Startseite Lebenswissenschaften Structural and kinetic characterization of Porphyromonas gingivalis glutaminyl cyclase
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Structural and kinetic characterization of Porphyromonas gingivalis glutaminyl cyclase

  • Sebastiaan Lamers ORCID logo , Qiaoli Feng , Yili Cheng , Sihong Yu , Bo Sun , Maxwell Lukman , Jie Jiang und David Ruiz-Carrillo ORCID logo EMAIL logo
Veröffentlicht/Copyright: 7. April 2021

Abstract

Porphyromonas gingivalis is a bacterial species known to be involved in the pathogenesis of chronic periodontitis, that more recently has been as well associated with Alzheimer’s disease. P. gingivalis expresses a glutaminyl cyclase (PgQC) whose human ortholog is known to participate in the beta amyloid peptide metabolism. We have elucidated the crystal structure of PgQC at 1.95 Å resolution in unbound and in inhibitor-complexed forms. The structural characterization of PgQC confirmed that PgQC displays a mammalian fold rather than a bacterial fold. Our biochemical characterization indicates that PgQC uses a mammalian-like catalytic mechanism enabled by the residues Asp149, Glu182, Asp183, Asp218, Asp267 and His299. In addition, we could observe that a non-conserved Trp193 may drive differences in the binding affinity of ligands which might be useful for drug development. With a screening of a small molecule library, we have identified a benzimidazole derivative rendering PgQC inhibition in the low micromolar range that might be amenable for further medicinal chemistry development.


Corresponding author: David Ruiz-Carrillo, Department of Biological Sciences, School of Science, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu215123, China, E-mail:

Funding source: Xi’an Jiaotong-Liverpool University

Acknowledgments

The authors thank the support received at the BL17 and BL18U of the Shanghai Synchrotron Radiation research (Qi-Sheng Wang 2018) facility.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Research fund of the department of biology of Xi’an Jiaotong-Liverpool University.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Abraham, G.N., and Podell, D.N. (1981). Pyroglutamic acid. Non-metabolic formation, function in proteins and peptides, and characteristics of the enzymes effecting its removal. Mol. Cell. Biochem. 38: 181–190, https://doi.org/10.1007/bf00235695.Suche in Google Scholar

Bochtler, M., Mizgalska, D., Veillard, F., Nowak, M.L., Houston, J., Veith, P., Reynolds, E.C., and Potempa, J. (2018). The bacteroidetes Q-rule: pyroglutamate in signal peptidase I substrates. Front. Microbiol. 9: 230, https://doi.org/10.3389/fmicb.2018.00230.Suche in Google Scholar

Booth, R.E., Lovell, S.C., Misquitta, S.A., and Bateman, R.C. (2004). Human glutaminyl cyclase and bacterial zinc aminopeptidase share a common fold and active site. BMC Biol. 2: 2, https://doi.org/10.1186/1741-7007-2-2.Suche in Google Scholar

Bostanci, N., and Belibasakis, G.N. (2012). Porphyromonas gingivalis: an invasive and evasive opportunistic oral pathogen. FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Lett. 333: 1–9, https://doi.org/10.1111/j.1574-6968.2012.02579.x.Suche in Google Scholar

Buchholz, M., Heiser, U., Schilling, S., Niestroj, A.J., Zunkel, K., and Demuth, H.-U. (2006). The first potent inhibitors for human glutaminyl cyclase: synthesis and structure−activity relationship. J. Med. Chem. 49: 664–677, https://doi.org/10.1021/jm050756e.Suche in Google Scholar

DeLano, W.L. (2002). Pymol: an open-source molecular graphics tool. CCP4 Newslett. Protein Crystallogr. 40: 82–92.Suche in Google Scholar

DiPisa, F., Pozzi, C., Benvenuti, M., Andreini, M., Marconi, G., and Mangani, S. (2015). The soluble Y115E-Y117E variant of human glutaminyl cyclase is a valid target for X-ray and NMR screening of inhibitors against Alzheimer disease. Acta Crystallogr. F 71: 986–992.10.1107/S2053230X15010389Suche in Google Scholar

Dominy, S.S., Lynch, C., Ermini, F., Benedyk, M., Marczyk, A., Konradi, A., Nguyen, M., Haditsch, U., Raha, D., and Griffin, C., et al.. (2019). Porphyromonas gingivalis in Alzheimer’s disease brains: evidence for disease causation and treatment with small-molecule inhibitors. Sci. Adv. 5: eaau3333, https://doi.org/10.1126/sciadv.aau3333.Suche in Google Scholar

