar

Sanchez, C.J., Akers, K.S., Romano, D.R., Woodbury, R.L., Hardy, S.K., Murray, C.K., and Wenkea, J.C. (2014). D-amino acids enhance the activity of antimicrobials against biofilms of clinical wound isolates of Staphylococcus aureus and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 58: 4353–4361. https://doi.org/10.1128/aac.02468-14.Suche in Google Scholar

Sancineto, L., Fabro de Bem, A., Tew, K.D., Santi, C., Radi, R., Toquato, P., and Galli, F. (2017). Selenocompounds in cancer therapy: an overview. Adv. Canc. Res. 5: 14186–14193.Suche in Google Scholar

Sancineto, L., Piccioni, M., De Marco, S., Pagiotti, R., Nascimento, V., Luiz Braga, A., Santi, C., and Pietrella, D. (2016). Diphenyl diselenide derivatives inhibit microbial biofilm formation involved in wound infection. BMC Microbiol. 16: 220. https://doi.org/10.1186/s12866-016-0837-x.Suche in Google Scholar

Sasirekha, B., Megha, D.M., Sharath Chandra, M.S., and Soujanya, R. (2015). Study on effect of different plant extracts on microbial biofilms. Asian J. Biotechnol. 7: 1–12. https://doi.org/10.3923/ajbkr.2015.Suche in Google Scholar

Schmidt, R.L. and Simonović, M. (2012). Synthesis and decoding of selenocysteine and human health. Croat. Med. J. 53: 535–550. https://doi.org/10.3325/cmj.2012.53.535.Suche in Google Scholar

Schwarz, K. and Foltz, C.M. (1957). Selenium as an integral part of factor-3 against dietary necrotic liver degeneration. J. Am. Chem. Soc. 79: 3292–3293. https://doi.org/10.1021/ja01569a087.Suche in Google Scholar

Shaaban, S., Negm, A., Sobh, M.A., and Wessjohann, L.A. (2015). Organoselenocyanates and symmetrical diselenides redox modulators: design, synthesis and biological evaluation. Eur. J. Med. Chem. 97: 190–201. https://doi.org/10.1016/j.ejmech.2015.05.002.Suche in Google Scholar

Shrift, A. (1958). Biological activities of selenium compounds. Bot. Rev. 24: 550–583. https://doi.org/10.1007/bf02872594.Suche in Google Scholar

Singh, B.G., and Kunwar, A. (2020). In silico screening of organo-selenium compounds for anti-viral activity against SARS-CoV2. BARC News Letter, Mumbai, India.Suche in Google Scholar

Singh, F.V. and Wirth, T. (2018). Synthesis of organoselenium compounds with potential biological activities. In: Jain, V.K. and Priyadarsini, K.I. (Eds.). Organoselenium compounds in biology and medicine: synthesis, biological and therapeutic treatments, 1st ed. Royal. Soc. Chem, Cambridge, UK, pp. 77–121.10.1039/9781788011907-00077Suche in Google Scholar

Spallholz, J.E. (1994). On the nature of selenium toxicity and carcinostatic activity. Free Radical Biol. Med. 17: 45–64.10.1016/0891-5849(94)90007-8Suche in Google Scholar

Spengler, G., Kincses, A., Mosolygó, T., Marć, M.A., Nové, M., Gajdács, M., Sanmartín, C., McNeil, H.E., Blair, J., and Domínguez-Álvarez, E. (2019). Antiviral, antimicrobial and antibiofilm activity of selenoesters and selenoanhydrides. Molecules 24: 4264. https://doi.org/10.3390/molecules24234264.Suche in Google Scholar

Tabassum, R., Shafique, M., Khawaja, K.A., Alvi, I.A., Rehman, Y., Sheik, C.S., Abbas, Z., and Rehman, S. (2018). Complete genome analysis of a Siphoviridae phage TSK1 showing biofilm removal potential against Klebsiella pneumonia. Sci. Rep. 8: 17904. https://doi.org/10.1038/s41598-018-36229-y.Suche in Google Scholar

Talas, Z.S., Gok, Y., Ozdemir, I., Ates, B., Gunal, S., and Yilmaz, I. (2015). Synthesis, antioxidant and anti-microbial properties of two organoselenium compounds. Pak. J. Pharm. Sci. 28: 611–616.Suche in Google Scholar

Thuluz, M.-M., Claudia, J.-P., and Zepeda, R.C. (2020). Past, present, and future of molecular docking. IntechOpen, London.Suche in Google Scholar

Tran, P.L., Hammond, A.A., Mosley, T., Cortez, J., Gray, T., Colmer-Hamood, J.A., Shashtri, M., Spallholz, J.E., Hamood, A.N., and Reid, T.W. (2009). Organoselenium coating on cellulose inhibits the formation of biofilms by Pseudomonas aeruginosa and Staphylococcus aureus. Appl. Environ. Microbiol. 75: 3586–3592. https://doi.org/10.1128/aem.02683-08.Suche in Google Scholar

