Abstract
Porphyromonas gingivalis is a bacterial species known to be involved in the pathogenesis of chronic periodontitis, that more recently has been as well associated with Alzheimer’s disease. P. gingivalis expresses a glutaminyl cyclase (PgQC) whose human ortholog is known to participate in the beta amyloid peptide metabolism. We have elucidated the crystal structure of PgQC at 1.95 Å resolution in unbound and in inhibitor-complexed forms. The structural characterization of PgQC confirmed that PgQC displays a mammalian fold rather than a bacterial fold. Our biochemical characterization indicates that PgQC uses a mammalian-like catalytic mechanism enabled by the residues Asp149, Glu182, Asp183, Asp218, Asp267 and His299. In addition, we could observe that a non-conserved Trp193 may drive differences in the binding affinity of ligands which might be useful for drug development. With a screening of a small molecule library, we have identified a benzimidazole derivative rendering PgQC inhibition in the low micromolar range that might be amenable for further medicinal chemistry development.
Funding source: Xi’an Jiaotong-Liverpool University
Acknowledgments
The authors thank the support received at the BL17 and BL18U of the Shanghai Synchrotron Radiation research (Qi-Sheng Wang 2018) facility.
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: Research fund of the department of biology of Xi’an Jiaotong-Liverpool University.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Abraham, G.N., and Podell, D.N. (1981). Pyroglutamic acid. Non-metabolic formation, function in proteins and peptides, and characteristics of the enzymes effecting its removal. Mol. Cell. Biochem. 38: 181–190, https://doi.org/10.1007/bf00235695.Search in Google Scholar
Bochtler, M., Mizgalska, D., Veillard, F., Nowak, M.L., Houston, J., Veith, P., Reynolds, E.C., and Potempa, J. (2018). The bacteroidetes Q-rule: pyroglutamate in signal peptidase I substrates. Front. Microbiol. 9: 230, https://doi.org/10.3389/fmicb.2018.00230.Search in Google Scholar
Booth, R.E., Lovell, S.C., Misquitta, S.A., and Bateman, R.C. (2004). Human glutaminyl cyclase and bacterial zinc aminopeptidase share a common fold and active site. BMC Biol. 2: 2, https://doi.org/10.1186/1741-7007-2-2.Search in Google Scholar
Bostanci, N., and Belibasakis, G.N. (2012). Porphyromonas gingivalis: an invasive and evasive opportunistic oral pathogen. FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Lett. 333: 1–9, https://doi.org/10.1111/j.1574-6968.2012.02579.x.Search in Google Scholar
Buchholz, M., Heiser, U., Schilling, S., Niestroj, A.J., Zunkel, K., and Demuth, H.-U. (2006). The first potent inhibitors for human glutaminyl cyclase: synthesis and structure−activity relationship. J. Med. Chem. 49: 664–677, https://doi.org/10.1021/jm050756e.Search in Google Scholar
DeLano, W.L. (2002). Pymol: an open-source molecular graphics tool. CCP4 Newslett. Protein Crystallogr. 40: 82–92.Search in Google Scholar
DiPisa, F., Pozzi, C., Benvenuti, M., Andreini, M., Marconi, G., and Mangani, S. (2015). The soluble Y115E-Y117E variant of human glutaminyl cyclase is a valid target for X-ray and NMR screening of inhibitors against Alzheimer disease. Acta Crystallogr. F 71: 986–992.10.1107/S2053230X15010389Search in Google Scholar
