Abstract
Metabolic disorders, including obesity, diabetes, and hyperlipidemia, as well as cardiovascular diseases (CVD), particularly atherosclerosis, are still leading causes of death worldwide. Plasma levels of low-density lipoprotein (LDL) are currently being considered as a critical risk factor for the diseases mentioned above, especially atherosclerosis. Because of the heterogeneous nature of LDL, many studies have already been conducted on its subclasses, especially small dense LDL (sdLDL). According to available evidence, sdLDL levels can be considered as an ideal alternative to LDL levels for monitoring CVD and early diagnosis of atherosclerosis. Recently, several researchers have focused on factors that are able to decrease sdLDL levels and improve health quality. Therefore, the purpose of this study is to describe the production process of sdLDL particles and review the effects of pharmaceutical and dietary agents as well as lifestyle on sdLDL plasma levels. In brief, their mechanisms of action are discussed. Apparently, cholesterol and LDL-lowering compounds are also effective in the reduction of sdLDL levels. In addition, improving lipid profile, especially the reduction of triglyceride levels, appropriate regimen, and lifestyle can decrease sdLDL levels. Therefore, all the aforementioned parameters should be taken into consideration simultaneously in sdLDL levels reducing strategies.
Research funding: None declared.
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Adams, S.P., Sekhon, S.S., Tsang, M. and Wright, J.M. (2018). Fluvastatin for lowering lipids. Cochrane. Database. Syst. Rev. 3: CD012282. DOI: https://doi.org/10.1002/14651858.CD012282.pub2.Search in Google Scholar PubMed PubMed Central
Ahren, B. and Foley, J.E. (2016). Improved glucose regulation in type 2 diabetic patients with DPP-4 inhibitors: focus on α and β cell function and lipid metabolism. Diabetologia 59: 907–917, DOI: https://doi.org/10.1007/s00125-016-3899-2.Search in Google Scholar PubMed
Ai, M., Otokozawa, S., Asztalos, B.F., Ito, Y., Nakajima, K., White, C.C., Cupples, L.A., Wilson, P.W. and Schaefer, E.J. (2010). Small dense LDL cholesterol and coronary heart disease: results from the Framingham offspring study. Clin. Chem. 56: 967–976, DOI: https://doi.org/10.1373/clinchem.2009.137489.Search in Google Scholar PubMed PubMed Central
Ajith, T.A. and Jayakumar, T.G. (2019). Omega-3 fatty acids in coronary heart disease: recent updates and future perspectives. Clin. Exp. Pharmacol. Physiol. 46: 11–18, DOI: https://doi.org/10.1111/1440-1681.13034.Search in Google Scholar PubMed
Akash, M.S.H., Rehman, K. and Liaqat, A. (2018). Tumor necrosis factor-alpha: role in development of insulin resistance and pathogenesis of type 2 diabetes mellitus. J. Cell. Biochem. 119: 105–110, DOI: https://doi.org/10.1002/jcb.26174.Search in Google Scholar PubMed
Alagona, P.Jr. and Ahmad, T.A. (2015). Cardiovascular disease risk assessment and prevention: current guidelines and limitations. Med. Clin. North. Am. 99: 711–731, DOI: https://doi.org/10.1016/j.mcna.2015.02.003.Search in Google Scholar PubMed
Allaire, J., Couture, P., Leclerc, M., Charest, A., Marin, J., Lepine, M.C., Talbot, D., Tchernof, A. and Lamarche, B. (2016). A randomized, crossover, head-to-head comparison of eicosapentaenoic acid and docosahexaenoic acid supplementation to reduce inflammation markers in men and women: the comparing EPA to DHA (ComparED) study. Am. J. Clin. Nutr. 104: 280–287, DOI: https://doi.org/10.3945/ajcn.116.131896.Search in Google Scholar PubMed
Allaire, J., Vors, C., Couture, P. and Lamarche, B. (2017). LDL particle number and size and cardiovascular risk: anything new under the sun? Curr. Opin. Lipidol. 28: 261–266, DOI: https://doi.org/10.1097/MOL.0000000000000419.Search in Google Scholar PubMed
Allaire, J., Vors, C., Tremblay, A.J., Marin, J., Charest, A., Tchernof, A., Couture, P. and Lamarche, B. (2018). High-dose DHA has more profound effects on LDL-related features than high-dose EPA: the compared study. J. Clin. Endocrinol. Metab. 103: 2909–2917, DOI: https://doi.org/10.1210/jc.2017-02745.Search in Google Scholar PubMed
Altomonte, J., Cong, L., Harbaran, S., Richter, A., Xu, J., Meseck, M. and Dong, H.H. (2004). Foxo1 mediates insulin action on apoC-III and triglyceride metabolism. J. Clin. Invest. 114: 1493–1503, DOI: https://doi.org/10.1172/JCI19992.Search in Google Scholar PubMed PubMed Central
Ambring, A., Friberg, P., Axelsen, M., Laffrenzen, M., Taskinen, M.R., Basu, S. and Johansson, M. (2004). Effects of a Mediterranean-inspired diet on blood lipids, vascular function and oxidative stress in healthy subjects. Clin. Sci. (Lond.) 106: 519–525, DOI: https://doi.org/10.1042/CS20030315.Search in Google Scholar
Anber, V., Griffin, B.A., McConnell, M., Packard, C.J. and Shepherd, J. (1996). Influence of plasma lipid and LDL-subfraction profile on the interaction between low density lipoprotein with human arterial wall proteoglycans. Atherosclerosis 124: 261–271, DOI: https://doi.org/10.1016/0021-9150(96)05842-x.Search in Google Scholar
Andersson, P.E. and Lithell, H. (1996). Metabolic effects of doxazosin and enalapril in hypertriglyceridemic, hypertensive men. relationship to changes in skeletal muscle blood flow. Am. J. Hypertens. 9: 323–333, DOI: https://doi.org/10.1016/0895-7061(95)00396-7.Search in Google Scholar
Anholm, C., Kumarathurai, P., Pedersen, L.R., Samkani, A., Walzem, R.L., Nielsen, O.W., Kristiansen, O.P., Fenger, M., Madsbad, S., Sajadieh, A., et al. (2019). Liraglutide in combination with metformin may improve the atherogenic lipid profile and decrease C-reactive protein level in statin treated obese patients with coronary artery disease and newly diagnosed type 2 diabetes: a randomized trial. Atherosclerosis 288: 60–66, https://doi.org/10.1016/j.atherosclerosis.2019.07.007.10.1016/j.atherosclerosis.2019.07.007Search in Google Scholar
Arai, H., Kokubo, Y., Watanabe, M., Sawamura, T., Ito, Y., Minagawa, A., Okamura, T. and Miyamato, Y. (2013). Small dense low-density lipoproteins cholesterol can predict incident cardiovascular disease in an urban Japanese cohort: the Suita study. J. Atheroscler. Thromb. 20: 195–203, DOI: https://doi.org/10.5551/jat.14936.Search in Google Scholar
