Abstract
PIWI-interacting RNAs (piRNAs) are small regulatory RNAs that associate with members of the PIWI clade of the Argonaute superfamily of proteins. piRNAs are predominantly found in animal gonads. There they silence transposable elements (TEs), regulate gene expression and participate in DNA methylation, thus orchestrating proper germline development. Furthermore, PIWI proteins are also indispensable for the maintenance and differentiation capabilities of pluripotent stem cells in free-living invertebrate species with regenerative potential. Thus, PIWI proteins and piRNAs seem to constitute an essential molecular feature of somatic pluripotent stem cells and the germline. In keeping with this hypothesis, both PIWI proteins and piRNAs are enriched in neoblasts, the adult stem cells of planarian flatworms, and their presence is a prerequisite for the proper regeneration and perpetual tissue homeostasis of these animals. The piRNA pathway is required to maintain the unique biology of planarians because, in analogy to the animal germline, planarian piRNAs silence TEs and ensure stable genome inheritance. Moreover, planarian piRNAs also contribute to the degradation of numerous protein-coding transcripts, a function that may be critical for neoblast differentiation. This review gives an overview of the planarian piRNA pathway and of its crucial function in neoblast biology.
Acknowledgments
We are grateful to Elizabeth M. Duncan from the University of Kentucky (Lexington, KY, USA) for comments on this manuscript. We thank Caroline Rossignol for contributing to artwork. Moreover, we are grateful to Labib Rouhana from Wright State University (Dayton, OH, USA) and to an anonymous reviewer for the insightful comments that significantly improved our manuscript. This work was supported by the Elite Network of Bavaria, the University of Bayreuth, and the Paul Ehrlich and Ludwig Darmstaedter Prize for Young Researchers (to C.-D.K).
Funding: Elitenetzwerk Bayern, Funder Id: http://dx.doi.org/10.13039/501100008848, Grant Number: N-BM-2013-244.
References
Abnave, P., Mottola, G., Gimenez, G., Boucherit, N., Trouplin, V., Torre, C., Conti, F., Amara, A.B., Lepolard, C., Djian, B., et al. (2014). Screening in Planarians Identifies MORN2 as a Key Component in LC3-Associated Phagocytosis and Resistance to Bacterial Infection. Cell Host Microbe 16, 338–350.10.1016/j.chom.2014.08.002Suche in Google Scholar
Almazan, E.M.P., Lesko, S.L., Markey, M.P., and Rouhana, L. (2018). Girardia dorotocephala transcriptome sequence, assembly, and validation through characterization of piwi homologs and stem cell progeny markers. Dev. Biol. 433, 433–447.10.1016/j.ydbio.2017.07.022Suche in Google Scholar
Altincicek, B. and Vilcinskas, A. (2008). Comparative analysis of septic injury-inducible genes in phylogenetically distant model organisms of regeneration and stem cell research, the planarian Schmidtea mediterranea and the cnidarian Hydra vulgaris. Front. Zool. 5, 6.10.1186/1742-9994-5-6Suche in Google Scholar
Andersen, P.R., Tirian, L., Vunjak, M., and Brennecke, J. (2017). A heterochromatin-dependent transcription machinery drives piRNA expression. Nature 549, 54–59.10.1038/nature23482Suche in Google Scholar
Aravin, A.A., Naumova, N.M., Tulin, A.V., Vagin, V.V., Rozovsky, Y.M., and Gvozdev, V.A. (2001). Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Curr. Biol. 11, 1017–1027.10.1016/S0960-9822(01)00299-8Suche in Google Scholar
Aravin, A., Gaidatzis, D., Pfeffer, S., Lagos-Quintana, M., Landgraf, P., Iovino, N., Morris, P., Brownstein, M.J., Kuramochi-Miyagawa, S., Nakano, T., et al. (2006). A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442, 203–207.10.1038/nature04916Suche in Google Scholar PubMed
Aravin, A.A., Sachidanandam, R., Girard, A., Toth, K.F., and Hannon, G.J. (2007). Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 316, 744–747.10.1126/science.1142612Suche in Google Scholar PubMed
Aravin, A.A., Sachidanandam, R., Bourc’his, D., Schaefer, C., Pezic, D., Toth, K.F., Bestor, T., and Hannon, G.J. (2008). A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol. Cell 31, 785–799.10.1016/j.molcel.2008.09.003Suche in Google Scholar PubMed PubMed Central
Arkhipova, I.R. and Yushenova, I.A. (2019). Giant transposons in eukaryotes: is bigger better? Genome Biol. Evol. 11, 906–918.10.1093/gbe/evz041Suche in Google Scholar PubMed PubMed Central
Arnold, C.P., Merryman, M.S., Harris-Arnold, A., McKinney, S.A., Seidel, C.W., Loethen, S., Proctor, K.N., Guo, L., and Alvarado, A.S. (2016). Pathogenic shifts in endogenous microbiota impede tissue regeneration via distinct activation of TAK1/MKK/p38. eLife 5, e16793.10.7554/eLife.16793.029Suche in Google Scholar
Ashe, A., Sapetschnig, A., Weick, E.-M., Mitchell, J., Bagijn, M.P., Cording, A.C., Doebley, A.-L., Goldstein, L.D., Lehrbach, N.J., Pen, J.L., et al. (2012). piRNAs can trigger a multigenerational epigenetic memory in the germline of C. elegans. Cell 150, 88–99.10.1016/j.cell.2012.06.018Suche in Google Scholar PubMed PubMed Central
Barckmann, B., Pierson, S., Dufourt, J., Papin, C., Armenise, C., Port, F., Grentzinger, T., Chambeyron, S., Baronian, G., Desvignes, J.-P., et al. (2015). Aubergine iCLIP reveals piRNA-dependent decay of mRNAs involved in germ cell development in the early embryo. Cell Rep. 12, 1205–1216.10.1016/j.celrep.2015.07.030Suche in Google Scholar PubMed PubMed Central
Batki, J., Schnabl, J., Wang, J., Handler, D., Andreev, V.I., Stieger, C.E., Novatchkova, M., Lampersberger, L., Kauneckaite, K., Xie, W., et al. (2019). The nascent RNA binding complex SFiNX licenses piRNA-guided heterochromatin formation. Nat. Struct. Mol. Biol. 26, 720–731.10.1038/s41594-019-0270-6Suche in Google Scholar PubMed PubMed Central
Brennecke, J., Aravin, A.A., Stark, A., Dus, M., Kellis, M., Sachidanandam, R., and Hannon, G.J. (2007). Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128, 1089–1103.10.1016/j.cell.2007.01.043Suche in Google Scholar PubMed
Brown, D.D.R. and Pearson, B.J. (2017). A brain unfixed: unlimited neurogenesis and regeneration of the adult planarian nervous system. Front. Neurosci. 11, 289.10.3389/fnins.2017.00289Suche in Google Scholar PubMed PubMed Central
