Home IL-24 inhibits the malignancy of human glioblastoma cells via destabilization of Zeb1
Article
Licensed
Unlicensed Requires Authentication

IL-24 inhibits the malignancy of human glioblastoma cells via destabilization of Zeb1

  • Tie Lin , Dongpeng Wang , Jun Chen , Zhan Zhang , Yuming Zhao , Zhong Wu and Yuehua Wang ORCID logo EMAIL logo
Published/Copyright: April 26, 2021

Abstract

Glioblastoma (GBM) is the most common and fatal type of primary malignant tumours in the central nervous system. Cytokines such as interleukins (ILs) play an important role in GBM progression. Our present study found that IL-24 is down-regulated in GBM cells. Recombinant IL-24 (rIL-24) can suppress the in vitro migration and invasion of GBM cells while increase its chemo-sensitivity to temozolomide (TMZ) treatment. rIL-24 negatively regulates the expression of Zeb1, one well known transcription factors of epithelial to mesenchymal transition (EMT) of cancer cells. Over expression of Zeb1 can attenuate IL-24-suppressed malignancy of GBM cells. Mechanistically, IL-24 decreases the protein stability of Zeb1 while has no effect on its mRNA stability. It is due to that IL-24 can increase the expression of FBXO45, which can destabilize Zeb1 in cancer cells. Collectively, we reveal that IL-24 can suppress the malignancy of GBM cells via decreasing the expression of Zeb1. It suggests that targeted activation of IL-24 signals might be a potential therapy approach for GBM treatment.


Corresponding author: Yuehua Wang, Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin150001, People’s Republic of China, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflict of interest.

  4. Ethics approval and consent to participate: Informed consent was obtained from all individual participants included in the study.

References

Abshire, C.F., Carroll, J.L., and Dragoi, A.M. (2016). FLASH protects ZEB1 from degradation and supports cancer cells’ epithelial-to-mesenchymal transition. Oncogenesis 5: e254, https://doi.org/10.1038/oncsis.2016.55.Search in Google Scholar

Bhoopathi, P., Lee, N., Pradhan, A.K., Shen, X.N., Das, S.K., Sarkar, D., Emdad, L., and Fisher, P.B. (2016). mda-7/IL-24 induces cell death in neuroblastoma through a novel mechanism involving AIF and ATM. Cancer Res. 76: 3572–3582, https://doi.org/10.1158/0008-5472.can-15-2959.Search in Google Scholar

Chaffer, C.L., San Juan, B.P., Lim, E., and Weinberg, R.A. (2016). EMT, cell plasticity and metastasis. Canc. Metastasis Rev. 35: 645–654, https://doi.org/10.1007/s10555-016-9648-7.Search in Google Scholar

Chandra, A., Jahangiri, A., Chen, W., Nguyen, A.T., Yagnik, G., Pereira, M.P., Jain, S., Garcia, J.H., Shah, S.S., Wadhwa, H., et al.. (2020). Clonal ZEB1-driven mesenchymal transition promotes targetable oncologic antiangiogenic therapy resistance. Cancer Res 80: 1498–1511, https://doi.org/10.1158/0008-5472.can-19-1305.Search in Google Scholar

Chen, L., Wang, L., Qin, J., and Wei, D.S. (2020a). CtBP2 interacts with ZBTB18 to promote malignancy of glioblastoma. Life Sci. 262: 118477, https://doi.org/10.1016/j.lfs.2020.118477.Search in Google Scholar

Chen, W.H., Li, Q.Y., Zhang, G.L., Wang, H., Zhu, Z.H., and Chen, L.K. (2020b). LncRNA HOXA-AS3 promotes the malignancy of glioblastoma through regulating miR-455-5p/USP3 axis. J. Cell Mol. Med. 24: 11755–11767, https://doi.org/10.1111/jcmm.15788.Search in Google Scholar

Colella, B., Faienza, F., and Di Bartolomeo, S. (2019). EMT regulation by autophagy: a new perspective in glioblastoma biology. Cancers (Basel) 11, https://doi.org/10.3390/cancers11030312.Search in Google Scholar