Ariel, D., Kim, S.H., Abbasi, F., Lamendola, C.A., Liu, A. and Reaven, G.M. (2014). Effect of liraglutide administration and a calorie-restricted diet on lipoprotein profile in overweight/obese persons with prediabetes. Nutr. Metab. Cardiovasc. Dis. 24: 1317–1322, DOI: https://doi.org/10.1016/j.numecd.2014.06.010.Search in Google Scholar
Backes, J.M. and Gibson, CA. (2005). Effect of lipid-lowering drug therapy on small-dense low-density lipoprotein. Ann. Pharmacother. 39: 523–526, DOI: https://doi.org/10.1345/aph.1E322.Search in Google Scholar
Bahadir, M.A., Oguz, A., Uzunlulu, M. and Bahadir, O. (2009). Effects of different statin treatments on small dense low-density lipoprotein in patients with metabolic syndrome. J. Atheroscler. Thromb. 16: 684–690, DOI: https://doi.org/10.5551/jat.1123.Search in Google Scholar
Baigent, C., Blackwell, L., Emberson, J., Holland, L.E., Reith, C., Bhala, N., Peto, R., Barnes, E.H., Keech, A., Simes, J., et al. (2010). Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 376: 1670–1681, DOI: https://doi.org/10.1016/S0140-6736(10)61350-5.Search in Google Scholar
Bando, Y., Tohyama, H., Aoki, K., Kanehara, H., Hisada, A., Okafuji, K. and Toya, D. (2016). Ipragliflozin lowers small, dense low-density lipoprotein cholesterol levels in Japanese patients with type 2 diabetes mellitus. J. Clin. Transl. Endocrinol. 6: 1–7, DOI: https://doi.org/10.1016/j.jcte.2016.06.001.Search in Google Scholar PubMed PubMed Central
Bavirti, S., Ghanaat, F. and Tayek, J.A. (2003). Peroxisome proliferator-activated receptor-gamma agonist increases both low-density lipoprotein cholesterol particle size and small high-density lipoprotein cholesterol in patients with type 2 diabetes independent of diabetic control. Endocr. Pract. 9: 487–493, DOI: https://doi.org/10.4158/EP.9.6.487.Search in Google Scholar PubMed
Berneis, K., Rizzo, M., Stettler, C., Chappuis, B., Braun, M., Diem, P. and Christ, E.R. (2008). Comparative effects of rosiglitazone and pioglitazone on fasting and postprandial low-density lipoprotein size and subclasses in patients with type 2 diabetes. Expert. Opin. Pharmacother. 9: 343–349, DOI: https://doi.org/10.1517/14656566.9.3.343.Search in Google Scholar PubMed
Berneis, K., Rizzo, M., Berthold, H.K., Spinas, G.A., Krone, W. and Gouni-Berthold, I. (2010). Ezetimibe alone or in combination with simvastatin increases small dense low-density lipoproteins in healthy men: a randomized trial. Eur. Heart J. 31: 1633–1639, DOI: https://doi.org/10.1093/eurheartj/ehq181.Search in Google Scholar PubMed
Bezafibrate, I.P.B.J.C. (2000). Secondary prevention by raising HDL cholesterol and reducing triglycerides in patients with coronary artery disease. Circulation 102: 21–27, DOI: https://doi.org/10.1161/01.cir.102.1.21.Search in Google Scholar PubMed
Biermasz, N.R., van den Oever, N.C., Frolich, M., Arias, A.M., Smit, J.W., Romijn, J.A. and Roelfsema, F. (2003). Sandostatin LAR in acromegaly: a 6-week injection interval suppresses GH secretion as effectively as a 4-week interval. Clin. Endocrinol. 58: 288–295, DOI: https://doi.org/10.1046/j.1365-2265.2003.01710.x.Search in Google Scholar PubMed
Calabresi, L., Villa, B., Canavesi, M., Sirtori, C.R., James, R.W., Bernini, F. and Franceschini, G. (2004). An omega-3 polyunsaturated fatty acid concentrate increases plasma high-density lipoprotein 2 cholesterol and paraoxonase levels in patients with familial combined hyperlipidemia. Metabolism 53: 153–158, DOI: https://doi.org/10.1016/j.metabol.2003.09.007.Search in Google Scholar PubMed
Carmena, R., Duriez, P. and Fruchart, J.C. (2004). Atherogenic lipoprotein particles in atherosclerosis. Circulation 109: Iii2–7, DOI: https://doi.org/10.1161/01.CIR.0000131511.50734.44.Search in Google Scholar PubMed
Chiquette, E., Toth, P.P., Ramirez, G., Cobble, M. and Chilton, R. (2012). Treatment with exenatide once weekly or twice daily for 30 weeks is associated with changes in several cardiovascular risk markers. Vasc. Health Risk Manag. 8: 621–629, DOI: https://doi.org/10.2147/VHRM.S37969.10.2147/VHRM.S37969Search in Google Scholar PubMed PubMed Central
Chiu, S., Williams, P.T. and Krauss, R.M. (2017). Effects of a very high saturated fat diet on LDL particles in adults with atherogenic dyslipidemia: a randomized controlled trial. PLoS One 12: e0170664, https://doi.org/10.1371/journal.pone.0170664.Search in Google Scholar PubMed PubMed Central
Chmielewski, M., Heimbürger, O., Stenvinkel, P. and Lindholm, B. (2013). Chapter 4 - Uremic toxicity. In: Nutritional management of renal disease. Academic Press, pp. 49–77.10.1016/B978-0-12-391934-2.00004-7Search in Google Scholar
Chu, N.V., Kong, A.P., Kim, D.D., Armstrong, D., Baxi, S., Deutsch, R., Caulfield, M., Mudaliar, S.R., Reitz, R., Henry, R.R., et al. (2002). Differential effects of metformin and troglitazone on cardiovascular risk factors in patients with type 2 diabetes. Diabetes Care 25: 542–549, DOI: https://doi.org/10.2337/diacare.25.3.542.Search in Google Scholar
Clements, R.S.Jr. and Darnell, B. (1980). Myo-inositol content of common foods: development of a high-myo-inositol diet. Am. J. Clin. Nutr. 33: 1954–1967, DOI: https://doi.org/10.1093/ajcn/33.9.1954.Search in Google Scholar
Damasceno, N.R., Sala-Vila, A., Cofan, M., Perez-Heras, A.M., Fito, M., Ruiz-Gutierrez, V., Martinez-Gonzalez, M.A., Corella, D., Aros, F., Estruch, R., et al. (2013). Mediterranean diet supplemented with nuts reduces waist circumference and shifts lipoprotein subfractions to a less atherogenic pattern in subjects at high cardiovascular risk. Atherosclerosis 230: 347–353, DOI: https://doi.org/10.1016/j.atherosclerosis.2013.08.014.Search in Google Scholar
Das, L., Bhaumik, E., Raychaudhuri, U. and Chakraborty, R. (2012). Role of nutraceuticals in human health. J. Food. Sci. Technol. 49: 173–183, DOI: https://doi.org/10.1007/s13197-011-0269-4.10.1007/s13197-011-0269-4Search in Google Scholar
Dejager, S., Bruckert, E. and Chapman, M.J. (1993). Dense low density lipoprotein subspecies with diminished oxidative resistance predominate in combined hyperlipidemia. J. Lipid. Res. 34: 295–308.10.1016/S0022-2275(20)40756-4Search in Google Scholar