Cai, P., Piao, X., Hou, N., Liu, S., Wang, H., and Chen, Q. (2012). Identification and characterization of argonaute protein, Ago2 and its associated small RNAs in Schistosoma japonicum. PLoS Negl. Trop. Dis. 6, 1745–1745.10.1371/journal.pntd.0001745Suche in Google Scholar PubMed PubMed Central
Carmell, M.A., Girard, A., van de Kant, H.J.G., Bourc’his, D., Bestor, T.H., de Rooij, D.G., and Hannon, G.J. (2007). MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev. Cell 12, 503–514.10.1016/j.devcel.2007.03.001Suche in Google Scholar PubMed
Chalvet, F., Teysset, L., Terzian, C., Prud’homme, N., Santamaria, P., Bucheton, A., and Pélisson, A. (1999). Proviral amplification of the Gypsy endogenous retrovirus of Drosophila melanogaster involves env-independent invasion of the female germline. EMBO J. 18, 2659–2669.10.1093/emboj/18.9.2659Suche in Google Scholar PubMed PubMed Central
Clark, J.P. and Lau, N.C. (2014). Piwi Proteins and piRNAs step onto the systems biology stage. Adv. Exp. Med. Biol. 825, 159–197.10.1007/978-1-4939-1221-6_5Suche in Google Scholar PubMed PubMed Central
Collins, J.J. (2017). Platyhelminthes. Curr. Biol. 27, R252–R256.10.1016/j.cub.2017.02.016Suche in Google Scholar PubMed
Coward, S.J. (1974). Chromatoid bodies in somatic cells of the planarian: observations on their behavior during mitosis. Anat. Rec. 180, 533–545.10.1002/ar.1091800312Suche in Google Scholar PubMed
Cox, D.N., Chao, A., Baker, J., Chang, L., Qiao, D., and Lin, H. (1998). A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev. 12, 3715–3727.10.1101/gad.12.23.3715Suche in Google Scholar PubMed PubMed Central
Czech, B., Munafò, M., Ciabrelli, F., Eastwood, E.L., Fabry, M.H., Kneuss, E., and Hannon, G.J. (2018). piRNA-guided genome defense: from biogenesis to silencing. Annu. Rev. Genet. 52, 131–157.10.1146/annurev-genet-120417-031441Suche in Google Scholar PubMed
Dai, P., Wang, X., Gou, L.-T., Li, Z.-T., Wen, Z., Chen, Z.-G., Hua, M.-M., Zhong, A., Wang, L., Su, H., et al. (2019). A Translation-Activating Function of MIWI/piRNA during Mouse Spermiogenesis. Cell 179, 1566–158110.1016/j.cell.2019.11.022Suche in Google Scholar PubMed PubMed Central
Davies, E.L., Lei, K., Seidel, C.W., Kroesen, A.E., McKinney, S.A., Guo, L., Robb, S.M., Ross, E.J., Gotting, K., and Alvarado, A.S. (2017). Embryonic origin of adult stem cells required for tissue homeostasis and regeneration. Elife 6, e21052.10.7554/eLife.21052Suche in Google Scholar PubMed PubMed Central
Dennis, C., Zanni, V., Brasset, E., Eymery, A., Zhang, L., Mteirek, R., Jensen, S., Rong, Y.S., and Vaury, C. (2013). Dot COM, a nuclear transit center for the primary piRNA pathway in Drosophila. PLoS One 8, 1–6.10.1371/journal.pone.0072752Suche in Google Scholar PubMed PubMed Central
Duc, C., Yoth, M., Jensen, S., Mouniée, N., Bergman, C.M., Vaury, C., and Brasset, E. (2019). Trapping a somatic endogenous retrovirus into a germline piRNA cluster immunizes the germline against further invasion. Genome Biol. 20, 127.10.1186/s13059-019-1736-xSuche in Google Scholar PubMed PubMed Central
Duncan, E.M., Chitsazan, A.D., Seidel, C.W., and Alvarado, A.S. (2015). Set1 and MLL1/2 target distinct sets of functionally different genomic loci in vivo. Cell Rep. 13, 2741–2755.10.1016/j.celrep.2015.11.059Suche in Google Scholar PubMed PubMed Central
Egger, B., Gschwentner, R., and Rieger, R. (2006). Free-living flatworms under the knife: past and present. Dev. Genes Evol. 217, 89–104.10.1007/s00427-006-0120-5Suche in Google Scholar PubMed PubMed Central
Elbashir, S.M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498.10.1038/35078107Suche in Google Scholar PubMed
Fabry, M.H., Ciabrelli, F., Munafo, M., Eastwood, E.L., Kneuss, E., Falciatori, I., Falconio, F.A., Hannon, G.J., and Czech, B. (2019). piRNA-guided co-transcriptional silencing coopts nuclear export factors. Elife 8, e47999.10.7554/eLife.47999Suche in Google Scholar PubMed PubMed Central
Fernandéz-Taboada, E., Moritz, S., Zeuschner, D., Stehling, M., Schöler, H.R., Saló, E., and Gentile, L. (2010). Smed-SmB, a member of the LSm protein superfamily, is essential for chromatoid body organization and planarian stem cell proliferation. Development 137, 1055–1065.10.1242/dev.042564Suche in Google Scholar PubMed
Fincher, C.T., Wurtzel, O., de Hoog, T., Kravarik, K.M., and Reddien, P.W. (2018). Cell type transcriptome atlas for the planarian Schmidtea mediterranea. Science 360, 6391.10.1126/science.aaq1736Suche in Google Scholar PubMed PubMed Central
Friedländer, M.R., Adamidi, C., Han, T., Lebedeva, S., Isenbarger, T.A., Hirst, M., Marra, M., Nusbaum, C., Lee, W.L., Jenkin, J.C., et al. (2009). High-resolution profiling and discovery of planarian small RNAs. Proc. Natl. Acad. Sci. U.S.A. 106, 11546–11551.10.1073/pnas.0905222106Suche in Google Scholar PubMed PubMed Central
Gainetdinov, I., Colpan, C., Arif, A., Cecchini, K., and Zamore, P.D. (2018). A single mechanism of biogenesis, initiated and directed by PIWI proteins, explains piRNA production in most animals. Mol. Cell 71, 775–790.10.1016/j.molcel.2018.08.007Suche in Google Scholar PubMed PubMed Central
Gan, H., Lin, X., Zhang, Z., Zhang, W., Liao, S., Wang, L., and Han, C. (2011). piRNA profiling during specific stages of mouse spermatogenesis. RNA 17, 1191–1203.10.1261/rna.2648411Suche in Google Scholar PubMed PubMed Central
Girard, A., Sachidanandam, R., Hannon, G.J., and Carmell, M.A. (2006). A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442, 199–202.10.1038/nature04917Suche in Google Scholar PubMed
Goriaux, C., Desset, S., Renaud, Y., Vaury, C., and Brasset, E. (2014). Transcriptional properties and splicing of the flamenco piRNA cluster. EMBO Rep. 15, 411–418.10.1002/embr.201337898Suche in Google Scholar PubMed PubMed Central
Gou, L.-T., Dai, P., Yang, J.-H., Xue, Y., Hu, Y.-P., Zhou, Y., Kang, J.-Y., Wang, X., Li, H., Hua, M.-M., et al. (2014). Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis. Cell Res. 24, 680–700.10.1038/cr.2014.41Suche in Google Scholar PubMed PubMed Central
