Home Life Sciences Galectin-3 is modulated in pancreatic cancer cells under hypoxia and nutrient deprivation
Article
Licensed
Unlicensed Requires Authentication

Galectin-3 is modulated in pancreatic cancer cells under hypoxia and nutrient deprivation

  • Antônio F. da Silva Filho , Lucas B. Tavares , Maira G. R. Pitta , Eduardo I. C. Beltrão and Moacyr J. B. M. Rêgo EMAIL logo
Published/Copyright: July 27, 2020

Abstract

Pancreatic ductal adenocarcinoma is one of the most aggressive tumors with a microenvironment marked by hypoxia and starvation. Galectin-3 has been evaluated in solid tumors and seems to present both pro/anti-tumor effects. So, this study aims to characterize the expression of Galectin-3 from pancreatic tumor cells and analyze its influence for cell survive and motility in mimetic microenvironment. For this, cell cycle and cell death were accessed through flow cytometry. Characterization of inside and outside Galectin-3 was performed through Real-Time Quantitative Reverse Transcription PCR (qRT-PCR), immunofluorescence, Western blot, and ELISA. Consequences of Galectin-3 extracellular inhibition were investigated using cell death and scratch assays. PANC-1 showed increased Galectin-3 mRNA expression when cultivated in hypoxia for 24 and 48 h. After 24 h in simultaneously hypoxic/deprived incubation, PANC-1 shows increased Galectin-3 protein and secreted levels. For Mia PaCa-2, cultivation in deprivation was determinant for the increasing in Galectin-3 mRNA expression. When cultivated in simultaneously hypoxic/deprived condition, Mia PaCa-2 also presented increasing for the Galectin-3 secreted levels. Treatment of PANC-1 cells with lactose increased the death rate when cells were incubated simultaneously hypoxic/deprived condition. Therefore, it is possible to conclude that the microenvironmental conditions modulate the Galectin-3 expression on the transcriptional and translational levels for pancreatic cancer cells.


Corresponding author: Moacyr J. B. M. Rêgo, Therapeutic Innovation Research Center– Suelly Galdino (NUPIT-SG), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, 50670-901, Brazil. E-mail:

Acknowledgment

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq); and Fundação de Amparo à Ciência e Tecnologia de Pernambuco APQ (FACEPE); and Instituto Nacional de Ciência e Tecnologia para Inovação Farmacêutica (INCT-if).

  1. Author contribution: Each author has contributed with significant work for the realization of this paper. Next, we provide the main contributions and the related authors. Conceptualization, A.S.F. and M.R.; methodology, A.S.F. and L.T.; validation, A.S.F. and L.T.; formal analysis, A.S.F.; investigation, A.S.F.; resources, M.P., M.R. and E.B.; data curation, A.S.F. and M.R.; writing—original draft preparation, A.S.F.; writing—review and editing, A.S.F. and M.R.; supervision, M.R.; project administration, A.S.F. and M.R.; funding acquisition, M.P., M.R. and E.B.”

  2. Research funding: This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq); and Fundação de Amparo à Ciência e Tecnologia de Pernambuco (FACEPE); and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Akahani, S., Nangia-Makker, P., Inohara, H, Kim, H.R., and Raz, A. (1997). Galectin-3: a novel antiapoptotic molecule with a functional BH1 (NWGR) domain of Bcl-2 family. Cancer. Res. 57: 5272–5276.Search in Google Scholar

Almendros, I., and Gozal, D. (2018). Intermittent hypoxia and cancer: undesirable bed partners? Respir. Physiol. Neurobiol. 256: 79–86. https://doi.org/10.1016/j.resp.2017.08.008.Search in Google Scholar

Altschuler, S.J., and Wu, L.F. (2010). Cellular heterogeneity: do differences make a difference? Cell. 141: 559–563. https://doi.org/10.1016/j.cell.2010.04.033.Search in Google Scholar