Dominy, S.S., Lynch, C., Ermini, F., Benedyk, M., Marczyk, A., Konradi, A., Nguyen, M., Haditsch, U., Raha, D., and Griffin, C., et al.. (2019). Porphyromonas gingivalis in Alzheimer’s disease brains: evidence for disease causation and treatment with small-molecule inhibitors. Sci. Adv. 5: eaau3333, https://doi.org/10.1126/sciadv.aau3333.Search in Google Scholar
Ellis, K.J., and Morrison, J.F. (1982). Buffers of constant ionic strength for studying pH-dependent processes. In: Purich, D.L. (Ed.), Methods in enzymology, Vol. 87. Academic Press, New York, pp. 405–426.10.1016/S0076-6879(82)87025-0Search in Google Scholar
Emsley, P., Lohkamp, B., Scott, W.G., and Cowtan, K. (2010). Features and development of Coot. Acta Crystallogr. D 66: 486–501, https://doi.org/10.1107/s0907444910007493.Search in Google Scholar
Fischer, W.H., and Spiess, J. (1987). Identification of a mammalian glutaminyl cyclase converting glutaminyl into pyroglutamyl peptides. Proc. Natl. Acad. Sci. U.S.A. 84: 3628–32, https://doi.org/10.1073/pnas.84.11.3628.Search in Google Scholar
Hoang, V.-H., Tran, P.-T., Cui, M., Ngo, V.T.H., Ann, J., Park, J., Lee, J., Choi, K., Cho, H., and Kim, H., et al.. (2017). Discovery of potent human glutaminyl cyclase inhibitors as anti-Alzheimer’s agents based on rational design. J. Med. Chem. 60: 2573–2590, https://doi.org/10.1021/acs.jmedchem.7b00098.Search in Google Scholar
Houston, J.A. (2019). The Q rule in bacteriodetes and the identification and characterization of porphyromonas gingivalis glutaminyl cyclase. Electronic Theses and Dissertations. University of Louisville, Louisville, KY.Search in Google Scholar
Huang, K.F., Hsu, H.L., Karim, S., and Wang, A.H. (2014). Structural and functional analyses of a glutaminyl cyclase from ixodes scapularis reveal metal-independent catalysis and inhibitor binding. Acta Crystallogr. D Biol. Crystallogr. 70: 789–801, https://doi.org/10.1107/s1399004713033488.Search in Google Scholar
Huang, K.-F., Liu, Y.-L., Cheng, W.-J., Ko, T.-P., and Wang, A.H.J. (2005). Crystal structures of human glutaminyl cyclase, an enzyme responsible for protein N-terminal pyroglutamate formation. Proc. Natl. Acad. Sci. U.S.A. 102: 13117–13122, https://doi.org/10.1073/pnas.0504184102.Search in Google Scholar
Huang, K.-F., Wang, Y.-R., Chang, E.-C., Chou, T.-L., and Wang, A.H.J. (2008). A conserved hydrogen-bond network in the catalytic centre of animal glutaminyl cyclases is critical for catalysis. Biochem. J. 411: 181–190, https://doi.org/10.1042/bj20071073.Search in Google Scholar
Huang, W.-L., Wang, Y.-R., Ko, T.-P., Chia, C.-Y., Huang, K.-F., and Wang, A.H.J. (2010). Crystal structure and functional analysis of the glutaminyl cyclase from Xanthomonas campestris. J. Mol. Biol. 401: 374–388, https://doi.org/10.1016/j.jmb.2010.06.012.Search in Google Scholar
Kabsch, W. (2010). XDS. Acta Crystallogr. D Biol. Crystallogr. 66: 125–132, https://doi.org/10.1107/s0907444909047337.Search in Google Scholar
Kim, M.K., Lee, S., An, Y.J., Jeong, C.S., Ji, C.J., Lee, J.W., and Cha, S.S. (2013). In-house zinc SAD phasing at Cu Kalpha edge. Mol. Cell. 36: 74–81, https://doi.org/10.1007/s10059-013-0074-1.Search in Google Scholar
Krissinel, E. (2012). Enhanced fold recognition using efficient short fragment clustering. J. Mol. Biochem. 1: 76–85.Search in Google Scholar