Gou, L.-T., Kang, J.-Y., Dai, P., Wang, X., Li, F., Zhao, S., Zhang, M., Hua, M.-M., Lu, Y., Zhu, Y., et al. (2017). Ubiquitination-deficient mutations in human Piwi cause male infertility by impairing histone-to-protamine exchange during spermiogenesis. Cell 169, 1090–1104.10.1016/j.cell.2017.04.034Suche in Google Scholar PubMed PubMed Central
Grivna, S.T., Beyret, E., Wang, Z., and Lin, H. (2006). A novel class of small RNAs in mouse spermatogenic cells. Genes Dev. 20, 1709–1714.10.1101/gad.1434406Suche in Google Scholar PubMed PubMed Central
Grohme, M.A., Schloissnig, S., Rozanski, A., Pippel, M., Young, G.R., Winkler, S., Brandl, H., Henry, I., Dahl, A., Powell, S., et al. (2018). The genome of Schmidtea mediterranea and the evolution of core cellular mechanisms. Nature 554, 56–61.10.1038/nature25473Suche in Google Scholar PubMed PubMed Central
Gunawardane, L.S., Saito, K., Nishida, K.M., Miyoshi, K., Kawamura, Y., Nagami, T., Siomi, H., and Siomi, M.C. (2007). A Slicer-mediated mechanism for repeat-associated siRNA 5′end formation in Drosophila. Science 315, 1587–1590.10.1126/science.1140494Suche in Google Scholar PubMed
Guo, T., Peters, A.H.F.M., and Newmark, P.A. (2006). A Bruno-like gene is required for stem cell maintenance in planarians. Dev. Cell 11, 159–169.10.1016/j.devcel.2006.06.004Suche in Google Scholar PubMed
Hagstrom, D., Cochet-Escartin, O., and Collins, E.-M.S. (2016). Planarian brain regeneration as a model system for developmental neurotoxicology. Regeneration 3, 65–77.10.1002/reg2.52Suche in Google Scholar PubMed PubMed Central
Han, B.W., Wang, W., Li, C., Weng, Z., and Zamore, P.D. (2015). piRNA-guided transposon cleavage initiates Zucchini-dependent, phased piRNA production. Science 348, 817–821.10.1126/science.aaa1264Suche in Google Scholar PubMed PubMed Central
Hayashi, T. and Agata, K. (2018). A subtractive FACS method for isolation of planarian stem cells and neural cells. Methods Mol. Biol. 1774, 467–478.10.1007/978-1-4939-7802-1_19Suche in Google Scholar PubMed
Hayashi, R., Schnabl, J., Handler, D., Mohn, F., Ameres, S.L., and Brennecke, J. (2016). Genetic and mechanistic diversity of piRNA 3′-end formation. Nature 539, 588–592.10.1038/nature20162Suche in Google Scholar PubMed PubMed Central
Homolka, D., Pandey, R.R., Goriaux, C., Brasset, E., Vaury, C., Sachidanandam, R., Fauvarque, M.-O., and Pillai, R.S. (2015). PIWI slicing and RNA elements in precursors instruct directional primary piRNA biogenesis. Cell Rep. 12, 418–428.10.1016/j.celrep.2015.06.030Suche in Google Scholar PubMed
Horwich, M.D., Li, C., Matranga, C., Vagin, V., Farley, G., Wang, P., and Zamore, P.D. (2007). The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr. Biol. 17, 1265–1272.10.1016/j.cub.2007.06.030Suche in Google Scholar PubMed
Houwing, S., Kamminga, L.M., Berezikov, E., Cronembold, D., Girard, A., van den Elst, H., Filippov, D.V., Blaser, H., Raz, E., Moens, C.B., et al. (2007). A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in zebrafish. Cell 129, 69–82.10.1016/j.cell.2007.03.026Suche in Google Scholar PubMed
Hughes, T., Ekman, D., Ardawatia, H., Elofsson, A., and Liberles, D.A. (2007). Evaluating dosage compensation as a cause of duplicate gene retention in Paramecium tetraurelia. Genome Biol 8, 213.10.1186/gb-2007-8-5-213Suche in Google Scholar PubMed PubMed Central
Ivankovic, M., Haneckova, R., Thommen, A., Grohme, M.A., Vila-Farré, M., Werner, S., and Rink, J.C. (2019). Model systems for regeneration: planarians. Development 146, 17.10.1242/dev.167684Suche in Google Scholar PubMed
Iwasaki, Y.W., Murano, K., Ishizu, H., Shibuya, A., Iyoda, Y., Siomi, M.C., Siomi, H., and Saito, K. (2016). Piwi modulates chromatin accessibility by regulating multiple factors including histone H1 to repress transposons. Mol. Cell 63, 408–419.10.1016/j.molcel.2016.06.008Suche in Google Scholar PubMed
Izumi, N., Shoji, K., Sakaguchi, Y., Honda, S., Kirino, Y., Suzuki, T., Katsuma, S., and Tomari, Y. (2016). Identification and functional analysis of the pre-piRNA 3′ Trimmer in silkworms. Cell 164, 962–973.10.1016/j.cell.2016.01.008Suche in Google Scholar PubMed PubMed Central
Juliano, C.E., Swartz, S.Z., and Wessel, G.M. (2010). A conserved germline multipotency program. Development 137, 4113–4126.10.1242/dev.047969Suche in Google Scholar PubMed PubMed Central
Juliano, C., Wang, J., and Lin, H. (2011). Uniting germline and stem cells: the function of Piwi proteins and the piRNA pathway in diverse organisms. Annu. Rev. Genet. 45, 447–469.10.1146/annurev-genet-110410-132541Suche in Google Scholar PubMed PubMed Central
Juliano, C.E., Reich, A., Liu, N., Götzfried, J., Zhong, M., Uman, S., Reenan, R.A., Wessel, G.M., Steele, R.E., and Lin, H. (2014). PIWI proteins and PIWI-interacting RNAs function in Hydra somatic stem cells. Proc. Natl. Acad. Sci. U.S.A. 111, 337–342.10.1073/pnas.1320965111Suche in Google Scholar PubMed PubMed Central
Kashima, M., Kumagai, N., Agata, K., and Shibata, N. (2016). Heterogeneity of chromatoid bodies in adult pluripotent stem cells of planarian Dugesia japonica. Dev. Growth Differ. 58, 225–237.10.1111/dgd.12268Suche in Google Scholar PubMed
Kashima, M., Agata, K., and Shibata, N. (2018). Searching for non-transposable targets of planarian nuclear PIWI in pluripotent stem cells and differentiated cells. Dev. Growth Differ. 15, 433–418.10.1111/dgd.12536Suche in Google Scholar PubMed
Kawaoka, S., Hara, K., Shoji, K., Kobayashi, M., Shimada, T., Sugano, S., Tomari, Y., Suzuki, Y., and Katsuma, S. (2013). The comprehensive epigenome map of piRNA clusters. Nucl. Acids Res 41, 1581–1590.10.1093/nar/gks1275Suche in Google Scholar PubMed PubMed Central
Kazazian, H.H. (2004). Mobile elements: drivers of genome evolution. Science 303, 1626–1632.10.1126/science.1089670Suche in Google Scholar PubMed
Kim, K.W. (2019). PIWI proteins and piRNAs in the nervous system. Mol. Cell 42, 828–835.Suche in Google Scholar
Kim, K.W., Tang, N.H., Andrusiak, M.G., Wu, Z., Chisholm, A.D., and Jin, Y. (2018). A neuronal piRNA pathway inhibits axon regeneration in C. elegans. Neuron 97, 511–519.10.1016/j.neuron.2018.01.014Suche in Google Scholar PubMed PubMed Central