Dinu, M., Pagliai, G., Casini, A. and Sofi, F. (2018). Mediterranean diet and multiple health outcomes: an umbrella review of meta-analyses of observational studies and randomised trials. Eur. J. Clin. Nutr. 72: 30–43, DOI: https://doi.org/10.1038/ejcn.2017.58.Search in Google Scholar
Dobiasova, M. and Frohlich, J. (2001). The plasma parameter log (TG/HDL-C) as an atherogenic index: correlation with lipoprotein particle size and esterification rate in apoB-lipoprotein-depleted plasma (FER(HDL)). Clin. Biochem. 34: 583–588, DOI: https://doi.org/10.1016/s0009-9120(01)00263-6.Search in Google Scholar
Dormandy, J.A., Charbonnel, B., Eckland, D.J., Erdmann, E., Massi-Benedetti, M., Moules, I.K., Skene, A.M., Tan, M.H., Lefebvre, P.J., Murray, G.D., et al. (2005). Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive study (prospective pioglitazone clinical trial in macrovascular events): a randomised controlled trial. Lancet 366: 1279–1289, DOI: https://doi.org/10.1016/S0140-6736(05)67528-9.Search in Google Scholar
Dreon, D.M., Fernstrom, H.A., Campos, H., Blanche, P., Williams, P.T. and Krauss, R.M. (1998). Change in dietary saturated fat intake is correlated with change in mass of large low-density-lipoprotein particles in men. Am. J. Clin. Nutr. 67: 828–836, DOI: https://doi.org/10.1093/ajcn/67.5.828.Search in Google Scholar PubMed
Dreon, D.M., Fernstrom, H.A., Williams, P.T. and Krauss, R.M. (1999). A very low-fat diet is not associated with improved lipoprotein profiles in men with a predominance of large, low-density lipoproteins. Am. J. Clin. Nutr. 69: 411–418, DOI: https://doi.org/10.1093/ajcn/69.3.411.Search in Google Scholar PubMed
Dreon, D.M., Fernstrom, H.A., Williams, P.T. and Krauss, R.M. (2000). Reduced LDL particle size in children consuming a very-low-fat diet is related to parental LDL-subclass patterns. Am. J. Clin. Nutr. 71: 1611–1616, DOI: https://doi.org/10.1093/ajcn/71.6.1611.Search in Google Scholar
Engler, M.M., Engler, M.B., Malloy, M.J., Paul, S.M., Kulkarni, K.R. and Mietus-Snyder, M.L. (2005). Effect of docosahexaenoic acid on lipoprotein subclasses in hyperlipidemic children (the EARLY study). Am. J. Cardiol. 95: 869–871, DOI: https://doi.org/10.1016/j.amjcard.2004.12.014.Search in Google Scholar
Feingold, K.R., Grunfeld, C., Pang, M., Doerrler, W. and Krauss, R.M. (1992). LDL subclass phenotypes and triglyceride metabolism in non-insulin-dependent diabetes. Arterioscler. Thromb. 12: 1496–1502, DOI: https://doi.org/10.1161/01.atv.12.12.1496.Search in Google Scholar
Ference, B.A., Ginsberg, H.N., Graham, I., Ray, K.K., Packard, C.J., Bruckert, E., Hegele, R.A., Krauss, R.M., Raal, F.J. and Schunkert, H., et al. (2017). Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. evidence from genetic, epidemiologic, and clinical studies. a consensus statement from the European atherosclerosis society consensus panel. Eur. Heart. J. 38: 2459–2472, DOI: https://doi.org/10.1093/eurheartj/ehx144.Search in Google Scholar
Filippas-Ntekouan, S., Tsimihodimos, V., Filippatos, T., Dimitriou, T. and Elisaf, M. (2018). SGLT-2 inhibitors: pharmacokinetics characteristics and effects on lipids. Expert Opin. Drug. Metab. Toxicol. 14: 1113–1121, DOI: https://doi.org/10.1080/17425255.2018.1541348.Search in Google Scholar
Filippatos, T.D., Gazi, I.F., Liberopoulos, E.N., Athyros, V.G., Elisaf, M.S., Tselepis, A.D. and Kiortsis, D.N. (2007). The effect of orlistat and fenofibrate, alone or in combination, on small dense LDL and lipoprotein-associated phospholipase A2 in obese patients with metabolic syndrome. Atherosclerosis 193: 428–437, DOI: https://doi.org/10.1016/j.atherosclerosis.2006.07.010.Search in Google Scholar
Florentin, M., Tselepis, A.D., Elisaf, M.S., Rizos, C.V., Mikhailidis, D.P. and Liberopoulos, E.N. (2010). Effect of non-statin lipid lowering and anti-obesity drugs on LDL subfractions in patients with mixed dyslipidaemia. Curr. Vasc. Pharmacol. 8: 820–830, DOI: https://doi.org/10.2174/157016110793563825.Search in Google Scholar
Florentin, M., Liberopoulos, E.N., Moutzouri, E., Rizos, C.V., Tselepis, A.D. and Elisaf, M.S. (2011). The effect of simvastatin alone versus simvastatin plus ezetimibe on the concentration of small dense low-density lipoprotein cholesterol in subjects with primary hypercholesterolemia. Curr. Med. Res. Opin. 27: 685–692, DOI: https://doi.org/10.1185/03007995.2010.546394.Search in Google Scholar
Freed, M.I., Ratner, R., Marcovina, S.M., Kreider, M.M., Biswas, N., Cohen, B.R. and Brunzell, J.D. (2002). Effects of rosiglitazone alone and in combination with atorvastatin on the metabolic abnormalities in type 2 diabetes mellitus. Am. J. Cardiol. 90: 947–952, DOI: https://doi.org/10.1016/s0002-9149(02)02659-0.Search in Google Scholar
Fruchart, J.C., Duriez, P. and Staels, B. (1999). Peroxisome proliferator-activated receptor-α activators regulate genes governing lipoprotein metabolism, vascular inflammation and atherosclerosis. Curr. Opin. Lipidol. 10: 245–257, DOI: https://doi.org/10.1097/00041433-199906000-00007.Search in Google Scholar PubMed
Fukushima, Y., Hirayama, S., Ueno, T., Dohi, T., Miyazaki, T., Ohmura, H., Mokuno, H., Miyauchi, K., Miida, T. and Daida, H. (2011). Small dense LDL cholesterol is a robust therapeutic marker of statin treatment in patients with acute coronary syndrome and metabolic syndrome. Clin. Chim. Acta. 412: 1423–1427, DOI: https://doi.org/10.1016/j.cca.2011.04.021.Search in Google Scholar
Galletti, F., Fazio, V., Gentile, M., Schillaci, G., Pucci, G., Battista, F., Mercurio, V., Bosso, G., Bonaduce, D., Brambilla, N., et al. (2019). Efficacy of a nutraceutical combination on lipid metabolism in patients with metabolic syndrome: a multicenter, double blind, randomized, placebo controlled trial. Lipids Health Dis. 18: 66, DOI: https://doi.org/10.1186/s12944-019-1002-y.10.1186/s12944-019-1002-ySearch in Google Scholar
Garoufi, A., Vorre, S., Soldatou, A., Tsentidis, C., Kossiva, L., Drakatos, A., Marmarinos, A. and Gourgiotis, D. (2014). Plant sterols-enriched diet decreases small, dense LDL-cholesterol levels in children with hypercholesterolemia: a prospective study. Ital. J. Pediatr. 40: 42, DOI: https://doi.org/10.1186/1824-7288-40-42.10.1186/1824-7288-40-42Search in Google Scholar