Liebschner, D., Afonine, P., Baker, M., Bunkóczi, G., Chen, V., Croll, T., Hintze, B., Hung, L.-W., Jain, S., and McCoy, A., et al.. (2019). Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 75: 861–877, https://doi.org/10.1107/s2059798319011471.Search in Google Scholar
Liu, Y., Wu, Z., Nakanishi, Y., Ni, J., Hayashi, Y., Takayama, F., Zhou, Y., Kadowaki, T., and Nakanishi, H. (2018). Author correction: infection of microglia with Porphyromonas gingivalis promotes cell migration and an inflammatory response through the gingipain-mediated activation of protease-activated receptor-2 in mice. Sci. Rep. 8: 10304, https://doi.org/10.1038/s41598-018-27508-9.Search in Google Scholar
Long, F., Vagin, A.A., Young, P., and Murshudov, G.N. (2008). BALBES: a molecular-replacement pipeline. Acta Crystallogr. D Biol. Crystallogr. 64: 125–32, https://doi.org/10.1107/s0907444907050172.Search in Google Scholar
Lucas, X., Bauza, A., Frontera, A., and Quinonero, D. (2016). A thorough anion-pi interaction study in biomolecules: on the importance of cooperativity effects. Chem. Sci. 7: 1038–1050, https://doi.org/10.1039/c5sc01386k.Search in Google Scholar
McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., and Read, R.J. (2007). Phaser crystallographic software. J. Appl. Crystallogr. 40: 658–674, https://doi.org/10.1107/s0021889807021206.Search in Google Scholar
Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., and Olson, A.J. (2009). AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30: 2785–2791, https://doi.org/10.1002/jcc.21256.Search in Google Scholar
Murshudov, G.N., Skubak, P., Lebedev, A.A., Pannu, N.S., Steiner, R.A., Nicholls, R.A., Winn, M.D., Long, F., and Vagin, A.A. (2011). REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D 67: 355–367, https://doi.org/10.1107/s0907444911001314.Search in Google Scholar
Ngo, V.T.H., Hoang, V.-H., Tran, P.-T., Ann, J., Cui, M., Park, G., Choi, S., Lee, J., Kim, H., and Ha, H.-J., et al.. (2018). Potent human glutaminyl cyclase inhibitors as potential anti-Alzheimer’s agents: structure-activity relationship study of Arg-mimetic region. Bioorg. Med. Chem. 26: 1035–1049, https://doi.org/10.1016/j.bmc.2018.01.015.Search in Google Scholar
Pozzi, C., Di Pisa, F., Benvenuti, M., and Mangani, S. (2018). The structure of the human glutaminyl cyclase–SEN177 complex indicates routes for developing new potent inhibitors as possible agents for the treatment of neurological disorders. J. Biol. Inorg. Chem. 23: 1219–1226, https://doi.org/10.1007/s00775-018-1605-1.Search in Google Scholar
Qi-Sheng Wang, K.-H.Z., Yin, C., Wang, Z.-J., Pan, Q.-Y., Liu, K., Sun, B., Zhou, H., Li, M.-J., Xu, Q., Xu, C.-Y., et al.. (2018). Upgrade of macromolecular crystallography beamline BL17U1 at SSRF. Nucl. Sci. Tech. 68.10.1007/s41365-018-0398-9Search in Google Scholar
Ruiz-Carrillo, D., Koch, B., Parthier, C., Wermann, M., Dambe, T., Buchholz, M., Ludwig, H.-H., Heiser, U., Rahfeld, J.-U., and Stubbs, M.T., et al.. (2011). Structures of glycosylated mammalian glutaminyl cyclases reveal conformational variability near the active center. Biochemistry 50: 6280–6288, https://doi.org/10.1021/bi200249h.Search in Google Scholar
Ruiz-Carrillo, D., Parthier, C., Jänckel, N., Grandke, J., Stelter, M., Schilling, S., Böhme, M., Neumann, P., Wolf, R., and Demuth, H.-U., et al.. (2010). Kinetic and structural characterization of bacterial glutaminyl cyclases from Zymomonas mobilis and Myxococcus xanthus. Biol. Chem. 391: 1419–1428, https://doi.org/10.1515/bc.2010.130.Search in Google Scholar