Kim, I.V., Duncan, E.M., Ross, E.J., Gorbovytska, V., Nowotarski, S.H., Elliott, S.A., Alvarado, A.S., and Kuhn, C.-D. (2019a). Planarians recruit piRNAs for mRNA turnover in adult stem cells. Genes Dev. 33, 1575–1590.10.1101/gad.322776.118Suche in Google Scholar PubMed PubMed Central
Kim, I.V., Ross, E.J., Dietrich, S., Döring, K., Alvarado, A.S., and Kuhn, C.-D. (2019b). Efficient depletion of ribosomal RNA for RNA sequencing in planarians. BMC Genomics 20, 909–912.10.1186/s12864-019-6292-ySuche in Google Scholar PubMed PubMed Central
Kirino, Y. and Mourelatos, Z. (2007). Mouse Piwi-interacting RNAs are 2′-O-methylated at their 3′ termini. Nat. Struct. Mol. Biol. 14, 347–348.10.1038/nsmb1218Suche in Google Scholar PubMed
Klattenhoff, C., Xi, H., Li, C., Lee, S., Xu, J., Khurana, J.S., Zhang, F., Schultz, N., Koppetsch, B.S., Nowosielska, A., et al. (2009). The Drosophila HP1 homolog Rhino is required for transposon silencing and piRNA production by dual-strand clusters. Cell 138, 1137–1149.10.1016/j.cell.2009.07.014Suche in Google Scholar PubMed PubMed Central
Labbé, R.M., Irimia, M., Currie, K.W., Lin, A., Zhu, S.J., Brown, D.D.R., Ross, E.J., Voisin, V., Bader, G.D., Blencowe, B.J., et al. (2012). A comparative transcriptomic analysis reveals conserved features of stem cell pluripotency in planarians and mammals. Stem Cells 30, 1734–1745.10.1002/stem.1144Suche in Google Scholar PubMed PubMed Central
Lai, A.G. and Aboobaker, A.A. (2018). EvoRegen in animals: time to uncover deep conservation or convergence of adult stem cell evolution and regenerative processes. Dev. Biol. 433, 118–131.10.1016/j.ydbio.2017.10.010Suche in Google Scholar PubMed
Lau, N.C., Seto, A.G., Kim, J., Kuramochi-Miyagawa, S., Nakano, T., Bartel, D.P., and Kingston, R.E. (2006). Characterization of the piRNA complex from rat testes. Science 313, 363–367.10.1126/science.1130164Suche in Google Scholar PubMed
Lau, N.C., Robine, N., Martin, R., Chung, W.-J., Niki, Y., Berezikov, E., and Lai, E.C. (2009). Abundant primary piRNAs, endo-siRNAs, and microRNAs in a Drosophila ovary cell line. Genome Res. 19, 1776–1785.10.1101/gr.094896.109Suche in Google Scholar PubMed PubMed Central
Lee, H.-C., Gu, W., Shirayama, M., Youngman, E., Jr, D.C., and Mello, C.C. (2012). C. elegans piRNAs mediate the genome-wide surveillance of germline transcripts. Cell 150, 78–87.10.1016/j.cell.2012.06.016Suche in Google Scholar PubMed PubMed Central
Lehmann, R. (2012). Germline stem cells: origin and destiny. Cell Stem Cell 10, 729–739.10.1016/j.stem.2012.05.016Suche in Google Scholar PubMed PubMed Central
Leuschner, P.J.F., Ameres, S.L., Kueng, S., and Martinez, J. (2006). Cleavage of the siRNA passenger strand during RISC assembly in human cells. EMBO Rep. 7, 314–320.10.1038/sj.embor.7400637Suche in Google Scholar PubMed PubMed Central
Lewis, S.H., Quarles, K.A., Yang, Y., Tanguy, M., Frézal, L., Smith, S.A., Sharma, P.P., Cordaux, R., Gilbert, C., Giraud, I., et al. (2018). Pan-arthropod analysis reveals somatic piRNAs as an ancestral defence against transposable elements. Nat. Ecol. Evol. 2, 174–181.10.1038/s41559-017-0403-4Suche in Google Scholar PubMed PubMed Central
Li, C., Vagin, V.V., Lee, S., Xu, J., Ma, S., Xi, H., Seitz, H., Horwich, M.D., Syrzycka, M., Honda, B.M., et al. (2009). Collapse of germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs in flies. Cell 137, 509–521.10.1016/j.cell.2009.04.027Suche in Google Scholar PubMed PubMed Central
Li, Y.-Q., Zeng, A., Han, X.-S., Wang, C., Li, G., Zhang, Z.-C., Wang, J.-Y., Qin, Y.-W., and Jing, Q. (2011). Argonaute-2 regulates the proliferation of adult stem cells in planarian. Cell Res. 21, 1750–1754.10.1038/cr.2011.151Suche in Google Scholar PubMed PubMed Central
Li, X.Z., Roy, C.K., Dong, X., Bolcun-Filas, E., Wang, J., Han, B.W., Xu, J., Moore, M.J., Schimenti, J.C., Weng, Z., et al. (2013). An ancient transcription factor initiates the burst of piRNA production during early meiosis in mouse testes. Mol. Cell 50, 67–81.10.1016/j.molcel.2013.02.016Suche in Google Scholar PubMed PubMed Central
Lim, A.K. and Kai, T. (2007). Unique germ-line organelle, nuage, functions to repress selfish genetic elements in Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 104, 6714–6719.10.1073/pnas.0701920104Suche in Google Scholar PubMed PubMed Central
Lin, H. and Spradling, A.C. (1997). A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. Development 124, 2463–2476.10.1242/dev.124.12.2463Suche in Google Scholar PubMed
Madeira, F., Park, Y.M., Lee, J., Buso, N., Gur, T., Madhusoodanan, N., Basutkar, P., Tivey, A.R.N., Potter, S.C., Finn, R.D., et al. (2019). The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucl. Acids Res. 47, 636–641.10.1093/nar/gkz268Suche in Google Scholar PubMed PubMed Central
Malone, C.D., Brennecke, J., Dus, M., Stark, A., McCombie, W.R., Sachidanandam, R., and Hannon, G.J. (2009). Specialized piRNA pathways act in germline and somatic tissues of the drosophila ovary. Cell 137, 522–535.10.1016/j.cell.2009.03.040Suche in Google Scholar PubMed PubMed Central
Matsumoto, N., Nishimasu, H., Sakakibara, K., Nishida, K.M., Hirano, T., Ishitani, R., Siomi, H., Siomi, M.C., and Nureki, O. (2016). Crystal structure of silkworm PIWI-clade Argonaute Siwi bound to piRNA. Cell 167, 484–497.10.1016/j.cell.2016.09.002Suche in Google Scholar PubMed
Medina, R., Ghule, P.N., Cruzat, F., Barutcu, A.R., Montecino, M., Stein, J.L., van Wijnen, A.J., and Stein, G.S. (2012). Epigenetic control of cell cycle-dependent histone gene expression is a principal component of the abbreviated pluripotent cell cycle. Mol. Cell Biol. 32, 3860–3871.10.1128/MCB.00736-12Suche in Google Scholar PubMed PubMed Central
Miesen, P., Girardi, E., and van Rij, R.P. (2015). Distinct sets of PIWI proteins produce arbovirus and transposon-derived piRNAs in Aedes aegypti mosquito cells. Nucl. Acids Res. 43, 6545–6556.10.1093/nar/gkv590Suche in Google Scholar PubMed PubMed Central
Mitchell, A.L., Attwood, T.K., Babbitt, P.C., Blum, M., Bork, P., Bridge, A., Brown, S.D., Chang, H.-Y., El-Gebali, S., Fraser, M.I., et al. (2018). InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucl. Acids Res. 47, D351–D360.10.1093/nar/gky1100Suche in Google Scholar PubMed PubMed Central