Arnoys, E.J., Ackerman, C.M., and Wang, J.L. (2015). Nucleocytoplasmic shuttling of galectin-3. Methods Mol. Biol. 1207: 465–483. https://doi.org/10.1007/978-1-4939-1396-1_30.Search in Google Scholar

Balsano, R., Tommasi, C., and Garajova, I. (2019). State of the art for metastatic pancreatic cancer treatment: where are we now? Anticancer Res. 39: 3405–3412. https://doi.org/10.21873/anticanres.13484.Search in Google Scholar

Baptiste, T.A., James, A., Saria, M., Ochieng, J. (2007). Mechano-transduction mediated secretion and uptake of galectin-3 in breast carcinoma cells: implications in the extracellular functions of the lectin. Exp. Cell Res. 313: 652–664. https://doi.org/10.1016/j.yexcr.2006.11.005.Search in Google Scholar

Berrozpe, G., Schaeffer, J., Peinado, M.A., Real, F.X., and Perucho, M. (1994). Comparative analysis of mutations in the p53 and K-ras genes in pancreatic cancer. Int. J. Cancer. 58: 185–191. https://doi.org/10.1002/ijc.2910580207.Search in Google Scholar

Bresalier, R.S., Yan, P.S., Byrd, J.C., Lotan, R., and Raz, A. (1997). Expression of the endogenous galactose-binding protein galectin-3 correlates with the malignant potential of tumors in the central nervous system. Cancer. 80: 776–787.10.1002/(SICI)1097-0142(19970815)80:4<776::AID-CNCR17>3.0.CO;2-QSearch in Google Scholar

Caldas, C., Hahn, S.A., da Costa, L.T., Redston, M.S., Schutte, M., Seymour, A.B., Weinstein, C.L., Hruban, R.H., Yeo, C.J., and Kern, S.E. (1994). Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nat. Genet. 8: 27–32. https://doi.org/10.1038/ng0994-27.Search in Google Scholar

Cardoso, A.C.F., Andrade, L.N., Bustos, S.O., and Chammas, R. (2016). Galectin-3 determines tumor cell adaptive strategies in stressed tumor microenvironments. Front. Oncol. 6: 127. https://doi.org/10.3389/fonc.2016.00127.Search in Google Scholar

Chauhan, S., Kumar, S., Jain, A., Ponpuak, M., Mudd, M.H., Kimura, T., Choi, S.W., Peters, R., Mandell, M., Bruun, J.-A., et al. (2016). TRIMs and galectins globally cooperate and TRIM16 and Galectin-3 co-direct autophagy in endomembrane damage homeostasis. Dev. Cell. 39: 13–27. https://doi.org/10.1016/j.devcel.2016.08.003.Search in Google Scholar

Coban, G., Turna, S., Yildiz, P., Unver, N., Buyukpinarbasili, N., Ersoz, C., and Gucin, Z. (2019). The association of GLUT-1, Galectin 3 and Claudin 1 staining with the type of renal tumors. Ann. Med. Res. 26: 827–832. https://doi.org/10.5455/annalsmedres.2019.02.095.Search in Google Scholar

Coppin, L., Benomar, K., Corfiotti, F., Cattan, S., Renaud, F., Lapere, C, Leteurtre, E., Vantyghem, M.-C., Truant, S., and Pigny, P. (2016). CA-125, but not galectin-3, complements CA 19-9 for discriminating ductal adenocarcinoma versus non-malignant pancreatic diseases. Pancreatology. 16: 115–120. https://doi.org/10.1016/j.pan.2015.10.008.Search in Google Scholar PubMed

Dagher, S.F., Wang, J.L., and Patterson, R.J.. (1995). Identification of galectin-3 as a factor in pre-mRNA splicing. Proc. Natl. Acad. Sci. 92: 1217. https://doi.org/10.1073/pnas.92.4.1213.Search in Google Scholar PubMed PubMed Central

Dange, M.C., Agarwal, A.K., and Kalraiya, R.D. (2015). Extracellular galectin-3 induces MMP9 expression by activating p38 MAPK pathway via lysosome-associated membrane protein-1 (LAMP1). Mol. Cell Biochem. 404: 79–86. https://doi.org/10.1007/s11010-015-2367-5.Search in Google Scholar PubMed