Ellis, K.J., and Morrison, J.F. (1982). Buffers of constant ionic strength for studying pH-dependent processes. In: Purich, D.L. (Ed.), Methods in enzymology, Vol. 87. Academic Press, New York, pp. 405–426.10.1016/S0076-6879(82)87025-0Suche in Google Scholar

Emsley, P., Lohkamp, B., Scott, W.G., and Cowtan, K. (2010). Features and development of Coot. Acta Crystallogr. D 66: 486–501, https://doi.org/10.1107/s0907444910007493.Suche in Google Scholar

Fischer, W.H., and Spiess, J. (1987). Identification of a mammalian glutaminyl cyclase converting glutaminyl into pyroglutamyl peptides. Proc. Natl. Acad. Sci. U.S.A. 84: 3628–32, https://doi.org/10.1073/pnas.84.11.3628.Suche in Google Scholar

Hoang, V.-H., Tran, P.-T., Cui, M., Ngo, V.T.H., Ann, J., Park, J., Lee, J., Choi, K., Cho, H., and Kim, H., et al.. (2017). Discovery of potent human glutaminyl cyclase inhibitors as anti-Alzheimer’s agents based on rational design. J. Med. Chem. 60: 2573–2590, https://doi.org/10.1021/acs.jmedchem.7b00098.Suche in Google Scholar

Houston, J.A. (2019). The Q rule in bacteriodetes and the identification and characterization of porphyromonas gingivalis glutaminyl cyclase. Electronic Theses and Dissertations. University of Louisville, Louisville, KY.Suche in Google Scholar

Huang, K.F., Hsu, H.L., Karim, S., and Wang, A.H. (2014). Structural and functional analyses of a glutaminyl cyclase from ixodes scapularis reveal metal-independent catalysis and inhibitor binding. Acta Crystallogr. D Biol. Crystallogr. 70: 789–801, https://doi.org/10.1107/s1399004713033488.Suche in Google Scholar

Huang, K.-F., Liu, Y.-L., Cheng, W.-J., Ko, T.-P., and Wang, A.H.J. (2005). Crystal structures of human glutaminyl cyclase, an enzyme responsible for protein N-terminal pyroglutamate formation. Proc. Natl. Acad. Sci. U.S.A. 102: 13117–13122, https://doi.org/10.1073/pnas.0504184102.Suche in Google Scholar

Huang, K.-F., Wang, Y.-R., Chang, E.-C., Chou, T.-L., and Wang, A.H.J. (2008). A conserved hydrogen-bond network in the catalytic centre of animal glutaminyl cyclases is critical for catalysis. Biochem. J. 411: 181–190, https://doi.org/10.1042/bj20071073.Suche in Google Scholar

Huang, W.-L., Wang, Y.-R., Ko, T.-P., Chia, C.-Y., Huang, K.-F., and Wang, A.H.J. (2010). Crystal structure and functional analysis of the glutaminyl cyclase from Xanthomonas campestris. J. Mol. Biol. 401: 374–388, https://doi.org/10.1016/j.jmb.2010.06.012.Suche in Google Scholar

Kabsch, W. (2010). XDS. Acta Crystallogr. D Biol. Crystallogr. 66: 125–132, https://doi.org/10.1107/s0907444909047337.Suche in Google Scholar

Kim, M.K., Lee, S., An, Y.J., Jeong, C.S., Ji, C.J., Lee, J.W., and Cha, S.S. (2013). In-house zinc SAD phasing at Cu Kalpha edge. Mol. Cell. 36: 74–81, https://doi.org/10.1007/s10059-013-0074-1.Suche in Google Scholar

Krissinel, E. (2012). Enhanced fold recognition using efficient short fragment clustering. J. Mol. Biochem. 1: 76–85.Suche in Google Scholar

Liebschner, D., Afonine, P., Baker, M., Bunkóczi, G., Chen, V., Croll, T., Hintze, B., Hung, L.-W., Jain, S., and McCoy, A., et al.. (2019). Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 75: 861–877, https://doi.org/10.1107/s2059798319011471.Suche in Google Scholar

Liu, Y., Wu, Z., Nakanishi, Y., Ni, J., Hayashi, Y., Takayama, F., Zhou, Y., Kadowaki, T., and Nakanishi, H. (2018). Author correction: infection of microglia with Porphyromonas gingivalis promotes cell migration and an inflammatory response through the gingipain-mediated activation of protease-activated receptor-2 in mice. Sci. Rep. 8: 10304, https://doi.org/10.1038/s41598-018-27508-9.Suche in Google Scholar