Mohn, F., Sienski, G., Handler, D., and Brennecke, J. (2014). The Rhino-Deadlock-Cutoff complex licenses noncanonical transcription of dual-strand piRNA clusters in Drosophila. Cell 157, 1364–1379.10.1016/j.cell.2014.04.031Suche in Google Scholar PubMed
Mohn, F., Handler, D., and Brennecke, J. (2015). piRNA-guided slicing specifies transcripts for Zucchini-dependent, phased piRNA biogenesis. Science 348, 812–817.10.1126/science.aaa1039Suche in Google Scholar PubMed PubMed Central
Mulder, K.D., Kuales, G., Pfister, D., Willems, M., Egger, B., Salvenmoser, W., Thaler, M., Gorny, A.-K., Hrouda, M., Borgonie, G., et al. (2009). Characterization of the stem cell system of the acoel Isodiametra pulchra. BMC Dev. Biol. 9, 69.10.1186/1471-213X-9-69Suche in Google Scholar PubMed PubMed Central
Murano, K., Iwasaki, Y.W., Ishizu, H., Mashiko, A., Shibuya, A., Kondo, S., Adachi, S., Suzuki, S., Saito, K., Natsume, T., et al. (2019). Nuclear RNA export factor variant initiates piRNA-guided co-transcriptional silencing. EMBO J. 38, e102870.10.15252/embj.2019102870Suche in Google Scholar PubMed PubMed Central
Nakagawa, H., Ishizu, H., Hasegawa, R., Kobayashi, K., and Matsumoto, M. (2012). Drpiwi-1 is essential for germline cell formation during sexualization of the planarian Dugesia ryukyuensis. Dev. Biol. 361, 167–176.10.1016/j.ydbio.2011.10.014Suche in Google Scholar PubMed
Nandi, S., Chandramohan, D., Fioriti, L., Melnick, A.M., Hébert, J.M., Mason, C.E., Rajasethupathy, P., and Kandel, E.R. (2016). Roles for small noncoding RNAs in silencing of retrotransposons in the mammalian brain. Proc. Natl. Acad. Sci. U.S.A. 113, 12697–12702.10.1073/pnas.1609287113Suche in Google Scholar PubMed PubMed Central
Newmark, P.A. and Alvarado, A.S. (2002). Not your father’s planarian: a classic model enters the era of functional genomics. Nat. Rev. Genet. 3, 210–219.10.1038/nrg759Suche in Google Scholar PubMed
Ng, H.-H. and Surani, M.A. (2011). The transcriptional and signalling networks of pluripotency. Nat. Cell Biol. 13, 490–496.10.1038/ncb0511-490Suche in Google Scholar PubMed
Nolde, M.J., Cheng, E.-C., Guo, S., and Lin, H. (2013). Piwi genes are dispensable for normal hematopoiesis in mice. PLoS One 8, 71950–71950.10.1371/journal.pone.0071950Suche in Google Scholar PubMed PubMed Central
Ohara, T., Sakaguchi, Y., Suzuki, T., Ueda, H., Miyauchi, K., and Suzuki, T. (2007). The 3′ termini of mouse Piwi-interacting RNAs are 2′-O-methylated. Nat. Struct. Mol. Biol. 14, 349–350.10.1038/nsmb1220Suche in Google Scholar PubMed
Önal, P., Grün, D., Adamidi, C., Rybak, A., Solana, J., Mastrobuoni, G., Wang, Y., Rahn, H.-P., Chen, W., Kempa, S., et al. (2012). Gene expression of pluripotency determinants is conserved between mammalian and planarian stem cells. EMBO J. 31, 2755–2769.10.1038/emboj.2012.110Suche in Google Scholar PubMed PubMed Central
Ozata, D.M., Gainetdinov, I., Zoch, A., O’Carroll, D., and Zamore, P.D. (2019). PIWI-interacting RNAs: small RNAs with big functions. Nat. Rev. Genet. 20, 89–108.10.1038/s41576-018-0073-3Suche in Google Scholar PubMed
Palakodeti, D., Smielewska, M., Lu, Y.C., Yeo, G.W., and Graveley, B.R. (2008). The PIWI proteins SMEDWI-2 and SMEDWI-3 are required for stem cell function and piRNA expression in planarians. RNA 14, 1174–1186.10.1261/rna.1085008Suche in Google Scholar PubMed PubMed Central
Peiris, T.H., Hoyer, K.K., and Oviedo, N.J. (2014). Innate immune system and tissue regeneration in planarians: an area ripe for exploration. Semin. Immunol. 26, 295–302.10.1016/j.smim.2014.06.005Suche in Google Scholar PubMed PubMed Central
Pellettieri, J. (2019). Regenerative tissue remodeling in planarians – the mysteries of morphallaxis. Semin. Cell Dev. Biol. 87, 13–21.10.1016/j.semcdb.2018.04.004Suche in Google Scholar PubMed PubMed Central
Perrat, P.N., DasGupta, S., Wang, J., Theurkauf, W., Weng, Z., Rosbash, M., and Waddell, S. (2013). Transposition-Driven Genomic Heterogeneity in the Drosophila Brain. Science 340, 91–95.10.1126/science.1231965Suche in Google Scholar PubMed PubMed Central
Preall, J.B., Czech, B., Guzzardo, P.M., Muerdter, F., and Hannon, G.J. (2012). Shutdown is a component of the Drosophila piRNA biogenesis machinery. RNA 18, 1446–1457.10.1261/rna.034405.112Suche in Google Scholar PubMed PubMed Central
Qi, H., Watanabe, T., Ku, H.-Y., Liu, N., Zhong, M., and Lin, H. (2011). The Yb body, a major site for Piwi-associated RNA biogenesis and a gateway for Piwi expression and transport to the nucleus in somatic cells. J. Biol. Chem. 286, 3789–3797.10.1074/jbc.M110.193888Suche in Google Scholar PubMed PubMed Central
Qiu, W., Guo, X., Lin, X., Yang, Q., Zhang, W., Zhang, Y., Zuo, L., Zhu, Y., Li, C.-S.R., Ma, C., et al. (2017). Transcriptome-wide piRNA profiling in human brains of Alzheimer’s disease. Neurobiol. Aging 57, 170–177.10.1016/j.neurobiolaging.2017.05.020Suche in Google Scholar PubMed PubMed Central
Rajasethupathy, P., Antonov, I., Sheridan, R., Frey, S., Sander, C., Tuschl, T., and Kandel, E.R. (2012). A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity. Cell 149, 693–707.10.1016/j.cell.2012.02.057Suche in Google Scholar PubMed PubMed Central
Ramat, A., Garcia-Silva, M.-R., Jahan, C., Naït-Saïdi, R., Dufourt, J., Garret, C., Chartier, A., Cremaschi, J., Patel, V., Decourcelle, M., et al. (2020). The PIWI protein Aubergine recruits eIF3 to activate translation in the germ plasm. Cell Res. Biorxiv 859561. https://doi.org/10.1101/859561.10.1038/s41422-020-0294-9Suche in Google Scholar PubMed PubMed Central
Rangan, P., Malone, C.D., Navarro, C., Newbold, S.P., Hayes, P.S., Sachidanandam, R., Hannon, G.J., and Lehmann, R. (2011). piRNA production requires heterochromatin formation in Drosophila. Curr. Biol. 21, 1373–1379.10.1016/j.cub.2011.06.057Suche in Google Scholar PubMed PubMed Central
Reddien, P.W., Oviedo, N.J., Jennings, J.R., Jenkin, J.C., and Alvarado, A.S. (2005a). SMEDWI-2 is a PIWI-like protein that regulates planarian stem cells. Science 310, 1327–1330.10.1126/science.1116110Suche in Google Scholar PubMed