Dauer, P., Nomura, A., Saluja, A., and Banerjee, S. (2017). Microenvironment in determining chemo-resistance in pancreatic cancer: neighborhood matters. Pancreatol. Off. J. Int. Assoc. Pancreatol. 17: 7–12. https://doi.org/10.1016/j.pan.2016.12.010.Search in Google Scholar PubMed PubMed Central

Deer, E.L., González-Hernández, J., Coursen, J.D., Shea, J.E., Ngatia, J., Scaife, C.L., Firpo, M.A., and Mulvihill, S.J. (2010). Phenotype and genotype of pancreatic cancer cell lines. Pancreas. 39: 425–435. https://doi.org/10.1097/MPA.0b013e3181c15963.Search in Google Scholar PubMed PubMed Central

Dings, R.P.M., Miller, M.C., Griffin, R.J., and Mayo, K.H. (2018). Galectins as molecular targets for therapeutic intervention. Int. J. Mol. Sci. 19, 1–22, https://doi.org/10.3390/ijms19030905.Search in Google Scholar PubMed PubMed Central

Doverhag, C., Hedtjarn, M., Poirier, F., Mallard, C., Hagberg, H., Karlsson, A., and Savman, K.. (2010). Galectin-3 contributes to neonatal hypoxic-ischemic brain injury. Neurobiol. Dis. 38: 36–46. https://doi.org/10.1016/j.nbd.2009.12.024.Search in Google Scholar PubMed

Ellenrieder, V., Hendler, S.F., Ruhland, C., Boeck, W., Adler, G., Gress, T.M. (2001). TGF-beta-induced invasiveness of pancreatic cancer cells is mediated by matrix metalloproteinase-2 and the urokinase plasminogen activator system. Int. J. Cancer. 93: 204–211. https://doi.org/10.1002/ijc.1330.Search in Google Scholar PubMed

Faubert, B., Solmonson, A., and DeBerardinis, R.J. (2020). Metabolic reprogramming and cancer progression. Science. 368, https://doi.org/10.1126/science.aaw5473.Search in Google Scholar PubMed PubMed Central

Ferreira, I.G., Pucci, M., Venturi, G., Malagolini, N., Chiricolo, M, and Dall’Olio, F. (2018). Glycosylation as a main regulator of growth and death factor Receptors Signaling. Int J Mol Sci. 19, https://doi.org/10.3390/ijms19020580.Search in Google Scholar PubMed PubMed Central

Fritsch, K., Mernberger, M., Nist, A., Stiewe, T., Brehm, A., and Jacob, R. (2016). Galectin-3 interacts with components of the nuclear ribonucleoprotein complex. BMC Cancer. 16: 502. https://doi.org/10.1186/s12885-016-2546-0.Search in Google Scholar PubMed PubMed Central

Funasaka, T., Raz, A., and Nangia-Makker, P. (2014a). Nuclear transport of galectin-3 and its therapeutic implications. Semin. Cancer Biol. 27: 30–38. https://doi.org/10.1016/j.semcancer.2014.03.004.Search in Google Scholar PubMed PubMed Central

Funasaka, T., Raz, A., and Nangia-Makker, P. (2014b). Galectin-3 in angiogenesis and metastasis. Glycobiology. 24: 886–891. https://doi.org/10.1093/glycob/cwu086.Search in Google Scholar PubMed PubMed Central

Gilson, R.C., Gunasinghe, S.D., Johannes, L., and Gaus, K. (2019). Galectin-3 modulation of T-cell activation: mechanisms of membrane remodelling. Prog. Lipid Res. 76: 101010. https://doi.org/10.1016/j.plipres.2019.101010.Search in Google Scholar PubMed