Gentile, M., Calcaterra, I., Strazzullo, A., Pagano, C., Pacioni, D., Speranza, E., Rubba, P. and Marotta, G. (2015). Effects of armolipid plus on small dense LDL particles in a sample of patients affected by familial combined hyperlipidemia. Clin. Lipidol. 10: 475–480, DOI: https://doi.org/10.2217/clp.15.37.10.2217/clp.15.37Search in Google Scholar
Ghazzi, M.N., Perez, J.E., Antonucci, T.K., Driscoll, J.H., Huang, S.M., Faja, B.W. and Whitcomb, R.W. (1997). Cardiac and glycemic benefits of troglitazone treatment in NIDDM. The troglitazone study group. Diabetes 46: 433–439, DOI: https://doi.org/10.2337/diab.46.3.433.Search in Google Scholar
Goldberg, R., Temprosa, M., Otvos, J., Brunzell, J., Marcovina, S., Mather, K., Arakaki, R., Watson, K., Horton, E. and Barrett-Connor, E. (2013). Lifestyle and metformin treatment favorably influence lipoprotein subfraction distribution in the diabetes prevention program. J. Clin. Endocrinol. Metab. 98: 3989–3998, DOI: https://doi.org/10.1210/jc.2013-1452.Search in Google Scholar
Grundy, S.M. (2002). Third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report. Circulation 106: 3143–3421.10.1161/circ.106.25.3143Search in Google Scholar
Guay, V., Lamarche, B., Charest, A., Tremblay, A.J. and Couture, P. (2012). Effect of short-term low- and high-fat diets on low-density lipoprotein particle size in normolipidemic subjects. Metabolism 61: 76–83, DOI: https://doi.org/10.1016/j.metabol.2011.06.002.Search in Google Scholar
Guerin, M., Lassel, T.S., Le Goff, W., Farnier, M. and Chapman, M.J. (2000). Action of atorvastatin in combined hyperlipidemia: preferential reduction of cholesteryl ester transfer from HDL to VLDL1 particles. Arterioscler. Thromb. Vasc. Biol. 20: 189–197, DOI: https://doi.org/10.1161/01.atv.20.1.189.Search in Google Scholar
Guerin, M., Egger, P., Soudant, C., Le Goff, W., van Tol, A., Dupuis, R. and Chapman, M.J. (2002). Dose-dependent action of atorvastatin in type IIB hyperlipidemia: preferential and progressive reduction of atherogenic apoB-containing lipoprotein subclasses (VLDL-2, IDL, small dense LDL) and stimulation of cellular cholesterol efflux. Atherosclerosis 163: 287–296, DOI: https://doi.org/10.1016/s0021-9150(02)00037-0.Search in Google Scholar
Hadigan, C., Mazza, S., Crum, D. and Grinspoon, S. (2007). Rosiglitazone increases small dense low-density lipoprotein concentration and decreases high-density lipoprotein particle size in HIV-infected patients. AIDS 21: 2543–2546, DOI: https://doi.org/10.1097/QAD.0b013e3282f25123.10.1097/QAD.0b013e3282f25123Search in Google Scholar
Hanefeld, M. (2009). The role of pioglitazone in modifying the atherogenic lipoprotein profile. Diabetes. Obes. Metab. 11: 742–756, DOI: https://doi.org/10.1111/j.1463-1326.2009.01048.x.Search in Google Scholar
Hasegawa, Y., Hori, M., Nakagami, T., Harada-Shiba, M. and Uchigata, Y. (2018). Glucagon-like peptide-1 receptor agonists reduced the low-density lipoprotein cholesterol in Japanese patients with type 2 diabetes mellitus treated with statins. J. Clin. Lipidol. 12: 62–69.e61, DOI: https://doi.org/10.1016/j.jacl.2017.11.006.Search in Google Scholar
Hayashi, T., Hirano, T., Yamamoto, T., Ito, Y. and Adachi, M. (2006). Intensive insulin therapy reduces small dense low-density lipoprotein particles in patients with type 2 diabetes mellitus: relationship to triglyceride-rich lipoprotein subspecies. Metabolism 55: 879–884, DOI: https://doi.org/10.1016/j.metabol.2006.02.014.Search in Google Scholar
Hayashi, T., Fukui, T., Nakanishi, N., Yamamoto, S., Tomoyasu, M., Osamura, A., Ohara, M., Yamamoto, T., Ito, Y. and Hirano, T. (2017). Dapagliflozin decreases small dense low-density lipoprotein-cholesterol and increases high-density lipoprotein 2-cholesterol in patients with type 2 diabetes: comparison with sitagliptin. Cardiovasc. Diabetol. 16: 8, DOI: https://doi.org/10.1186/s12933-016-0491-5.Search in Google Scholar
Hirai, H., Higa, M., Morimoto, T., Sakuma, M., Arasaki, O., Nomiyama, T., Node, K., Ueda, S. and Shimabukuro, M. (2019). Dissimilar effects of anagliptin and sitagliptin on lipoprotein subclass in standard or strong statin-treated patients with type-2 diabetes mellitus: a subanalysis of the REASON (Randomized Evaluation of Anagliptin versus Sitagliptin on Low-Density Lipoprotein Cholesterol in Diabetes) trial. J. Clin. Med. 9: 93, DOI: https://doi.org/10.3390/jcm9010093.Search in Google Scholar
Hirano, T., Yoshino, G., Kashiwazaki, K. and Adachi, M. (2001). Doxazosin reduces prevalence of small dense low density lipoprotein and remnant-like particle cholesterol levels in nondiabetic and diabetic hypertensive patients. Am. J. Hypertens. 14: 908–913, DOI: https://doi.org/10.1016/s0895-7061(01)02141-0.Search in Google Scholar
Hirano, T., Ito, Y., Koba, S., Toyoda, M., Ikejiri, A., Saegusa, H., Yamazaki, J. and Yoshino, G. (2004). Clinical significance of small dense low-density lipoprotein cholesterol levels determined by the simple precipitation method. Arterioscler. Thromb. Vasc. Biol. 24: 558–563, DOI: https://doi.org/10.1161/01.ATV.0000117179.92263.08.Search in Google Scholar
Hoogeveen, R.C., Gaubatz, J.W., Sun, W., Dodge, R.C., Crosby, J.R., Jiang, J., Couper, D., Virani, S.S., Kathiresan, S., Boerwinkle, E., et al. (2014). Small dense low-density lipoprotein-cholesterol concentrations predict risk for coronary heart disease: the Atherosclerosis Risk In Communities (ARIC) study. Arterioscler. Thromb. Vasc. Biol. 34: 1069–1077, DOI: https://doi.org/10.1161/ATVBAHA.114.303284.Search in Google Scholar
Hsueh, W.A. and Law, R.E. (1998). Cardiovascular risk continuum: implications of insulin resistance and diabetes. Am. J. Med. 105: 4s–14s, DOI: https://doi.org/10.1016/s0002-9343(98)00205-8.Search in Google Scholar
Huang, Y., Cheng, Y., Wu, J., Li, Y., Xu, E., Hong, Z., Li, Z., Zhang, W., Ding, M., Gao, X., et al. (2008). Cilostazol as an alternative to aspirin after ischaemic stroke: a randomised, double-blind, pilot study. Lancet Neurol. 7: 494–499, DOI: https://doi.org/10.1016/S1474-4422(08)70094-2.Search in Google Scholar
Hurt-Camejo, E., Camejo, G., Rosengren, B., Lopez, F., Wiklund, O. and Bondjers, G. (1990). Differential uptake of proteoglycan-selected subfractions of low density lipoprotein by human macrophages. J. Lipid. Res. 31: 1387–1398.10.1016/S0022-2275(20)42610-0Search in Google Scholar