Reddien, P.W., Bermange, A.L., Murfitt, K.J., Jennings, J.R., and Alvarado, A.S. (2005b). Identification of genes needed for regeneration, stem cell function, and tissue homeostasis by systematic gene perturbation in planaria. Dev. Cell 8, 635–649.10.1016/j.devcel.2005.02.014Suche in Google Scholar PubMed PubMed Central
Rinkevich, Y., Rosner, A., Rabinowitz, C., Lapidot, Z., Moiseeva, E., and Rinkevich, B. (2010). Piwi positive cells that line the vasculature epithelium, underlie whole body regeneration in a basal chordate. Dev. Biol. 345, 94–104.10.1016/j.ydbio.2010.05.500Suche in Google Scholar PubMed
Rinkevich, Y., Voskoboynik, A., Rosner, A., Rabinowitz, C., Paz, G., Oren, M., Douek, J., Alfassi, G., Moiseeva, E., Ishizuka, K.J., et al. (2013). Repeated, long-term cycling of putative stem cells between niches in a basal chordate. Dev. Cell 24, 76–88.10.1016/j.devcel.2012.11.010Suche in Google Scholar PubMed PubMed Central
Rojas-Ríos, P. and Simonelig, M. (2018). piRNAs and PIWI proteins: regulators of gene expression in development and stem cells. Development 145, 17.10.1242/dev.161786Suche in Google Scholar PubMed
Ross, R.J., Weiner, M.M., and Lin, H. (2014). PIWI proteins and PIWI-interacting RNAs in the soma. Nature 505, 353–359.10.1038/nature12987Suche in Google Scholar PubMed PubMed Central
Rouget, C., Papin, C., Boureux, A., Meunier, A.-C., Franco, B., Robine, N., Lai, E.C., Pelisson, A., and Simonelig, M. (2010). Maternal mRNA deadenylation and decay by the piRNA pathway in the early Drosophila embryo. Nature 467, 1128–1132.10.1038/nature09465Suche in Google Scholar PubMed PubMed Central
Rouhana, L., Shibata, N., Nishimura, O., and Agata, K. (2010). Different requirements for conserved post-transcriptional regulators in planarian regeneration and stem cell maintenance. Dev. Biol. 341, 429–443.10.1016/j.ydbio.2010.02.037Suche in Google Scholar PubMed
Rouhana, L., Vieira, A.P., Roberts-Galbraith, R.H., and Newmark, P.A. (2012). PRMT5 and the role of symmetrical dimethylarginine in chromatoid bodies of planarian stem cells. Development 139, 1083–1094.10.1242/dev.076182Suche in Google Scholar PubMed PubMed Central
Rouhana, L., Weiss, J.A., King, R.S., and Newmark, P.A. (2014). PIWI homologs mediate Histone H4 mRNA localization to planarian chromatoid bodies. Development 141, 2592–2601.10.1242/dev.101618Suche in Google Scholar PubMed PubMed Central
Roy, J., Sarkar, A., Parida, S., Ghosh, Z., and Mallick, B. (2017). Small RNA sequencing revealed dysregulated piRNAs in Alzheimer’s disease and their probable role in pathogenesis. Mol. Biosyst. 13, 565–576.10.1039/C6MB00699JSuche in Google Scholar PubMed
Rozanski, A., Moon, H., Brandl, H., Martín-Durán, J.M., Grohme, M.A., Hüttner, K., Bartscherer, K., Henry, I., and Rink, J.C. (2018). PlanMine 3.0 – improvements to a mineable resource of flatworm biology and biodiversity. Nucl. Acids Res. 47, 812–820.10.1093/nar/gky1070Suche in Google Scholar PubMed PubMed Central
Saito, K., Nishida, K.M., Mori, T., Kawamura, Y., Miyoshi, K., Nagami, T., Siomi, H., and Siomi, M.C. (2006). Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev. 20, 2214–2222.10.1101/gad.1454806Suche in Google Scholar PubMed PubMed Central
Saito, K., Sakaguchi, Y., Suzuki, T., Suzuki, T., Siomi, H., and Siomi, M.C. (2007). Pimet, the Drosophila homolog of HEN1, mediates 2′-O-methylation of Piwi-interacting RNAs at their 3′ ends. Genes Dev. 21, 1603–1608.10.1101/gad.1563607Suche in Google Scholar PubMed PubMed Central
Salvetti, A., Rossi, L., Lena, A., Batistoni, R., Deri, P., Rainaldi, G., Locci, M.T., Evangelista, M., and Gremigni, V. (2005). DjPum, a homologue of Drosophila Pumilio, is essential to planarian stem cell maintenance. Development 132, 1863–1874.10.1242/dev.01785Suche in Google Scholar PubMed
Seth, M., Shirayama, M., Gu, W., Ishidate, T., Conte Jr, D., and Mello, C.C. (2013). The C. elegans CSR-1 argonaute pathway counteracts epigenetic silencing to promote germline gene expression. Dev. Cell 27, 656–663.10.1016/j.devcel.2013.11.014Suche in Google Scholar PubMed PubMed Central
Shibata, N., Kashima, M., Ishiko, T., Nishimura, O., Rouhana, L., Misaki, K., Yonemura, S., Saito, K., Siomi, H., Siomi, M.C., et al. (2016). Inheritance of a nuclear PIWI from pluripotent stem cells by somatic descendants ensures differentiation by silencing transposons in planarian. Dev. Cell 37, 226–237.10.1016/j.devcel.2016.04.009Suche in Google Scholar PubMed
Shirayama, M., Seth, M., Lee, H.-C., Gu, W., Ishidate, T., Jr, D.C., and Mello, C.C. (2012). piRNAs initiate an epigenetic memory of nonself RNA in the C. elegans germline. Cell 150, 65–77.10.1016/j.cell.2012.06.015Suche in Google Scholar PubMed PubMed Central
Sienski, G., Dönertas, D., and Brennecke, J. (2012). Transcriptional silencing of transposons by Piwi and maelstrom and its impact on chromatin state and gene expression. Cell 151, 964–980.10.1016/j.cell.2012.10.040Suche in Google Scholar PubMed PubMed Central
Siomi, M.C., Mannen, T., and Siomi, H. (2010). How does the royal family of tudor rule the PIWI-interacting RNA pathway? Genes Dev 24, 636–646.10.1101/gad.1899210Suche in Google Scholar PubMed PubMed Central
Skinner, D.E., Rinaldi, G., Suttiprapa, S., Mann, V.H., Smircich, P., Cogswell, A.A., Williams, D.L., and Brindley, P.J. (2012). Vasa-like DEAD-box RNA helicases of Schistosoma mansoni. PLoS Negl. Trop. Dis. 6, 1–11.10.1371/journal.pntd.0001686Suche in Google Scholar PubMed PubMed Central
Skinner, D.E., Rinaldi, G., Koziol, U., Brehm, K., and Brindley, P.J. (2014). How might flukes and tapeworms maintain genome integrity without a canonical piRNA pathway? Trends Parasitol. 30, 123–129.10.1016/j.pt.2014.01.001Suche in Google Scholar PubMed PubMed Central
Smit, A., Hubley, R., and Green, P. (2013). Repeatmasker Open-4.0. http://www.repeatmasker.org.Suche in Google Scholar
Solana, J. (2013). Closing the circle of germline and stem cells: the Primordial Stem Cell hypothesis. Evodevo 4, 2.10.1186/2041-9139-4-2Suche in Google Scholar PubMed PubMed Central