Gupta, P., Su, Z.Z., Lebedeva, I.V., Sarkar, D., Sauane, M., Emdad, L., Bachelor, M.A., Grant, S., Curiel, D.T., Dent, P., et al.. (2006). mda-7/IL-24: multifunctional cancer-specific apoptosis-inducing cytokine. Pharmacol. Therapeut. 111: 596–628, https://doi.org/10.1016/j.pharmthera.2005.11.005.Search in Google Scholar

Hamed, H.A., Yacoub, A., Park, M.A., Archer, K., Das, S.K., Sarkar, D., Grant, S., Fisher, P.B., and Dent, P. (2013). Histone deacetylase inhibitors interact with melanoma differentiation associated-7/interleukin-24 to kill primary human glioblastoma cells. Mol. Pharmacol. 84: 171–181, https://doi.org/10.1124/mol.113.086553.Search in Google Scholar

Joshi, B.H., Leland, P., Asher, A., Prayson, R.A., Varricchio, F., and Puri, R.K. (2001). In situ expression of interleukin-4 (IL-4) receptors in human brain tumors and cytotoxicity of a recombinant IL-4 cytotoxin in primary glioblastoma cell cultures. Cancer Res. 61: 8058–8061.Search in Google Scholar

Joshi, B.H., Leland, P., Silber, J., Kreitman, R.J., Pastan, I., Berger, M., and Puri, R.K. (2002). IL-4 receptors on human medulloblastoma tumours serve as a sensitive target for a circular permuted IL-4-Pseudomonas exotoxin fusion protein. Br. J. Canc. 86: 285–291, https://doi.org/10.1038/sj.bjc.6600034.Search in Google Scholar

Karachi, A., Dastmalchi, F., Mitchell, D.A., and Rahman, M. (2018). Temozolomide for immunomodulation in the treatment of glioblastoma. Neuro Oncol. 20: 1566–1572, https://doi.org/10.1093/neuonc/noy072.Search in Google Scholar

Kast, R.E. (2015). The role of interleukin-18 in glioblastoma pathology implies therapeutic potential of two old drugs-disulfiram and ritonavir. Chin. J. Canc. 34: 161–165, https://doi.org/10.1186/s40880-015-0010-1.Search in Google Scholar

Kawakami, K., Terabe, M., Kawakami, M., Berzofsky, J.A., and Puri, R.K. (2006). Characterization of a novel human tumor antigen interleukin-13 receptor α2 chain. Cancer Res 66: 4434–4442, https://doi.org/10.1158/0008-5472.can-05-1265.Search in Google Scholar

Komori, T. (2017). The 2016 WHO classification of tumours of the central nervous system: the major points of revision. Neurol. Med. Chir. 57: 301–311, https://doi.org/10.2176/nmc.ra.2017-0010.Search in Google Scholar

Lapointe, S., Perry, A., and Butowski, N.A. (2018). Primary brain tumours in adults. Lancet 392: 432–446, https://doi.org/10.1016/s0140-6736(18)30990-5.Search in Google Scholar

Li, H., Wang, M., Zhou, H., Lu, S., and Zhang, B. (2020). Long noncoding RNA EBLN3P promotes the progression of liver cancer via alteration of microRNA-144-3p/DOCK4 signal. Canc. Manag. Res. 12: 9339–9349, https://doi.org/10.2147/cmar.s261976.Search in Google Scholar

Ma, Y.F., Ren, Y., Wu, C.J., Zhao, X.H., Xu, H., Wu, D.Z., Xu, J.R., Zhang, X.L., and Ji, Y.H. (2016). Interleukin (IL)-24 transforms the tumor microenvironment and induces anticancer immunity in a murine model of colon cancer. Mol. Immunol. 75: 11–20, https://doi.org/10.1016/j.molimm.2016.05.010.Search in Google Scholar

Menezes, M.E., Shen, X.N., Das, S.K., Emdad, L., Guo, C.Q., Yuan, F., Li, Y.J., Archer, M.C., Zacksenhaus, E., Windle, J.J., et al.. (2015). MDA-7/IL-24 functions as a tumor suppressor gene in vivo in transgenic mouse models of breast cancer. Oncotarget 6: 36928–36942, https://doi.org/10.18632/oncotarget.6047.Search in Google Scholar