Rupp, B. (2010). Biomolecular crystallography : principles, practice, and application to structural biology. Garland Science, New York.Search in Google Scholar
Santos-Martins, D., Forli, S., Ramos, M.J., and Olson, A.J. (2014). AutoDock4(Zn): an improved AutoDock force field for small-molecule docking to zinc metalloproteins. J. Chem. Inf. Model. 54: 2371–2379, https://doi.org/10.1021/ci500209e.Search in Google Scholar
Schilling, S., and Demuth, H.-U. (2004). Continuous assays of glutaminyl cyclase: from development to application. Spectroscopy 18: 363–373, https://doi.org/10.1155/2004/413050.Search in Google Scholar
Schilling, S., Hoffmann, T., Manhart, S., Hoffmann, M., and Demuth, H.-U. (2004). Glutaminyl cyclases unfold glutamyl cyclase activity under mild acid conditions. FEBS (Fed. Eur. Biochem. Soc.) Lett. 563: 191–196, https://doi.org/10.1016/s0014-5793(04)00300-x.Search in Google Scholar
Schilling, S., Niestroj, A.J., Rahfeld, J.-U., Hoffmann, T., Wermann, M., Zunkel, K., Wasternack, C., and Demuth, H.-U. (2003). Identification of human glutaminyl cyclase as a metalloenzyme: potent inhibition by imidazole derivatives and heterocyclic chelators. J. Biol. Chem. 278: 49773–49779, https://doi.org/10.1074/jbc.m309077200.Search in Google Scholar
Schilling, S., Wasternack, C., and Demuth, H.U. (2008a). Glutaminyl cyclases from animals and plants: a case of functionally convergent protein evolution. Biol. Chem. 389: 983–91, https://doi.org/10.1515/bc.2008.111.Search in Google Scholar
Schilling, S., Zeitschel, U., Hoffmann, T., Heiser, U., Francke, M., Kehlen, A., Holzer, M., Hutter-Paier, B., Prokesch, M., Windisch, M., et al.. (2008b). Glutaminyl cyclase inhibition attenuates pyroglutamate Abeta and Alzheimer’s disease-like pathology. Nat. Med. 14: 1106–1111, https://doi.org/10.1038/nm.1872.Search in Google Scholar
Seifert, F., Schulz, K., Koch, B., Manhart, S., Demuth, H.-U., and Schilling, S. (2009). Glutaminyl cyclases display significant catalytic proficiency for glutamyl substrates. Biochemistry 48: 11831–11833, https://doi.org/10.1021/bi9018835.Search in Google Scholar
Takahashi, N., and Schachtele, C.F. (1990). Effect of pH on the growth and proteolytic activity of Porphyromonas gingivalis and Bacteroides intermedius. J. Dent. Res. 69: 1266–9, https://doi.org/10.1177/00220345900690060801.Search in Google Scholar
Taudte, N., Linnert, M., Rahfeld, J.-U., Piechotta, A., Ramsbeck, D., Buchholz, M., Kolenko, P., Parthier, C., Houston, J.A., and Veillard, F., et al.. (2021). Mammalian-like type II glutaminyl cyclases in Porphyromonas gingivalis and other oral pathogenic bacteria as targets for treatment of periodontitis. J. Biol. Chem. 296: 100263, https://doi.org/10.1074/jbc.RA120.016836.Search in Google Scholar
Valenti, M.T., Bolognin, S., Zanatta, C., Donatelli, L., Innamorati, G., Pampanin, M., Zanusso, G., Zatta, P., and Dalle Carbonare, L. (2013). Increased glutaminyl cyclase expression in peripheral blood of Alzheimer’s disease patients. J. Alzheim. Dis. 34: 263–271, https://doi.org/10.3233/jad-120517.Search in Google Scholar
Wintjens, R., Belrhali, H., Clantin, B., Azarkan, M., Bompard, C., Baeyens-Volant, D., Looze, Y., and Villeret, V. (2006). Crystal structure of papaya glutaminyl cyclase, an archetype for plant and bacterial glutaminyl cyclases. J. Mol. Biol. 357: 457–470, https://doi.org/10.1016/j.jmb.2005.12.029.Search in Google Scholar