Solana, J., Lasko, P., and Romero, R. (2009). Spoltud-1 is a chromatoid body component required for planarian long-term stem cell self-renewal. Dev. Biol. 328, 410–421.10.1016/j.ydbio.2009.01.043Suche in Google Scholar PubMed PubMed Central
Solana, J., Kao, D., Mihaylova, Y., Jaber-Hijazi, F., Malla, S., Wilson, R., and Aboobaker, A. (2012). Defining the molecular profile of planarian pluripotent stem cells using a combinatorial RNAseq, RNA interference and irradiation approach. Genome Biol. 13, R19.10.1186/gb-2012-13-3-r19Suche in Google Scholar PubMed PubMed Central
Song, S.U., Kurkulos, M., Boeke, J.D., and Corces, V.G. (1997). Infection of the germ line by retroviral particles produced in the follicle cells: a possible mechanism for the mobilization of the gypsy retroelement of Drosophila. Development 124, 2789–2798.10.1242/dev.124.14.2789Suche in Google Scholar PubMed
Sousa-Victor, P., Ayyaz, A., Hayashi, R., Qi, Y., Madden, D.T., Lunyak, V.V., and Jasper, H. (2017). Piwi is required to limit exhaustion of aging somatic stem cells. Cell Rep 20, 2527–2537.10.1016/j.celrep.2017.08.059Suche in Google Scholar PubMed PubMed Central
Srivastava, M., Mazza-Curll, K.L., van Wolfswinkel, J.C., and Reddien, P.W. (2014). Whole-body acoel regeneration is controlled by Wnt and Bmp-Admp signaling. Curr. Biol. 24, 1107–1113.10.1016/j.cub.2014.03.042Suche in Google Scholar PubMed
Stein, C.B., Genzor, P., Mitra, S., Elchert, A.R., Ipsaro, J.J., Benner, L., Sobti, S., Su, Y., Hammell, M., Joshua-Tor, L., et al. (2019). Decoding the 5′ nucleotide bias of PIWI-interacting RNAs. Nat. Commun. 10, 828.10.1038/s41467-019-08803-zSuche in Google Scholar PubMed PubMed Central
Sun, W., Samimi, H., Gamez, M., Zare, H., and Frost, B. (2018). Pathogenic tau-induced piRNA depletion promotes neuronal death through transposable element dysregulation in neurodegenerative tauopathies. Nat. Neurosci. 21, 1038–1048.10.1038/s41593-018-0194-1Suche in Google Scholar PubMed PubMed Central
Swapna, L.S., Molinaro, A.M., Lindsay-Mosher, N., Pearson, B.J., and Parkinson, J. (2018). Comparative transcriptomic analyses and single-cell RNA sequencing of the freshwater planarian Schmidtea mediterranea identify major cell types and pathway conservation. Genome Biol. 19, 124.10.1186/s13059-018-1498-xSuche in Google Scholar PubMed PubMed Central
Tassetto, M., Kunitomi, M., Whitfield, Z.J., Dolan, P.T., Sánchez-Vargas, I., Garcia-Knight, M., Ribiero, I., Chen, T., Olson, K.E., and Andino, R. (2019). Control of RNA viruses in mosquito cells through the acquisition of vDNA and endogenous viral elements. eLife 8, e41244.10.7554/eLife.41244.026Suche in Google Scholar
Thomas, A.L., Rogers, A.K., Webster, A., Marinov, G.K., Liao, S.E., Perkins, E.M., Hur, J.K., Aravin, A.A., and Toth, K.F. (2013). Piwi induces piRNA-guided transcriptional silencing and establishment of a repressive chromatin state. Genes Dev. 27, 390–399.10.1101/gad.209841.112Suche in Google Scholar PubMed PubMed Central
Thomas, A.L., Toth, K.F., and Aravin, A.A. (2014). To be or not to be a piRNA: genomic origin and processing of piRNAs. Genome Biol. 15, 204.10.1186/gb4154Suche in Google Scholar PubMed PubMed Central
Trost, T., Haines, J., Dillon, A., Mersman, B., Robbins, M., Thomas, P., and Hubert, A. (2018). Characterizing the role of SWI/SNF-related chromatin remodeling complexes in planarian regeneration and stem cell function. Stem Cell Res. 32, 91–103.10.1016/j.scr.2018.09.004Suche in Google Scholar PubMed
Tsai, I.J., Zarowiecki, M., Holroyd, N., Garciarrubio, A., Sanchez-Flores, A., Brooks, K.L., Tracey, A., Bobes, R.J., Fragoso, G., Sciutto, E., et al. (2013). The genomes of four tapeworm species reveal adaptations to parasitism. Nature 496, 57–63.10.1038/nature12031Suche in Google Scholar PubMed PubMed Central
Vagin, V.V., Sigova, A., Li, C., Seitz, H., Gvozdev, V., and Zamore, P.D. (2006). A distinct small RNA pathway silences selfish genetic elements in the germline. Science 313, 320–324.10.1126/science.1129333Suche in Google Scholar PubMed
Varjak, M., Dietrich, I., Sreenu, V.B., Till, B.E., Merits, A., Kohl, A., and Schnettler, E. (2018). Spindle-E acts antivirally against alphaviruses in mosquito cells. Viruses 10, 88.10.3390/v10020088Suche in Google Scholar PubMed PubMed Central
Vila-Farré, M. and Rink, J.C. (2018). The ecology of freshwater planarians. Methods Mol. Biol. 1774, 173–205.10.1007/978-1-4939-7802-1_3Suche in Google Scholar PubMed
Voronina, E., Seydoux, G., Sassone-Corsi, P., and Nagamori, I. (2011). RNA granules in germ cells. Cold Spring Harb. Perspect. Biol. 3, a002774.10.1101/cshperspect.a002774Suche in Google Scholar PubMed PubMed Central
Wagner, D.E., Wang, I.E., and Reddien, P.W. (2011). Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration. Science 332, 811–816.10.1126/science.1203983Suche in Google Scholar PubMed PubMed Central
Wagner, D.E., Ho, J.J., and Reddien, P.W. (2012). Genetic regulators of a pluripotent adult stem cell system in planarians identified by RNAi and clonal analysis. Cell Stem Cell 10, 299–311.10.1016/j.stem.2012.01.016Suche in Google Scholar PubMed PubMed Central
Wang, Y., Zayas, R.M., Guo, T., and Newmark, P.A. (2007). nanos function is essential for development and regeneration of planarian germ cells. Proc. Natl. Acad. Sci. U.S.A. 104, 5901–5906.10.1073/pnas.0609708104Suche in Google Scholar PubMed PubMed Central
Wang, B., Collins, J.J.I., and Newmark, P.A. (2013). Functional genomic characterization of neoblast-like stem cells in larval Schistosoma mansoni. eLife 2, e00768.10.7554/eLife.00768Suche in Google Scholar PubMed PubMed Central
Wang, W., Yoshikawa, M., Han, B.W., Izumi, N., Tomari, Y., Weng, Z., and Zamore, P.D. (2014). The initial uridine of primary piRNAs does not create the tenth adenine that Is the hallmark of secondary piRNAs. Mol. Cell 56, 708–716.10.1016/j.molcel.2014.10.016Suche in Google Scholar PubMed PubMed Central
Wang, L., Dou, K., Moon, S., Tan, F.J., and Zhang, Z.Z. (2018). Hijacking oogenesis enables massive propagation of LINE and retroviral transposons. Cell 174, 1082–1094.e12.10.1016/j.cell.2018.06.040Suche in Google Scholar PubMed PubMed Central