Gradiz, R., Silva, H.C., Carvalho, L., Botelho, M.F., and Mota-Pinto, A. (2016). MIA PaCa-2 and PANC-1 – pancreas ductal adenocarcinoma cell lines with neuroendocrine differentiation and somatostatin receptors. Sci. Rep. 6: 21648. https://doi.org/10.1038/srep21648.Search in Google Scholar PubMed PubMed Central

Greijer, A.E., van der Groep, P., Kemming, D., Shvarts, A., Semenza, G.L., Meijer, G.A., van de Wiel, M.A., Belien, J.A.M., van Diest, P.J., and van der Wall, E. (2005). Up-regulation of gene expression by hypoxia is mediated predominantly by hypoxia-inducible factor 1 (HIF-1). J. Pathol. 206, 291–304. https://doi.org/10.1002/path.1778.Search in Google Scholar PubMed

Holloway, S.E., Beck, A.W., Shivakumar, L., Shih, J., Fleming, J.B., and Brekken, R.A. (2006). Selective blockade of vascular endothelial growth factor receptor 2 with an antibody against tumor-derived vascular endothelial growth factor controls the growth of human pancreatic adenocarcinoma xenografts. Ann. Surg. Oncol. 13: 1145–1155. https://doi.org/10.1245/ASO.2006.05.049.Search in Google Scholar PubMed

Ikemori, R.Y., Machado, C.M.L., Furuzawa, K.M., Nonogaki, S., Osinaga, E., Umezawa, K., de Carvalho, M.A., Verinaud, L., and Chammas, R. (2014). Galectin-3 up-regulation in hypoxic and nutrient deprived microenvironments promotes cell survival. PLoS One. 9: e111592.10.1371/journal.pone.0111592Search in Google Scholar PubMed PubMed Central

Jamali, S., Klier, M., Ames, S., Barros, L.F., McKenna, R., Deitmer, J.W., and Becker, H.M. (2015). Hypoxia-induced carbonic anhydrase IX facilitates lactate flux in human breast cancer cells by non-catalytic function. Sci. Rep. 5: 13605. https://doi.org/10.1038/srep13605.Search in Google Scholar PubMed PubMed Central

Jia, W., Kidoya, H., Yamakawa, D., Naito, H., and Takakura, N. (2013). Galectin-3 accelerates M2 macrophage infiltration and angiogenesis in tumors. Am. J. Pathol. 182: 1821–1831. https://doi.org/10.1016/j.ajpath.2013.01.017.Search in Google Scholar PubMed

Kasai, F., Hirayama, N., Ozawa, M., Iemura, M., and Kohara, A. (2016). Changes of heterogeneous cell populations in the Ishikawa cell line during long-term culture: proposal for an in vitro clonal evolution model of tumor cells. Genomics. 107: 259–266. https://doi.org/10.1016/j.ygeno.2016.04.003.Search in Google Scholar PubMed

Kataoka, Y., Ohshio, Y., Teramoto, K., Igarashi, T., Asai, T, and Hanaoka, J. (2019). Hypoxiainduced galectin3 enhances RhoA function to activate the motility of tumor cells in nonsmall cell lung cancer. Oncol. Rep. 41: 853–862. https://doi.org/10.3892/or.2018.6915.Search in Google Scholar PubMed PubMed Central

Kumar, S., Chauhan, S., Jain, A., Ponpuak, M., Choi, S.W., Mudd, M., Peters, R., Mandell, M.A., Johansen, T., and Deretic, V. (2017). Galectins and TRIMs directly interact and orchestrate autophagic response to endomembrane damage. Autophagy. 13: 1086–1087. https://doi.org/10.1080/15548627.2017.1307487.Search in Google Scholar PubMed PubMed Central

Lakshminarayan, R., Wunder, C., Becken, U., Howes, M.T., Benzing, C., Arumugam, S., Sales, S., Ariotti, N., Chambon, V., Lamaze, C., et al. (2014). Galectin-3 drives glycosphingolipid-dependent biogenesis of clathrin-independent carriers. Nat. Cell Biol. 16: 595–606. https://doi.org/10.1038/ncb2970.Search in Google Scholar PubMed