Rasoolian, M., Kheirollahi, M., and Hosseini, S.Y. (2019). MDA-7/interleukin 24 (IL-24) in tumor gene therapy: application of tumor penetrating/homing peptides for improvement of the effects. Expet Opin. Biol. Ther. 19: 211–223, https://doi.org/10.1080/14712598.2019.1566453.Search in Google Scholar

Saeki, T., Mhashilkar, A., Swanson, X., Zou-Yang, X.H., Sieger, K., Kawabe, S., Branch, C.D., Zumstein, L., Meyn, R.E., Roth, J.A., et al.. (2002). Inhibition of human lung cancer growth following adenovirus-mediated mda-7 gene expression in vivo. Oncogene 21: 4558–4566, https://doi.org/10.1038/sj.onc.1205553.Search in Google Scholar

Sarkar, S., Quinn, B.A., Shen, X.N., Dash, R., Das, S.K., Emdad, L., Klibanov, A.L., Wang, X.Y., Pellecchia, M., Sarkar, D., et al.. (2015). Therapy of prostate cancer using a novel cancer terminator virus and a small molecule BH-3 mimetic. Oncotarget 6: 10712–10727, https://doi.org/10.18632/oncotarget.3544.Search in Google Scholar

Sauane, M., Lebedeva, I.V., Su, Z.Z., Choo, H.T., Randolph, A., Valerie, K., Dent, P., Gopalkrishnan, R.V., and Fisher, P.B. (2004). Melanoma differentiation associated gene-7/interleukin-24 promotes tumor cell-specific apoptosis through both secretory and nonsecretory pathways. Cancer Res 64: 2988–2993, https://doi.org/10.1158/0008-5472.can-04-0200.Search in Google Scholar

Schiffer, D., Annovazzi, L., Casalone, C., Corona, C., and Mellai, M. (2018). Glioblastoma: microenvironment and niche concept. Cancers (Basel) 11: 5, https://doi.org/10.3390/cancers11010005.Search in Google Scholar

Shao, J.B., Gao, Z.M., Huang, W.Y., and Lu, Z.B. (2017). The mechanism of epithelial-mesenchymal transition induced by TGF-β1 in neuroblastoma cells. Int. J. Oncol. 50: 1623–1633, https://doi.org/10.3892/ijo.2017.3954.Search in Google Scholar

Siebzehnrubl, F.A., Silver, D.J., Tugertimur, B., Deleyrolle, L.P., Siebzehnrubl, D., Sarkisian, M.R., Devers, K.G., Yachnis, A.T., Kupper, M.D., Neal, D., et al.. (2013). The ZEB1 pathway links glioblastoma initiation, invasion and chemoresistance. EMBO Mol. Med. 5: 1196–1212, https://doi.org/10.1002/emmm.201302827.Search in Google Scholar

Song, Y., Chen, Y., Li, Y., Lyu, X., Cui, J., Cheng, Y., Zhao, L., and Zhao, G. (2018). Metformin inhibits TGF-β1-induced epithelial-to-mesenchymal transition-like process and stem-like properties in GBM via AKT/mTOR/ZEB1 pathway. Oncotarget 9: 7023–7035, https://doi.org/10.18632/oncotarget.23317.Search in Google Scholar

Trabelsi, S., Brahim, D.H., Ladib, M., Mama, N., Harrabi, I., Tlili, K., Yacoubi, M.T., Krifa, H., Hmissa, S., Saad, A., et al.. (2014). Glioma epidemiology in the central Tunisian population: 1993–2012. Asian Pac. J. Cancer Prev. APJCP 15: 8753–8757, https://doi.org/10.7314/apjcp.2014.15.20.8753.Search in Google Scholar

Vashistha, N., Neal, S.E., Singh, A., Carroll, S.M., and Hampton, R.Y. (2016). Direct and essential function for HRD3 in ER-associated degradation. Proc. Natl. Acad. Sci. USA 113: 5934–5939, https://doi.org/10.1073/pnas.1603079113.Search in Google Scholar

Wang, H., Jiang, Z., Na, M., Ge, H., Tang, C., Shen, H., and Lin, Z. (2017). PARK2 negatively regulates the metastasis and epithelial-mesenchymal transition of glioblastoma cells via ZEB1. Oncol Lett 14: 2933–2939, https://doi.org/10.3892/ol.2017.6488.Search in Google Scholar