Tran, P.L., Lowry, N., Campbell, T., Reid, T.W., Webster, D.R., Tobin, E., Aslani, A., Mosley, T., Dertien, J., Colmer-Hamood, J.A., et al.. (2012). An organoselenium compound inhibits Staphylococcus aureus biofilms on hemodialysis catheters in vivo. Antimicrob. Agents Chemother. 56: 972–978. https://doi.org/10.1128/aac.05680-11.Suche in Google Scholar

Tran, P.A., O’Brien-Simpson, N., Palmer, J.A., Bock, N., Reynolds, E.C., Webster, T.J., Deva, A., Morrison, W.A., and O’Connor, A.J. (2019). Selenium nanoparticles as anti-infective implant coatings for trauma orthopedics against methicillin-resistant Staphylococcus aureus and epidermidis: in vitro and in vivo assessment. Int. J. Nanomed. 14: 4613–4624. https://doi.org/10.2147/IJN.S197737.Suche in Google Scholar

Trentin Dda, S., Giordani, R.B., Zimmer, K.R., da Silva, A.G., da Silva, M.V., Correia, M.T., Baumvol, I.J., and Macedo, A.J. (2011). Potential of medicinal plants from the Brazilian semi-arid region (Caatinga) against Staphylococcus epidermidis planktonic and biofilm lifestyles. J. Ethnopharmacol. 137: 327–35. https://doi.org/10.1016/j.jep.2011.05.030.Suche in Google Scholar

Troeger, C., Blacker, B., Khalil, I.A., Rao, P.C., Cao, J., Zimsen, S.R.M., Albertson, S.B., Deshpande, A., Farag, T., Abebe, Z., et al.. (2018). Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study. Lancet Infect. Dis. 18: 1191–1210. https://doi.org/10.1016/S1473-3099(18)30310-4.Suche in Google Scholar

Vasić, S., Radojević, I., Pešić, N., and Čomić, L. (2011). Influence of sodium selenite on the growth of selected bacteria species and their sensitivity to antibiotics. Kragujevac J. Sci. 33: 55–61.Suche in Google Scholar

Verbeke, F., De Craemer, S., Debunne, N., Janssens, Y., Wynendaele, E., Van de Wiele, C., and De Spiegeleer, B. (2017). Peptides as quorum sensing molecules: measurement techniques and obtained levels in vitro and in vivo. Front. Neurosci. 11: 183. https://doi.org/10.3389/fnins.2017.00183.Suche in Google Scholar

Vishwakarma, J. and Vavilala, S.L. (2019). Evaluating the antibacterial and antibiofilm potential of sulfated polysaccharides extracted from green algae Chlamydomonas reinhardtii. J. Appl. Microbiol. 127: 1004–1017. https://doi.org/10.1111/jam.14364.Suche in Google Scholar

Vishwakarma, J. and Vavilala, S.L. (2020). Unraveling the anti-biofilm potential of green algal sulfated polysaccharides against Salmonella enterica and Vibrio harveyi. Appl. Microbiol. Biotechnol. 104: 6299–6314. https://doi.org/10.1007/s00253-020-10653-5.Suche in Google Scholar

Vishwanath, S., Chawla, K., and Gopinathan, A. (2013). Multidrug resistant gram-negative bacilli in lower respiratory tract infections. Iran. J. Microbiol. 5: 323–327. https://doi.org/10.4103/0974-777x.121996.Suche in Google Scholar

Warraich, A.A., Mohammed, A.R., Perrie, Y., Hussain, M., Gibson, H., and Rahman, A. (2020). Evaluation of anti-biofilm activity of acidic amino acids and synergy with ciprofloxacin on Staphylococcus aureus biofilms. Sci. Rep. 10: 9021. https://doi.org/10.1038/s41598-020-66082-x.Suche in Google Scholar

Wrobel, K.J., Power, R., and Toborek, M. (2015). Biological activity of selenium: revisited. IUBMB Life 68: 97–105. https://doi.org/10.1002/iub.1466.Suche in Google Scholar

Yang, J., Wang, J., Yang, K., Liu, M., Qi, Y., Zhang, T., Fan, M., Wei, X., Yang, J., Wang, J., et al.. (2018). Antibacterial activity of selenium-enriched lactic acid bacteria against common food-borne pathogens in vitro. J. Dairy Sci. 101: 1930–1942. https://doi.org/10.3168/jds.2017-13430.Suche in Google Scholar

Zhang, W. and Li, C. (2016). Exploiting quorum sensing interfering strategies in gram-negative bacteria for the enhancement of environmental applications. Front. Microbiol. 6: 1535. https://doi.org/10.3389/fmicb.2015.01535.Suche in Google Scholar

Zhao, K., Du, L., Lin, J., Yuan, Y., Wang, X., Yue, B., Wang, X., Guo, Y., Chu, Y., and Zhou, Y. (2018). Pseudomonas aeruginosa quorum-sensing and type VI secretion system can direct interspecific coexistence during evolution. Front. Microbiol. 9: 2287. https://doi.org/10.3389/fmicb.2018.02287.Suche in Google Scholar

Received: 2020-11-24
Accepted: 2021-03-10
Published Online: 2021-03-19
Published in Print: 2021-06-25

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2020-0375/html
Button zum nach oben scrollen