Lee, Y.-K., Lin, T.-H., Chang, C.-F., and Lo, Y.-L. (2013). Galectin-3 silencing inhibits epirubicin-induced ATP binding cassette transporters and activates the mitochondrial apoptosis pathway via beta-catenin/GSK-3beta modulation in colorectal carcinoma. PLoS One. 8: e82478.10.1371/journal.pone.0082478Search in Google Scholar

Li, W., Cao, L., Chen, X., Lei, J, and Ma, Q. (2016). Resveratrol inhibits hypoxia-driven ROS-induced invasive and migratory ability of pancreatic cancer cells via suppression of the Hedgehog signaling pathway. Oncol. Rep. 35: 1718–1726. https://doi.org/10.3892/or.2015.4504.Search in Google Scholar PubMed

Li, Y.-S., Li, X.-T., Yu, L.-G., Wang, L., Shi, Z.-Y., and Guo, X.-L. (2020). Roles of galectin-3 in metabolic disorders and tumor cell metabolism. Int. J. Biol. Macromol. 142: 463–473. https://doi.org/10.1016/j.ijbiomac.2019.09.Search in Google Scholar

Lieber, M., Mazzetta, J., Nelson-Rees, W., Kaplan, M., and Todaro, G. (1975). Establishment of a continuous tumor-cell line (panc-1) from a human carcinoma of the exocrine pancreas. Int. J. Cancer. 15: 741–747. https://doi.org/10.1002/ijc.2910150505.Search in Google Scholar PubMed

Liu, F.-T., and Rabinovich, G.A. (2005). Galectins as modulators of tumour progression. Nat. Rev. Cancer. 5: 29–41. https://doi.org/10.1038/nrc1527.Search in Google Scholar PubMed

Liu, Y., Mi, Y., Mueller, T., Kreibich, S., Williams, E.G., Van Drogen, A., Borel, C., Frank, M., Germain, P.-L., Bludau, I, et al. (2019). Multi-omic measurements of heterogeneity in HeLa cells across laboratories. Nat. Biotechnol. 37: 314–322. https://doi.org/10.1038/s41587-019-0037-y.Search in Google Scholar PubMed

Loukopoulos, P., Kanetaka, K., Takamura, M., Shibata, T., Sakamoto, M, and Hirohashi, S. (2004). Orthotopic transplantation models of pancreatic adenocarcinoma derived from cell lines and primary tumors and displaying varying metastatic activity. Pancreas. 29: 193–203. https://doi.org/10.1097/00006676-200410000-00004.Search in Google Scholar PubMed

Lundberg, E., Fagerberg, L., Klevebring, D., Matic, I., Geiger, T., Cox, J., Algenas, C., Lundeberg, J., Mann, M., Uhlen, M. (2010). Defining the transcriptome and proteome in three functionally different human cell lines. Mol. Syst. Biol. 6: 450. https://doi.org/10.1038/msb.2010.106.Search in Google Scholar PubMed PubMed Central

Luo, J., Guo, P., Matsuda, K., Truong, N., Lee, A., Chun, C., Cheng, S.Y., and Korc, M. (2001). Pancreatic cancer cell-derived vascular endothelial growth factor is biologically active in vitro and enhances tumorigenicity in vivo. Int. J. Cancer. 92: 361–369. https://doi.org/10.1002/ijc.1202.Search in Google Scholar PubMed

Maier, T., Guell, M., and Serrano, L. (2009). Correlation of mRNA and protein in complex biological samples. FEBS Lett. 583: 3966–3973. https://doi.org/10.1016/j.febslet.2009.10.036.Search in Google Scholar PubMed

Markowska, A.I., Liu, F.-T., and Panjwani, N. (2010). Galectin-3 is an important mediator of VEGF- and bFGF-mediated angiogenic response. J. Exp. Med. 207: 1981–1993. https://doi.org/10.1084/jem.20090121.Search in Google Scholar PubMed PubMed Central