Inoue, I., Kubota, R., Yanagi, S., Akita, M., Nakano, T., Katayama, S., Shimada, A. and Noda, M. (2017). The new molecular entity evolocumab, one kind of PCSK9 inhibitor, reduce plasma small size LDL-cholesterol levels by using a new standardized method of measuring LDL size. Open. J. Mol. Integr. Physiol. 7: 1, DOI: https://doi.org/10.4236/ojmip.2017.71001.Search in Google Scholar
Ivanova, E.A., Myasoedova, V.A., Melnichenko, A.A., Grechko, A.V. and Orekhov, A.N. (2017). Small dense low-density lipoprotein as biomarker for atherosclerotic diseases. Oxid. Med. Cell. Longev. 2017, 1273042, DOI: https://doi.org/10.1155/2017/1273042.10.1155/2017/1273042Search in Google Scholar PubMed PubMed Central
Jebb, S.A., Lovegrove, J.A., Griffin, B.A., Frost, G.S., Moore, C.S., Chatfield, M.D., Bluck, L.J., Williams, C.M. and Sanders, T.A. (2010). Effect of changing the amount and type of fat and carbohydrate on insulin sensitivity and cardiovascular risk: the RISCK (Reading, Imperial, Surrey, Cambridge, and Kings) trial. Am. J. Clin. Nutr. 92: 748–758, DOI: https://doi.org/10.3945/ajcn.2009.29096.Search in Google Scholar PubMed PubMed Central
Jenkins, D.J., Wolever, T.M., Rao, A.V., Hegele, R.A., Mitchell, S.J., Ransom, T.P., Boctor, D.L., Spadafora, P.J., Jenkins, A.L., Mehling, C., et al. (1993). Effect on blood lipids of very high intakes of fiber in diets low in saturated fat and cholesterol. N. Engl. J. Med. 329: 21–26, DOI: https://doi.org/10.1056/NEJM199307013290104.Search in Google Scholar PubMed
Jones, J.L., Comperatore, M., Barona, J., Calle, M.C., Andersen, C., McIntosh, M., Najm, W., Lerman, R.H. and Fernandez, M.L. (2012). A Mediterranean-style, low-glycemic-load diet decreases atherogenic lipoproteins and reduces lipoprotein (a) and oxidized low-density lipoprotein in women with metabolic syndrome. Metabolism 61: 366–372, DOI: https://doi.org/10.1016/j.metabol.2011.07.013.Search in Google Scholar PubMed
Jones, P.H., Hunninghake, D.B., Ferdinand, K.C., Stein, E.A., Gold, A., Caplan, R.J. and Blasetto, J.W. (2004). Effects of rosuvastatin versus atorvastatin, simvastatin, and pravastatin on non-high-density lipoprotein cholesterol, apolipoproteins, and lipid ratios in patients with hypercholesterolemia: additional results from the STELLAR trial. Clin. Ther. 26: 1388–1399, DOI: https://doi.org/10.1016/j.clinthera.2004.09.006.Search in Google Scholar PubMed
Jump, D.B., Botolin, D., Wang, Y., Xu, J., Demeure, O. and Christian, B. (2008). Docosahexaenoic acid (DHA) and hepatic gene transcription. Chem. Phys. Lipids 153: 3–13, DOI: https://doi.org/10.1016/j.chemphyslip.2008.02.007.Search in Google Scholar PubMed PubMed Central
Kalogirou, M., Tsimihodimos, V., Gazi, I., Filippatos, T., Saougos, V., Tselepis, A.D., Mikhailidis, D.P. and Elisaf, M. (2007). Effect of ezetimibe monotherapy on the concentration of lipoprotein subfractions in patients with primary dyslipidaemia. Curr. Med. Res. Opin. 23: 1169–1176, DOI: https://doi.org/10.1185/030079907x188062.Search in Google Scholar PubMed
Kamijo, Y., Ishii, H., Yamamoto, T., Kobayashi, K., Asano, H., Miake, S., Kanda, E., Urata, H. and Yoshida, M. (2019). Potential impact on lipoprotein subfractions in type 2 diabetes. Clin. Med. Insights. Endocrinol. Diabetes. 12, 1179551419866811, DOI: https://doi.org/10.1177/1179551419866811.10.1177/1179551419866811Search in Google Scholar PubMed PubMed Central
Kawakami, Y., Yamanaka-Okumura, H., Naniwa-Kuroki, Y., Sakuma, M., Taketani, Y. and Takeda, E. (2015). Flaxseed oil intake reduces serum small dense low-density lipoprotein concentrations in Japanese men: a randomized, double blind, crossover study. Nutr. J. 14: 39, DOI: https://doi.org/10.1186/s12937-015-0023-2.Search in Google Scholar PubMed PubMed Central
Kenney, J.J., Barnard, R.J. and Inkeles, S. (1999). Very-low-fat diets do not necessarily promote small, dense LDL particles. Am. J. Clin. Nutr. 70: 423–425, DOI: https://doi.org/10.1093/ajcn/70.3.423.Search in Google Scholar PubMed
Khosravi, M., Hosseini-Fard, R. and Najafi, M. (2018). Circulating low density lipoprotein (LDL). Horm. Mol. Biol. Clin. Invest. 35, 40–52. https://doi.org/10.1515/hmbci-2018-0024.Search in Google Scholar PubMed
Khosravi, M., Poursaleh, A., Ghasempour, G., Farhad, S. and Najafi, M. (2019). The effects of oxidative stress on the development of atherosclerosis. Biol. Chem. 400: 711–732, https://doi.org/10.1515/hsz-2018-0397.Search in Google Scholar PubMed
Kocer, D., Bayram, F. and Diri, H. (2014). The effects of metformin on endothelial dysfunction, lipid metabolism and oxidative stress in women with polycystic ovary syndrome. Gynecol. Endocrinol. 30: 367–371, DOI: https://doi.org/10.3109/09513590.2014.887063.Search in Google Scholar PubMed
Kolomvotsou, A.I., Rallidis, L.S., Mountzouris, K.C., Lekakis, J., Koutelidakis, A., Efstathiou, S., Nana-Anastasiou, M. and Zampelas, A. (2013). Adherence to Mediterranean diet and close dietetic supervision increase total dietary antioxidant intake and plasma antioxidant capacity in subjects with abdominal obesity. Eur. J. Nutr. 52: 37–48, DOI: https://doi.org/10.1007/s00394-011-0283-3.Search in Google Scholar PubMed
Krauss, R.M., Wojnooski, K., Orr, J., Geaney, J.C., Pinto, C.A., Liu, Y., Wagner, J.A., Luk, J.M., Johnson-Levonas, A.O., Anderson, M.S., et al. (2012). Changes in lipoprotein subfraction concentration and composition in healthy individuals treated with the CETP inhibitor anacetrapib. J. Lipid. Res. 53: 540–547, DOI: https://doi.org/10.1194/jlr.M018010.Search in Google Scholar PubMed PubMed Central
Krebs, A., Kratzin, T., Doerfer, J., Winkler, K., Wurm, M., von der Werf-Grohmann, N., Krause, A. and Schwab, K.O. (2016). Decrease of small dense LDL and lipoprotein-associated phospholipase A2 due to human growth hormone treatment in short children with growth hormone deficiency and small for gestational age status. J. Pediatr. Endocrinol. Metab. 29: 203–208, DOI: https://doi.org/10.1515/jpem-2015-0148.Search in Google Scholar PubMed
Krische, D. (2000). The glitazones: proceed with caution. West. J. Med. 173: 54–57, DOI: https://doi.org/10.1136/ewjm.173.1.54.Search in Google Scholar PubMed PubMed Central