Wang, Z.L., Zhang, C.B., Cai, J.Q., Li, Q.B., Wang, Z., and Jiang, T. (2015). Integrated analysis of genome-wide DNA methylation, gene expression and protein expression profiles in molecular subtypes of WHO II–IV gliomas. J. Exp. Clin. Canc. Res. 34: 127, https://doi.org/10.1186/s13046-015-0249-z.Search in Google Scholar

Wong, M.L., Kaye, A.H., and Hovens, C.M. (2007). Targeting malignant glioma survival signalling to improve clinical outcomes. J. Clin. Neurosci. 14: 301–308, https://doi.org/10.1016/j.jocn.2006.11.005.Search in Google Scholar

Wu, Y., Yang, X., Chen, Z., Tian, L., Jiang, G., Chen, F., Li, J., An, P., Lu, L., Luo, N., et al.. (2019). m(6)A-induced lncRNA RP11 triggers the dissemination of colorectal cancer cells via upregulation of Zeb1. Mol. Canc. 18: 87, https://doi.org/10.1186/s12943-019-1014-2.Search in Google Scholar

Xu, M., Zhu, C., Zhao, X., Chen, C., Zhang, H., Yuan, H., Deng, R., Dou, J., Wang, Y., Huang, J., et al.. (2015). Atypical ubiquitin E3 ligase complex Skp1-Pam-Fbxo45 controls the core epithelial-to-mesenchymal transition-inducing transcription factors. Oncotarget 6: 979–994, https://doi.org/10.18632/oncotarget.2825.Search in Google Scholar

Yacoub, A., Hamed, H., Emdad, L., Dos Santos, W., Gupta, P., Broaddus, W.C., Ramakrishnan, V., Sarkar, D., Shah, K., Curiel, D.T., et al.. (2008). MDA-7/IL-24 plus radiation enhance survival in animals with intracranial primary human GBM tumors. Canc. Biol. Ther. 7: 917–936, https://doi.org/10.4161/cbt.7.6.5928.Search in Google Scholar

Yacoub, A., Mitchell, C., Hong, Y., Gopalkrishnan, R.V., Su, Z.Z., Gupta, P., Sauane, M., Lebedeva, I.V., Curiel, D.I., Mahasreshti, P.J., et al.. (2004). MDA-7 regulates cell growth and radiosensitivity in vitro of primary (non-established) human glioma cells. Canc. Biol. Ther. 3: 739–751, https://doi.org/10.4161/cbt.3.8.968.Search in Google Scholar

Yang, Y.J., Chen, D.Z., Li, L.X., Sheng, Q.S., Jin, Z.K., and Zhao, D.F. (2009). Targeted IL-24 gene therapy inhibits cancer recurrence after liver tumor resection by inducing tumor cell apoptosis in nude mice. Hepatob Pancreat Dis 8: 174–178.Search in Google Scholar

Zhang, P., Wei, Y., Wang, L., Debeb, B.G., Yuan, Y., Zhang, J., Yuan, J., Wang, M., Chen, D., Sun, Y., et al.. (2014). ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1. Nat. Cell Biol. 16: 864–875, https://doi.org/10.1038/ncb3013.Search in Google Scholar

Zhang, Z., Yin, J., Lu, C., Wei, Y., Zeng, A., and You, Y. (2019). Exosomal transfer of long non-coding RNA SBF2-AS1 enhances chemoresistance to temozolomide in glioblastoma. J. Exp. Clin. Canc. Res. 38: 166, https://doi.org/10.1186/s13046-019-1139-6.Search in Google Scholar

Zhu, W., Wei, L., Zhang, H.W., Chen, J.X., and Qin, X.Y. (2012). Oncolytic adenovirus armed with IL-24 Inhibits the growth of breast cancer in vitro and in vivo. J. Exp. Clin. Canc. Res. 31: 51, https://doi.org/10.1186/1756-9966-31-51.Search in Google Scholar

Received: 2020-11-22
Accepted: 2021-04-15
Published Online: 2021-04-26
Published in Print: 2021-06-25

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2020-0373/html
Scroll to top button