Mathew, M.P., and Donaldson, J.G. (2019). Glycosylation and glycan interactions can serve as extracellular machinery facilitating clathrin-independent endocytosis. Traffic. 20: 295–300. https://doi.org/10.1111/tra.12636.Search in Google Scholar PubMed PubMed Central

Mehul, B., and Hughes, R.C. (1997). Plasma membrane targetting, vesicular budding and release of galectin 3 from the cytoplasm of mammalian cells during secretion. J. Cell Sci. 110: 1169–1178.10.1242/jcs.110.10.1169Search in Google Scholar PubMed

Mendez-Huergo, S.P., Blidner, A.G., and Rabinovich, G.A. (2017). Galectins: emerging regulatory checkpoints linking tumor immunity and angiogenesis. Curr. Opin. Immunol. 45: 8–15. https://doi.org/10.1016/j.coi.2016.12.003.Search in Google Scholar PubMed

Le Mercier, M., Fortin, S., Mathieu, V., Kiss, R., and Lefranc, F. (2010). Galectins and gliomas. Brain Pathol. 20: 17–27. https://doi.org/10.1111/j.1750-3639.2009.00270.x.Search in Google Scholar PubMed PubMed Central

Miknyoczki, S.J., Chang, H., Klein-Szanto, A., Dionne, C.A., Ruggeri, B.A. (1999). The Trk tyrosine kinase inhibitor CEP-701 (KT-5555) exhibits significant antitumor efficacy in preclinical xenograft models of human pancreatic ductal adenocarcinoma. Clin. Cancer Res. 5: 2205–2212.Search in Google Scholar

Moore, P.S., Sipos, B., Orlandini, S., Sorio, C., Real, F.X., Lemoine, N.R., Gress, T., Bassi, C., Kloppel, G., Kalthoff, H., et al. (2001). Genetic profile of 22 pancreatic carcinoma cell lines. Analysis of K-ras, p53, p16 and DPC4/Smad4. Virchows Arch. 439: 798–802. https://doi.org/10.1007/s004280100474.Search in Google Scholar PubMed

More, S.K., Chiplunkar, S.V., and Kalraiya, R.D. (2016). Galectin-3-induced cell spreading and motility relies on distinct signaling mechanisms compared to fibronectin. Mol. Cell Biochem. 416: 179–191. https://doi.org/10.1007/s11010-016-2706-1.Search in Google Scholar

Nakahara, S., and Raz, A. (2007). Regulation of cancer-related gene expression by galectin-3 and the molecular mechanism of its nuclear import pathway. Cancer Metastasis Rev. 26: 605–610. https://doi.org/10.1007/s10555-007-9095-6.Search in Google Scholar

Newlaczyl, A.U., and Yu, L.-G. (2011). Galectin-3--a jack-of-all-trades in cancer. Cancer Lett. 313: 123–128. https://doi.org/10.1016/j.canlet.2011.09.003.Search in Google Scholar

de Oliveira, J.T., Ribeiro, C., Barros, R., Gomes, C., de Matos, A.J., Reis, C.A., Rutteman, G.R., and Gärtner, F. (2015). Hypoxia up-regulates galectin-3 in mammary tumor progression and metastasis. PLoS One. 10: e0134458.10.1371/journal.pone.0134458Search in Google Scholar

Patterson, R.J., Haudek, K.C., Voss, P.G., and Wang, J.L. (2015). Examination of the role of galectins in pre-mRNA splicing. Methods Mol. Biol. 1207: 431–449. https://doi.org/10.1007/978-1-4939-1396-1_28.Search in Google Scholar

Pei, C., Wang, X., Lin, Y., Fang, L., and Meng, S. (2019). Inhibition of galectin-3 alleviates cigarette smoke extract-induced autophagy and dysfunction in endothelial progenitor cells. Oxid. Med. Cell Longev. 2019: 7252943. https://doi.org/10.1155/2019/7252943.Search in Google Scholar

Pourquier, P., and Azzi, J. (2019). Genetic and transcriptional evolution alters cancer cell line drug response. Bull Cancer. 106: 9–10. https://doi.org/10.1016/j.bulcan.2018.12.002.Search in Google Scholar