Kuriyama, S. (2019). Protection of the kidney with sodium-glucose cotransporter 2 inhibitors: potential mechanisms raised by the large-scaled randomized control trials. Clin. Exp. Nephrol. 23: 304–312, DOI: https://doi.org/10.1007/s10157-018-1673-0.Search in Google Scholar PubMed
Kwon, Y.J., Lee, H.S. and Lee, J.W. (2018). Direct bilirubin is associated with low-density lipoprotein subfractions and particle size in overweight and centrally obese women. Nutr. Metab. Cardiovasc. Dis. 28: 1021–1028, DOI: https://doi.org/10.1016/j.numecd.2018.05.013.Search in Google Scholar PubMed
Labonté, E.D., Camarota, L.M., Rojas, J.C., Jandacek, R.J., Gilham, D.E., Davies, J.P., Ioannou, Y.A., Tso, P., Hui, D.Y. and Howles, P.N. (2008). Reduced absorption of saturated fatty acids and resistance to diet-induced obesity and diabetes by ezetimibe-treated and Npc1l1-/- mice. Am. J. Physiol. Gastrointest. Liver. Physiol. 295: G776–G783, DOI: https://doi.org/10.1152/ajpgi.90275.2008.Search in Google Scholar PubMed PubMed Central
Lamarche, B., Tchernof, A., Moorjani, S., Cantin, B., Dagenais, G.R., Lupien, P.J. and Despres, J.P. (1997). Small, dense low-density lipoprotein particles as a predictor of the risk of ischemic heart disease in men. Prospective results from the Quebec cardiovascular study. Circulation 95: 69–75, DOI: https://doi.org/10.1161/01.cir.95.1.69.Search in Google Scholar PubMed
Lamarche, B., Desroches, S., Jenkins, D.J., Kendall, C.W., Marchie, A., Faulkner, D., Vidgen, E., Lapsley, K.G., Trautwein, E.A., Parker, T.L., et al. (2004). Combined effects of a dietary portfolio of plant sterols, vegetable protein, viscous fibre and almonds on LDL particle size. Br. J. Nutr. 92: 657–663, DOI: https://doi.org/10.1079/bjn20041241.Search in Google Scholar PubMed
Lamon-Fava, S., Diffenderfer, M.R., Barrett, P.H., Buchsbaum, A., Matthan, N.R., Lichtenstein, A.H., Dolnikowski, G.G., Horvath, K., Asztalos, B.F., Zago, V., et al. (2007). Effects of different doses of atorvastatin on human apolipoprotein B-100, B-48, and A-I metabolism. J. Lipid. Res. 48: 1746–1753, DOI: https://doi.org/10.1194/jlr.M700067-JLR200.Search in Google Scholar PubMed
Langreth, R., Keller, M. and Cannon, C. (2016). Decoding big pharma’s secret drug pricing oractices. Bloomberg, New York city.Search in Google Scholar
Lo, J.C., Wang, Y., Tumanov, A.V., Bamji, M., Yao, Z., Reardon, C.A., Getz, G.S. and Fu, Y.X. (2007). Lymphotoxin β receptor-dependent control of lipid homeostasis. Science 316: 285–288, DOI: https://doi.org/10.1126/science.1137221.Search in Google Scholar PubMed
Lopez-Huertas, E. (2012). The effect of EPA and DHA on metabolic syndrome patients: a systematic review of randomised controlled trials. Br. J. Nutr. 107(Suppl. 2): S185–194, DOI: https://doi.org/10.1017/S0007114512001572.Search in Google Scholar PubMed
Lucanic, M., Held, J.M., Vantipalli, M.C., Klang, I.M., Graham, J.B., Gibson, B.W., Lithgow, G.J. and Gill, M.S. (2011). N-acylethanolamine signalling mediates the effect of diet on lifespan in Caenorhabditis elegans. Nature 473: 226–229, DOI: https://doi.org/10.1038/nature10007.10.1038/nature10007Search in Google Scholar PubMed PubMed Central
Maeba, R., Hara, H., Ishikawa, H., Hayashi, S., Yoshimura, N., Kusano, J., Takeoka, Y., Yasuda, D., Okazaki, T., Kinoshita, M., et al. (2008). Myo-inositol treatment increases serum plasmalogens and decreases small dense LDL, particularly in hyperlipidemic subjects with metabolic syndrome. J. Nutr. Sci. Vitaminol. (Tokyo) 54: 196–202, DOI: https://doi.org/10.3177/jnsv.54.196.Search in Google Scholar PubMed
Malakar, A.K., Choudhury, D., Halder, B., Paul, P., Uddin, A. and Chakraborty, S. (2019). A review on coronary artery disease, its risk factors, and therapeutics. J. Cell. Physiol. 234: 16812–16823, DOI: https://doi.org/10.1002/jcp.28350.Search in Google Scholar
Marz, W., Scharnagl, H., Abletshauser, C., Hoffmann, M.M., Berg, A., Keul, J., Wieland, H. and Baumstark, M.W. (2001). Fluvastatin lowers atherogenic dense low-density lipoproteins in postmenopausal women with the atherogenic lipoprotein phenotype. Circulation 103: 1942–1948, DOI: https://doi.org/10.1161/01.cir.103.15.1942.Search in Google Scholar
Mason, R.P., Jacob, R., Corbalan, J.J. and Malinski, T. (2015). Eicosapentaenoic acid reduces small dense low density lipoprotein oxidation and improves endothelial function in vitro as compared to other triglyceride-lowering agents. J. Am. Coll. Cardiol. 65: A2139, DOI: https://doi.org/10.1016/S0735-1097(15)62139-8.Search in Google Scholar
Matikainen, N., Mänttäri, S., Schweizer, A., Ulvestad, A., Mills, D., Dunning, B.E., Foley, J.E. and Taskinen, M.R. (2006). Vildagliptin therapy reduces postprandial intestinal triglyceride-rich lipoprotein particles in patients with type 2 diabetes. Diabetologia 49: 2049–2057, DOI: https://doi.org/10.1007/s00125-006-0340-2.Search in Google Scholar
Matikainen, N. and Taskinen, M.R. (2013). The effect of vildagliptin therapy on atherogenic postprandial remnant particles and LDL particle size in subjects with type 2 diabetes. Diabet. Med. 30: 756–757, DOI: https://doi.org/10.1111/dme.12094.Search in Google Scholar
Mauger, J.F., Lichtenstein, A.H., Ausman, L.M., Jalbert, S.M., Jauhiainen, M., Ehnholm, C. and Lamarche, B. (2003). Effect of different forms of dietary hydrogenated fats on LDL particle size. Am. J. Clin. Nutr. 78: 370–375, DOI: https://doi.org/10.1093/ajcn/78.3.370.Search in Google Scholar
McConathy, W.J., Gesquiere, J.C., Bass, H., Tartar, A., Fruchart, J.C. and Wang, C.S. (1992). Inhibition of lipoprotein lipase activity by synthetic peptides of apolipoprotein C-III. J. Lipid. Res. 33: 995–1003.10.1016/S0022-2275(20)41415-4Search in Google Scholar
Mizuguchi, K., Yano, T., Tanaka, Y., Ishibashi, M., Masada, A., Mizota, M., Fukutake, K. and Saito, Y. (1993). Mechanism of the lipid-lowering effect of ethyl all-cis-5,8,11,14,17-icosapentaenoate. Eur. J. Pharmacol. 231: 121–127, DOI: https://doi.org/10.1016/0014-2999(93)90692-b.Search in Google Scholar
Momtazi-Borojeni, A.A., Katsiki, N., Pirro, M., Banach, M., Rasadi, K.A. and Sahebkar, A. (2019). Dietary natural products as emerging lipoprotein(a)-lowering agents. J. Cell. Physiol. 234: 12581–12594, DOI: https://doi.org/10.1002/jcp.28134.Search in Google Scholar PubMed