Long, F., Vagin, A.A., Young, P., and Murshudov, G.N. (2008). BALBES: a molecular-replacement pipeline. Acta Crystallogr. D Biol. Crystallogr. 64: 125–32, https://doi.org/10.1107/s0907444907050172.Suche in Google Scholar

Lucas, X., Bauza, A., Frontera, A., and Quinonero, D. (2016). A thorough anion-pi interaction study in biomolecules: on the importance of cooperativity effects. Chem. Sci. 7: 1038–1050, https://doi.org/10.1039/c5sc01386k.Suche in Google Scholar

McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., and Read, R.J. (2007). Phaser crystallographic software. J. Appl. Crystallogr. 40: 658–674, https://doi.org/10.1107/s0021889807021206.Suche in Google Scholar

Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., and Olson, A.J. (2009). AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30: 2785–2791, https://doi.org/10.1002/jcc.21256.Suche in Google Scholar

Murshudov, G.N., Skubak, P., Lebedev, A.A., Pannu, N.S., Steiner, R.A., Nicholls, R.A., Winn, M.D., Long, F., and Vagin, A.A. (2011). REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D 67: 355–367, https://doi.org/10.1107/s0907444911001314.Suche in Google Scholar

Ngo, V.T.H., Hoang, V.-H., Tran, P.-T., Ann, J., Cui, M., Park, G., Choi, S., Lee, J., Kim, H., and Ha, H.-J., et al.. (2018). Potent human glutaminyl cyclase inhibitors as potential anti-Alzheimer’s agents: structure-activity relationship study of Arg-mimetic region. Bioorg. Med. Chem. 26: 1035–1049, https://doi.org/10.1016/j.bmc.2018.01.015.Suche in Google Scholar

Pozzi, C., Di Pisa, F., Benvenuti, M., and Mangani, S. (2018). The structure of the human glutaminyl cyclase–SEN177 complex indicates routes for developing new potent inhibitors as possible agents for the treatment of neurological disorders. J. Biol. Inorg. Chem. 23: 1219–1226, https://doi.org/10.1007/s00775-018-1605-1.Suche in Google Scholar

Qi-Sheng Wang, K.-H.Z., Yin, C., Wang, Z.-J., Pan, Q.-Y., Liu, K., Sun, B., Zhou, H., Li, M.-J., Xu, Q., Xu, C.-Y., et al.. (2018). Upgrade of macromolecular crystallography beamline BL17U1 at SSRF. Nucl. Sci. Tech. 68.10.1007/s41365-018-0398-9Suche in Google Scholar

Ruiz-Carrillo, D., Koch, B., Parthier, C., Wermann, M., Dambe, T., Buchholz, M., Ludwig, H.-H., Heiser, U., Rahfeld, J.-U., and Stubbs, M.T., et al.. (2011). Structures of glycosylated mammalian glutaminyl cyclases reveal conformational variability near the active center. Biochemistry 50: 6280–6288, https://doi.org/10.1021/bi200249h.Suche in Google Scholar

Ruiz-Carrillo, D., Parthier, C., Jänckel, N., Grandke, J., Stelter, M., Schilling, S., Böhme, M., Neumann, P., Wolf, R., and Demuth, H.-U., et al.. (2010). Kinetic and structural characterization of bacterial glutaminyl cyclases from Zymomonas mobilis and Myxococcus xanthus. Biol. Chem. 391: 1419–1428, https://doi.org/10.1515/bc.2010.130.Suche in Google Scholar

Rupp, B. (2010). Biomolecular crystallography : principles, practice, and application to structural biology. Garland Science, New York.Suche in Google Scholar

Santos-Martins, D., Forli, S., Ramos, M.J., and Olson, A.J. (2014). AutoDock4(Zn): an improved AutoDock force field for small-molecule docking to zinc metalloproteins. J. Chem. Inf. Model. 54: 2371–2379, https://doi.org/10.1021/ci500209e.Suche in Google Scholar

Schilling, S., and Demuth, H.-U. (2004). Continuous assays of glutaminyl cyclase: from development to application. Spectroscopy 18: 363–373, https://doi.org/10.1155/2004/413050.Suche in Google Scholar