Sato, S., and Hughes, R.C. (1994). Control of Mac-2 surface expression on murine macrophage cell lines. Eur. J. Immunol. 24: 216–221. https://doi.org/10.1002/eji.1830240134.Search in Google Scholar

Schaffert, C., Pour, P.M., Chaney, W.G. (1998). Localization of galectin-3 in normal and diseased pancreatic tissue. Int. J. Pancreatol. 23: 1–9. https://doi.org/10.1007/BF02787497.Search in Google Scholar

Schunemann, H.J., Hill, S.R., Kakad, M., Bellamy, R., Uyeki, T.M., Hayden, F.G., Yazdanpanah, Y., Beigel, J., Chotpitayasunondh, T., Del Mar, C., et al. (2007). WHO Rapid Advice Guidelines for pharmacological management of sporadic human infection with avian influenza A (H5N1) virus. Lancet Infect. Dis. 7: 21–31. https://doi.org/10.1016/S1473-3099(06)70684-3.Search in Google Scholar

Schwanhausser, B., Busse, D., Li, N., Dittmar, G., Schuchhardt, J., Wolf, J., Chen, W., and Selbach, M. (2011). Global quantification of mammalian gene expression control. Nature. 473: 337–342. https://doi.org/10.1038/nature10098.Search in Google Scholar PubMed

Sharova, L.V., Sharov, A.A., Nedorezov, T., Piao, Y., Shaik, N., and Ko, M.S.H. (2009). Database for mRNA half-life of 19 977 genes obtained by DNA microarray analysis of pluripotent and differentiating mouse embryonic stem cells. DNA Res. 16: 45–58. https://doi.org/10.1093/dnares/dsn030.Search in Google Scholar PubMed PubMed Central

Song, L., Tang, J., Owusu, L., Sun, M.-Z., Wu, J., and Zhang, J. (2014). Galectin-3 in cancer. Clin. Chim. Acta. 431: 185–191. https://doi.org/10.1016/j.cca.2014.01.019.Search in Google Scholar PubMed

Song, S., Ji, B., Ramachandran, V., Wang, H., Hafley, M., Logsdon, C., and Bresalier, R.S. (2012). Overexpressed galectin-3 in pancreatic cancer induces cell proliferation and invasion by binding Ras and activating Ras signaling. PLoS One. 7: e42699.10.1371/journal.pone.0042699Search in Google Scholar PubMed PubMed Central

Soni, S, and Padwad, Y.S. (2017). HIF-1 in cancer therapy: two decade long story of a transcription factor. Acta Oncol. 56: 503–515. https://doi.org/10.1080/0284186X.2017.1301680.Search in Google Scholar PubMed

Sun, C., Yamato, T., Furukawa, T., Ohnishi, Y., Kijima, H., and Horii, A. (2001). Characterization of the mutations of the K-ras, p53, p16, and SMAD4 genes in 15 human pancreatic cancer cell lines. Oncol Rep. 8: 89–92. https://doi.org/10.3892/or.8.1.89.Search in Google Scholar PubMed

Sun, L., Suo, C., Li, S.-T., Zhang, H., and Gao, P. (2018). Metabolic reprogramming for cancer cells and their microenvironment: beyond the Warburg Effect. Biochim. Biophys. Acta. Rev. Cancer. 1870: 51–66. https://doi.org/10.1016/j.bbcan.2018.06.005.Search in Google Scholar PubMed

Thery, C., Boussac, M., Veron, P., Ricciardi-Castagnoli, P., Raposo, G., Garin, J., and Amigorena, S. (2001). Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J. Immunol. 166: 7309–7318. https://doi.org/10.4049/jimmunol.166.12.7309.Search in Google Scholar PubMed

Thomas, L., and Pasquini, L.A. (2019). Extracellular galectin-3 induces accelerated oligodendroglial differentiation through changes in signaling pathways and cytoskeleton dynamics. Mol. Neurobiol. 56: 336–349. https://doi.org/10.1007/s12035-018-1089-6.Search in Google Scholar PubMed