Wu, Z., Ni, J., Liu, Y., Teeling, J.L., Takayama, F., Collcutt, A., Ibbett, P., and Nakanishi, H. (2017). Cathepsin B plays a critical role in inducing Alzheimer’s disease-like phenotypes following chronic systemic exposure to lipopolysaccharide from Porphyromonas gingivalis in mice. Brain Behav. Immun. 65: 350–361, https://doi.org/10.1016/j.bbi.2017.06.002.Search in Google Scholar
Zheng, H., Cooper, D.R., Porebski, P.J., Shabalin, I.G., Handing, K.B., and Minor, W. (2017). CheckMyMetal: a macromolecular metal-binding validation tool. Acta Crystallogr. D Struct. Biol. 73: 223–233, https://doi.org/10.1107/s2059798317001061.Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2020-0298).
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Research Articles/Short Communications
- Protein Structure and Function
- Structural and kinetic characterization of Porphyromonas gingivalis glutaminyl cyclase
- Molecular Medicine
- Elucidating the anti-biofilm and anti-quorum sensing potential of selenocystine against respiratory tract infections causing bacteria: in vitro and in silico studies
- Carotenoids in Sporidiobolus pararoseus ameliorate diabetic nephropathy in mice through attenuating oxidative stress
- Cell Biology and Signaling
- Berberine improves dietary-induced cardiac remodeling by upregulating Kruppel-like factor 4-dependent mitochondrial function
- Decreased level of miR-1301 promotes colorectal cancer progression via activation of STAT3 pathway
- JMJD3-regulated expression of IL-6 is involved in the proliferation and chemosensitivity of acute myeloid leukemia cells
- Modulation of recombinant human alpha 1 glycine receptor by flavonoids and gingerols
- IL-24 inhibits the malignancy of human glioblastoma cells via destabilization of Zeb1
- Glycation of benign meningioma cells leads to increased invasion
- Proteolysis
- Marked difference in efficiency of the digestive enzymes pepsin, trypsin, chymotrypsin, and pancreatic elastase to cleave tightly folded proteins
Articles in the same Issue
- Frontmatter
- Research Articles/Short Communications
- Protein Structure and Function
- Structural and kinetic characterization of Porphyromonas gingivalis glutaminyl cyclase
- Molecular Medicine
- Elucidating the anti-biofilm and anti-quorum sensing potential of selenocystine against respiratory tract infections causing bacteria: in vitro and in silico studies
- Carotenoids in Sporidiobolus pararoseus ameliorate diabetic nephropathy in mice through attenuating oxidative stress
- Cell Biology and Signaling
- Berberine improves dietary-induced cardiac remodeling by upregulating Kruppel-like factor 4-dependent mitochondrial function
- Decreased level of miR-1301 promotes colorectal cancer progression via activation of STAT3 pathway
- JMJD3-regulated expression of IL-6 is involved in the proliferation and chemosensitivity of acute myeloid leukemia cells
- Modulation of recombinant human alpha 1 glycine receptor by flavonoids and gingerols
- IL-24 inhibits the malignancy of human glioblastoma cells via destabilization of Zeb1
- Glycation of benign meningioma cells leads to increased invasion
- Proteolysis
- Marked difference in efficiency of the digestive enzymes pepsin, trypsin, chymotrypsin, and pancreatic elastase to cleave tightly folded proteins