Wang, C., Yang, Z.-Z., Guo, F.-H., Shi, S., Han, X.-S., Zeng, A., Lin, H., and Jing, Q. (2019). Heat shock protein DNAJA1 stabilizes PIWI proteins to support regeneration and homeostasis of planarian Schmidtea mediterranea. J. Biol. Chem. 294, 9873–9887.10.1074/jbc.RA118.004445Suche in Google Scholar PubMed PubMed Central
Watanabe, T., Takeda, A., Tsukiyama, T., Mise, K., Okuno, T., Sasaki, H., Minami, N., and Imai, H. (2006). Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev. 20, 1732–1743.10.1101/gad.1425706Suche in Google Scholar PubMed PubMed Central
Wedeles, C.J., Wu, M.Z., and Claycomb, J.M. (2013). Protection of germline gene expression by the C. elegans Argonaute CSR-1. Dev. Cell 27, 664–671.10.1016/j.devcel.2013.11.016Suche in Google Scholar PubMed
Wenemoser, D., Lapan, S.W., Wilkinson, A.W., Bell, G.W., and Reddien, P.W. (2012). A molecular wound response program associated with regeneration initiation in planarians. Genes Dev. 26, 988–1002.10.1101/gad.187377.112Suche in Google Scholar PubMed PubMed Central
van Wolfswinkel, J.C. (2014). Piwi and potency: PIWI proteins in animal stem cells and regeneration. Integr. Comp. Biol. 54, 700–713.10.1093/icb/icu084Suche in Google Scholar PubMed
van Wolfswinkel, J.C., Wagner, D.E., and Reddien, P.W. (2014). Single-cell analysis reveals functionally distinct classes within the planarian stem cell compartment. Cell Stem Cell 15, 326–339.10.1016/j.stem.2014.06.007Suche in Google Scholar PubMed PubMed Central
Xiol, J., Spinelli, P., Laussmann, M.A., Homolka, D., Yang, Z., Cora, E., Couté, Y., Conn, S., Kadlec, J., Sachidanandam, R., et al. (2014). RNA clamping by Vasa assembles a piRNA amplifier complex on transposon transcripts. Cell 157, 1698–1711.10.1016/j.cell.2014.05.018Suche in Google Scholar PubMed
Yamanaka, S., Siomi, M.C., and Siomi, H. (2014). piRNA clusters and open chromatin structure. Mobile DNA 5, 22.10.1186/1759-8753-5-22Suche in Google Scholar PubMed PubMed Central
Yoshida-Kashikawa, M., Shibata, N., Takechi, K., and Agata, K. (2007). DjCBC-1, a conserved DEAD box RNA helicase of the RCK/p54/Me31B family, is a component of RNA-protein complexes in planarian stem cells and neurons. Dev. Dyn. 236, 3436–3450.10.1002/dvdy.21375Suche in Google Scholar PubMed
Yu, T., Koppetsch, B.S., Pagliarani, S., Johnston, S., Silverstein, N.J., Luban, J., Chappell, K., Weng, Z., and Theurkauf, W.E. (2019). The piRNA response to retroviral invasion of the Koala genome. Cell 179, 632–643.10.1016/j.cell.2019.09.002Suche in Google Scholar PubMed PubMed Central
Zeng, A., Li, Y.-Q., Wang, C., Han, X.-S., Li, G., Wang, J.-Y., Li, D.-S., Qin, Y.-W., Shi, Y., Brewer, G., et al. (2013). Heterochromatin protein 1 promotes self-renewal and triggers regenerative proliferation in adult stem cells. J. Cell Biol. 201, 409–425.10.1083/jcb.201207172Suche in Google Scholar PubMed PubMed Central
Zeng, A., Li, H., Guo, L., Gao, X., McKinney, S., Wang, Y., Yu, Z., Park, J., Semerad, C., Ross, E., et al. (2018). Prospectively isolated tetraspanin+ neoblasts are adult pluripotent stem cells underlying planaria regeneration. Cell 173, 1593–1608.10.1016/j.cell.2018.05.006Suche in Google Scholar PubMed
Zhang, Z., Xu, J., Koppetsch, B.S., Wang, J., Tipping, C., Ma, S., Weng, Z., Theurkauf, W.E., and Zamore, P.D. (2011). Heterotypic piRNA Ping-Pong requires qin, a protein with both E3 ligase and Tudor domains. Mol. Cell 44, 572–584.10.1016/j.molcel.2011.10.011Suche in Google Scholar PubMed PubMed Central
Zheng, Y. (2013). Phylogenetic analysis of the Argonaute protein family in platyhelminths. Mol. Phylogenet. Evol. 66, 1050–1054.10.1016/j.ympev.2012.11.014Suche in Google Scholar PubMed
Zhou, X., Battistoni, G., Demerdash, O.E., Gurtowski, J., Wunderer, J., Falciatori, I., Ladurner, P., Schatz, M.C., Hannon, G.J., and Wasik, K.A. (2015). Dual functions of Macpiwi1 in transposon silencing and stem cell maintenance in the flatworm Macrostomum lignano. RNA 21, 1885–1897.10.1261/rna.052456.115Suche in Google Scholar PubMed PubMed Central
Zhu, W., Pao, G.M., Satoh, A., Cummings, G., Monaghan, J.R., Harkins, T.T., Bryant, S.V., Voss, S.R., Gardiner, D.M., and Hunter, T. (2012). Activation of germline-specific genes is required for limb regeneration in the Mexican axolotl. Dev. Biol. 370, 42–51.10.1016/j.ydbio.2012.07.021Suche in Google Scholar PubMed PubMed Central
Zimmermann, L., Stephens, A., Nam, S.-Z., Rau, D., Kübler, J., Lozajic, M., Gabler, F., Söding, J., Lupas, A.N., and Alva, V. (2018). A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J. Mol. Biol. 430, 2237–2243.10.1016/j.jmb.2017.12.007Suche in Google Scholar PubMed
©2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Reviews
- Small dense low-density lipoprotein-lowering agents
- The piRNA pathway in planarian flatworms: new model, new insights
- Research Articles
- Anti-amyloidogenic effect of artemin on α-synuclein
- Galectin-3 is modulated in pancreatic cancer cells under hypoxia and nutrient deprivation
- Role of protein tyrosine phosphatase 1B (PTP1B) in the increased sensitivity of endothelial cells to a promigratory effect of erythropoietin in an inflammatory environment
- Effects of extracellular Hsp70, lipopolysaccharide and lipoteichoic acid on human monocyte-derived macrophages and differentiated THP-1 cells
- High-mobility group box 3 (HMGB3) silencing inhibits non-small cell lung cancer development through regulating Wnt/β-catenin pathway
Artikel in diesem Heft
- Frontmatter
- Reviews
- Small dense low-density lipoprotein-lowering agents
- The piRNA pathway in planarian flatworms: new model, new insights
- Research Articles
- Anti-amyloidogenic effect of artemin on α-synuclein
- Galectin-3 is modulated in pancreatic cancer cells under hypoxia and nutrient deprivation
- Role of protein tyrosine phosphatase 1B (PTP1B) in the increased sensitivity of endothelial cells to a promigratory effect of erythropoietin in an inflammatory environment
- Effects of extracellular Hsp70, lipopolysaccharide and lipoteichoic acid on human monocyte-derived macrophages and differentiated THP-1 cells
- High-mobility group box 3 (HMGB3) silencing inhibits non-small cell lung cancer development through regulating Wnt/β-catenin pathway