Vogel, C., and Marcotte, E.M. (2012). Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet. 13: 227–232. https://doi.org/10.1038/nrg3185.Search in Google Scholar PubMed PubMed Central

Xie, L., Ni, W.-K., Chen, X.-D., Xiao, M.-B., Chen, B.-Y., He, S., Lu, C.-H., Li, X.-Y., Jiang, F., and Ni, R.-Z. (2012). The expressions and clinical significances of tissue and serum galectin-3 in pancreatic carcinoma. J. Cancer Res. Clin. Oncol. 138: 1035–1043. https://doi.org/10.1007/s00432-012-1178-2.Search in Google Scholar PubMed

Xue, H., Liu, L., Zhao, Z., Zhang, Z., Guan, Y., Cheng, H., Zhou, Y., and Tai, G. (2017). The N-terminal tail coordinates with carbohydrate recognition domain to mediate galectin-3 induced apoptosis in T cells. Oncotarget. 8: 49824–49838. https://doi.org/10.18632/oncotarget.17760.Search in Google Scholar PubMed PubMed Central

Yao, Y., Zhou, L., Liao, W., Chen, H., Du, Z., Shao, C., Wang, P., Ding, K. (2019). HH1-1, a novel Galectin-3 inhibitor, exerts anti-pancreatic cancer activity by blocking Galectin-3/EGFR/AKT/FOXO3 signaling pathway. Carbohydr. Polym. 204: 111–123. https://doi.org/10.1016/j.carbpol.2018.10.008.Search in Google Scholar PubMed

Yunis, A.A., Arimura, G.K., and Russin, D.J. (1977). Human pancreatic carcinoma (MIA PaCa-2) in continuous culture: sensitivity to asparaginase. Int. J. Cancer. 19: 128–135. https://doi.org/10.1002/ijc.2910190118.Search in Google Scholar PubMed

Zeng, Y., Danielson, K.G., Albert, T.J., Shapiro, I.M., and Risbud, M.V. (2007). HIF-1 alpha is a regulator of galectin-3 expression in the intervertebral disc. J. Bone Miner. Res. 22: 1851–1861. https://doi.org/10.1359/jbmr.070620.Search in Google Scholar PubMed

Zhang, H., Bosch-Marce, M., Shimoda, L.A., Tan, Y.S., Baek, J.H., Wesley, J.B., Gonzalez, F.J., and Semenza, G.L. (2008). Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J. Biol. Chem. 283: 10892–10903. https://doi.org/10.1074/jbc.M800102200.Search in Google Scholar PubMed PubMed Central

Zhang, L., Wang, P., Qin, Y., Cong, Q., Shao, C., Du, Z., Ni, X., Li, P., and Ding, K. (2017). RN1, a novel galectin-3 inhibitor, inhibits pancreatic cancer cell growth in vitro and in vivo via blocking galectin-3 associated signaling pathways. Oncogene. 36: 1297–1308. https://doi.org/10.1038/onc.2016.306.Search in Google Scholar PubMed

Zhao, H, Chen, M., Valdés, A., Lind, S.B., and Pettersson, U. (2018). Discordant expression profile between RNA and protein for the genes involved in immune response network in adenovirus type 2 infected cells. bioRxiv: 302851. https://doi.org/10.1101/302851.Search in Google Scholar

Zheng, J., Lu, W., Wang, C., Xing, Y., Chen, X, and Ai, Z. (2017). Galectin-3 induced by hypoxia promotes cell migration in thyroid cancer cells. Oncotarget. 8: 101475–101488. https://doi.org/10.18632/oncotarget.21135.Search in Google Scholar PubMed PubMed Central


Supplementary material

The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2019-0413).


Received: 2019-11-09
Accepted: 2020-04-28
Published Online: 2020-07-27
Published in Print: 2020-09-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 9.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2019-0413/html
Scroll to top button