Schilling, S., Hoffmann, T., Manhart, S., Hoffmann, M., and Demuth, H.-U. (2004). Glutaminyl cyclases unfold glutamyl cyclase activity under mild acid conditions. FEBS (Fed. Eur. Biochem. Soc.) Lett. 563: 191–196, https://doi.org/10.1016/s0014-5793(04)00300-x.Suche in Google Scholar

Schilling, S., Niestroj, A.J., Rahfeld, J.-U., Hoffmann, T., Wermann, M., Zunkel, K., Wasternack, C., and Demuth, H.-U. (2003). Identification of human glutaminyl cyclase as a metalloenzyme: potent inhibition by imidazole derivatives and heterocyclic chelators. J. Biol. Chem. 278: 49773–49779, https://doi.org/10.1074/jbc.m309077200.Suche in Google Scholar

Schilling, S., Wasternack, C., and Demuth, H.U. (2008a). Glutaminyl cyclases from animals and plants: a case of functionally convergent protein evolution. Biol. Chem. 389: 983–91, https://doi.org/10.1515/bc.2008.111.Suche in Google Scholar

Schilling, S., Zeitschel, U., Hoffmann, T., Heiser, U., Francke, M., Kehlen, A., Holzer, M., Hutter-Paier, B., Prokesch, M., Windisch, M., et al.. (2008b). Glutaminyl cyclase inhibition attenuates pyroglutamate Abeta and Alzheimer’s disease-like pathology. Nat. Med. 14: 1106–1111, https://doi.org/10.1038/nm.1872.Suche in Google Scholar

Seifert, F., Schulz, K., Koch, B., Manhart, S., Demuth, H.-U., and Schilling, S. (2009). Glutaminyl cyclases display significant catalytic proficiency for glutamyl substrates. Biochemistry 48: 11831–11833, https://doi.org/10.1021/bi9018835.Suche in Google Scholar

Takahashi, N., and Schachtele, C.F. (1990). Effect of pH on the growth and proteolytic activity of Porphyromonas gingivalis and Bacteroides intermedius. J. Dent. Res. 69: 1266–9, https://doi.org/10.1177/00220345900690060801.Suche in Google Scholar

Taudte, N., Linnert, M., Rahfeld, J.-U., Piechotta, A., Ramsbeck, D., Buchholz, M., Kolenko, P., Parthier, C., Houston, J.A., and Veillard, F., et al.. (2021). Mammalian-like type II glutaminyl cyclases in Porphyromonas gingivalis and other oral pathogenic bacteria as targets for treatment of periodontitis. J. Biol. Chem. 296: 100263, https://doi.org/10.1074/jbc.RA120.016836.Suche in Google Scholar

Valenti, M.T., Bolognin, S., Zanatta, C., Donatelli, L., Innamorati, G., Pampanin, M., Zanusso, G., Zatta, P., and Dalle Carbonare, L. (2013). Increased glutaminyl cyclase expression in peripheral blood of Alzheimer’s disease patients. J. Alzheim. Dis. 34: 263–271, https://doi.org/10.3233/jad-120517.Suche in Google Scholar

Wintjens, R., Belrhali, H., Clantin, B., Azarkan, M., Bompard, C., Baeyens-Volant, D., Looze, Y., and Villeret, V. (2006). Crystal structure of papaya glutaminyl cyclase, an archetype for plant and bacterial glutaminyl cyclases. J. Mol. Biol. 357: 457–470, https://doi.org/10.1016/j.jmb.2005.12.029.Suche in Google Scholar

Wu, Z., Ni, J., Liu, Y., Teeling, J.L., Takayama, F., Collcutt, A., Ibbett, P., and Nakanishi, H. (2017). Cathepsin B plays a critical role in inducing Alzheimer’s disease-like phenotypes following chronic systemic exposure to lipopolysaccharide from Porphyromonas gingivalis in mice. Brain Behav. Immun. 65: 350–361, https://doi.org/10.1016/j.bbi.2017.06.002.Suche in Google Scholar

Zheng, H., Cooper, D.R., Porebski, P.J., Shabalin, I.G., Handing, K.B., and Minor, W. (2017). CheckMyMetal: a macromolecular metal-binding validation tool. Acta Crystallogr. D Struct. Biol. 73: 223–233, https://doi.org/10.1107/s2059798317001061.Suche in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2020-0298).


Received: 2020-09-03
Accepted: 2021-03-16
Published Online: 2021-04-07
Published in Print: 2021-06-25

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2020-0298/html
Button zum nach oben scrollen