Mori, Y., Kuriyama, G., Tanaka, T. and Tajima, N. (2009). Usefulness of aggressive lipid-lowering therapy with rosuvastatin in hypercholesterolemic patients with concomitant type 2 diabetes. Endocrine 36: 412–418, DOI: https://doi.org/10.1007/s12020-009-9235-6.Search in Google Scholar PubMed
Musunuru, K., Strong, A., Frank-Kamenetsky, M., Lee, N.E., Ahfeldt, T., Sachs, K.V., Li, X., Li, H., Kuperwasser, N., Ruda, V.M., et al. (2010). From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature 466: 714–719, DOI: https://doi.org/10.1038/nature09266.Search in Google Scholar
Nagashima, K., Lopez, C., Donovan, D., Ngai, C., Fontanez, N., Bensadoun, A., Fruchart-Najib, J., Holleran, S., Cohn, J.S., Ramakrishnan, R., et al. (2005). Effects of the PPARγ agonist pioglitazone on lipoprotein metabolism in patients with type 2 diabetes mellitus. J. Clin. Invest. 115: 1323–1332, DOI: https://doi.org/10.1172/JCI23219.Search in Google Scholar
Nakou, E.S., Filippatos, T.D., Georgoula, M., Kiortsis, D.N., Tselepis, A.D., Mikhailidis, D.P. and Elisaf, M.S. (2008). The effect of orlistat and ezetimibe, alone or in combination, on serum LDL and small dense LDL cholesterol levels in overweight and obese patients with hypercholesterolaemia. Curr. Med. Res. Opin. 24: 1919–1929, DOI: https://doi.org/10.1185/03007990802177150.Search in Google Scholar
Nauck, M.A., Duran, S., Kim, D., Johns, D., Northrup, J., Festa, A., Brodows, R. and Trautmann, M. (2007). A comparison of twice-daily exenatide and biphasic insulin aspart in patients with type 2 diabetes who were suboptimally controlled with sulfonylurea and metformin: a non-inferiority study. Diabetologia 50: 259–267, DOI: https://doi.org/10.1007/s00125-006-0510-2.Search in Google Scholar
Nishikido, T., Oyama, J., Keida, T., Ohira, H. and Node, K. (2016). High-dose statin therapy with rosuvastatin reduces small dense LDL and MDA-LDL: the standard versus high-dose therapy with rosuvastatin for lipid lowering (SARD) trial. J. Cardiol. 67: 340–346, DOI: https://doi.org/10.1016/j.jjcc.2015.05.017.Search in Google Scholar
Nordestgaard, B.G. and Zilversmit, D.B. (1989). Comparison of arterial intimal clearances of LDL from diabetic and nondiabetic cholesterol-fed rabbits. Differences in intimal clearance explained by size differences. Arteriosclerosis 9: 176–183, DOI: https://doi.org/10.1161/01.atv.9.2.176.Search in Google Scholar
Nozue, T., Michishita, I., Ito, Y. and Hirano, T. (2008). Effects of statin on small dense low-density lipoprotein cholesterol and remnant-like particle cholesterol in heterozygous familial hypercholesterolemia. J. Atheroscler. Thromb. 15: 146–153, DOI: https://doi.org/10.5551/jat.e552.Search in Google Scholar
O’KeefeJr.J.H., Captain, B.K., Jones, P.G. and Harris, W.S. (2004). Atorvastatin reduces remnant lipoproteins and small, dense low‐density lipoproteins regardless of the baseline lipid pattern. Prev. Cardiol. 7: 154–160, DOI: https://doi.org/10.1111/j.1520-037x.2004.03594.x.Search in Google Scholar
Olefsky, J.M. and Saltiel, A.R. (2000). PPAR gamma and the treatment of insulin resistance. Trends Endocrinol. Metab. 11: 362–368, DOI: https://doi.org/10.1016/s1043-2760(00)00306-4.Search in Google Scholar
Ornish, D., Scherwitz, L.W., Billings, J.H., Brown, S.E., Gould, K.L., Merritt, T.A., Sparler, S., Armstrong, W.T., Ports, T.A., Kirkeeide, R.L., et al. (1998). Intensive lifestyle changes for reversal of coronary heart disease. J Am Med Assoc. 280: 2001–2007, DOI: https://doi.org/10.1001/jama.280.23.2001.Search in Google Scholar PubMed
Ose, L., Reyes, R., Johnson-Levonas, A.O., Sapre, A., Tribble, D.L. and Musliner, T. (2007). Effects of ezetimibe/simvastatin on lipoprotein subfractions in patients with primary hypercholesterolemia: an exploratory analysis of archived samples using two commercially available techniques. Clin. Ther. 29: 2419–2432, DOI: https://doi.org/10.1016/j.clinthera.2007.10.004.Search in Google Scholar
Packard, C.J. (2003). Triacylglycerol-rich lipoproteins and the generation of small, dense low-density lipoprotein. Biochem. Soc. Trans. 31: 1066–1069, DOI: https://doi.org/10.1042/bst0311066.Search in Google Scholar
Pan, M., Cederbaum, A.I., Zhang, Y.L., Ginsberg, H.N., Williams, K.J. and Fisher, E.A. (2004). Lipid peroxidation and oxidant stress regulate hepatic apolipoprotein B degradation and VLDL production. J. Clin. Invest. 113: 1277–1287, DOI: https://doi.org/10.1172/JCI19197.Search in Google Scholar
Patti, A.M., Giglio, R.V., Papanas, N., Rizzo, M. and Rizvi, A.A. (2019). Future perspectives of the pharmacological management of diabetic dyslipidemia. Expert Rev. Clin. Pharmacol. 12: 129–143, DOI: https://doi.org/10.1080/17512433.2019.1567328.Search in Google Scholar
Pedersen, A., Baumstark, M.W., Marckmann, P., Gylling, H. and Sandstrom, B. (2000). An olive oil-rich diet results in higher concentrations of LDL cholesterol and a higher number of LDL subfraction particles than rapeseed oil and sunflower oil diets. J. Lipid Res. 41: 1901–1911.10.1016/S0022-2275(20)32351-8Search in Google Scholar
Peechakara, B.V. and Gupta, M. (2020). Vitamin B3. In: StatPearls. StatPearls Publishing LLC., Treasure Island.Search in Google Scholar
Ranabir, S. and Reetu, K. (2011). Stress and hormones. Indian J. Endocrinol. Metab. 15: 18–22, DOI: https://doi.org/10.4103/2230-8210.77573.10.4103/2230-8210.77573Search in Google Scholar PubMed PubMed Central
Raper, A., Kolansky, D.M. and Cuchel, M. (2012). Treatment of familial hypercholesterolemia: is there a need beyond statin therapy? Curr. Atheroscler. Rep. 14: 11–16, DOI: https://doi.org/10.1007/s11883-011-0215-y.Search in Google Scholar PubMed
Rees, K., Takeda, A., Martin, N., Ellis, L., Wijesekara, D., Vepa, A., Das, A., Hartley, L. and Stranges, S. (2019). Mediterranean-style diet for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 3, CD009825, https://doi.org/10.1002/14651858.CD009825.pub3.Search in Google Scholar PubMed PubMed Central
Reiner, Z. (2017). Hypertriglyceridaemia and risk of coronary artery disease. Nat. Rev. Cardiol. 14: 401–411, DOI: https://doi.org/10.1038/nrcardio.2017.31.Search in Google Scholar PubMed
Rizos, E., Tambaki, A.P., Gazi, I., Tselepis, A.D. and Elisaf, M. (2005). Lipoprotein-associated PAF-acetylhydrolase activity in subjects with the metabolic syndrome. Prostaglandins Leukot. Essent. Fatty Acids 72: 203–209, DOI: https://doi.org/10.1016/j.plefa.2004.10.021.Search in Google Scholar PubMed
Rizzo, M., Pernice, V., Frasheri, A., Di Lorenzo, G., Rini, G.B., Spinas, G.A. and Berneis, K. (2009). Small, dense low-density lipoproteins (LDL) are predictors of cardio- and cerebro-vascular events in subjects with the metabolic syndrome. Clin. Endocrinol. (Oxf.) 70: 870–875, https://doi.org/10.1111/j.1365-2265.2008.03407.x.Search in Google Scholar PubMed
Rizzo, M., Vekic, J., Koulouris, S., Zeljkovic, A., Jelic-Ivanovic, Z., Spasojevic-Kalimanovska, V., Rini, G.B., Sakellariou, D., Pastromas, S., Mikhailidis, D.P., et al. (2010). Effects of rosiglitazone on fasting and postprandial low- and high-density lipoproteins size and subclasses in type 2 diabetes. Angiology 61: 584–590, DOI: https://doi.org/10.1177/0003319710366431.Search in Google Scholar PubMed
Roeters van Lennep, H.W., Liem, A.H., Dunselman, P.H., Dallinga-Thie, G.M., Zwinderman, A.H. and Jukema, J.W. (2008). The efficacy of statin monotherapy uptitration versus switching to ezetimibe/simvastatin: results of the EASEGO study. Curr. Med. Res. Opin. 24: 685–694, DOI: https://doi.org/10.1185/030079908X273273.Search in Google Scholar PubMed
Sakamoto, K., Kawamura, M., Kohro, T., Omura, M., Watanabe, T., Ashidate, K., Horiuchi, T., Hara, H., Sekine, N., Chin, R., et al. (2015). Effect of ezetimibe on LDL-C lowering and atherogenic lipoprotein profiles in type 2 diabetic patients poorly controlled by statins. PLoS One 10: e0138332, https://doi.org/10.1371/journal.pone.0138332.Search in Google Scholar PubMed PubMed Central
Sakamoto, K., Kawamura, M., Watanabe, T., Ashidate, K., Kohro, T., Tanaka, A., Mori, Y., Tagami, M., Hirano, T., Yamazaki, T., et al. (2017). Effect of ezetimibe add-on therapy over 52 weeks extension analysis of prospective randomized trial (RESEARCH study) in type 2 diabetes subjects. Lipids Health Dis. 16: 122, DOI: https://doi.org/10.1186/s12944-017-0508-4.Search in Google Scholar PubMed PubMed Central
Sanchez-Moreno, C., Ordovas, J.M., Smith, C.E., Baraza, J.C., Lee, Y.C. and Garaulet, M. (2011). APOA5 gene variation interacts with dietary fat intake to modulate obesity and circulating triglycerides in a Mediterranean population. J. Nutr. 141: 380–385, DOI: https://doi.org/10.3945/jn.110.130344.Search in Google Scholar PubMed PubMed Central
Satoh, N., Shimatsu, A., Kotani, K., Sakane, N., Yamada, K., Suganami, T., Kuzuya, H. and Ogawa, Y. (2007). Purified eicosapentaenoic acid reduces small dense LDL, remnant lipoprotein particles, and C-reactive protein in metabolic syndrome. Diabetes Care 30: 144–146, DOI: https://doi.org/10.2337/dc06-1179.Search in Google Scholar PubMed
Scheen, A.J. (2015). Pharmacodynamics, efficacy and safety of sodium-glucose co-transporter type 2 (SGLT2) inhibitors for the treatment of type 2 diabetes mellitus. Drugs 75: 33–59.10.1007/s40265-014-0337-ySearch in Google Scholar PubMed
Schneider, J.G., von Eynatten, M., Parhofer, K.G., Volkmer, J.E., Schiekofer, S., Hamann, A., Nawroth, P.P. and Dugi, K.A. (2004). Atorvastatin improves diabetic dyslipidemia and increases lipoprotein lipase activity in vivo. Atherosclerosis 175: 325–331, DOI: https://doi.org/10.1016/j.atherosclerosis.2004.04.003.Search in Google Scholar PubMed
Sialvera, T.E., Pounis, G.D., Koutelidakis, A.E., Richter, D.J., Yfanti, G., Kapsokefalou, M., Goumas, G., Chiotinis, N., Diamantopoulos, E. and Zampelas, A. (2012). Phytosterols supplementation decreases plasma small and dense LDL levels in metabolic syndrome patients on a westernized type diet. Nutr. Metab. Cardiovasc. Dis. 22: 843–848, DOI: https://doi.org/10.1016/j.numecd.2010.12.004.Search in Google Scholar PubMed
Sjogren, P., Rosell, M., Skoglund-Andersson, C., Zdravkovic, S., Vessby, B., de Faire, U., Hamsten, A., Hellenius, M.L. and Fisher, R.M. (2004). Milk-derived fatty acids are associated with a more favorable LDL particle size distribution in healthy men. J. Nutr. 134: 1729–1735, DOI: https://doi.org/10.1093/jn/134.7.1729.Search in Google Scholar
Sone, H., Takahashi, A., Shimano, H., Ishibashi, S., Yoshino, G., Morisaki, N., Saito, Y., Kawazu, S., Teramoto, T., Fujita, T., et al. (2002). HMG-CoA reductase inhibitor decreases small dense low-density lipoprotein and remnant-like particle cholesterol in patients with type-2 diabetes. Life Sci. 71: 2403–2412, DOI: https://doi.org/10.1016/s0024-3205(02)02038-6.Search in Google Scholar
Sposito, A.C., Berwanger, O., de Carvalho, L.S.F. and Saraiva, J.F.K. (2018). GLP-1RAs in type 2 diabetes: mechanisms that underlie cardiovascular effects and overview of cardiovascular outcome data. Cardiovasc. Diabetol. 17: 157, DOI: https://doi.org/10.1186/s12933-018-0800-2.Search in Google Scholar
Stampfer, M.J., Krauss, R.M., Ma, J., Blanche, P.J., Holl, L.G., Sacks, F.M. and Hennekens, C.H. (1996). A prospective study of triglyceride level, low-density lipoprotein particle diameter, and risk of myocardial infarction. J. Am. Med. Assoc. 276: 882–888.10.1001/jama.1996.03540110036029Search in Google Scholar
Steiner, G. (1996). The Diabetes Atherosclerosis Intervention Study (DAIS): a study conducted in cooperation with the World Health Organization. The DAIS Project Group. Diabetologia 39: 1655–1661, DOI: https://doi.org/10.1007/s001250050630.Search in Google Scholar
Steiner, G. (2007). Atherosclerosis in type 2 diabetes: a role for fibrate therapy? Diab. Vasc. Dis. Res. 4: 368–374, DOI: https://doi.org/10.3132/dvdr.2007.067.Search in Google Scholar
Sunayama, S., Watanabe, Y., Ohmura, H., Sawano, M., Shimada, K., Mokuno, H., Daida, H. and Yamaguchi, H. (1999). Effects of troglitazone on atherogenic lipoprotein phenotype in coronary patients with insulin resistance. Atherosclerosis. 146: 187–193, DOI: https://doi.org/10.1016/s0021-9150(99)00138-0.Search in Google Scholar
Tack, C.J., Smits, P., Demacker, P.N. and Stalenhoef, A.F. (1998). Troglitazone decreases the proportion of small, dense LDL and increases the resistance of LDL to oxidation in obese subjects. Diabetes Care 21: 796–799, DOI: https://doi.org/10.2337/diacare.21.5.796.Search in Google Scholar PubMed
Takagi, H., Niwa, M., Mizuno, Y., Yamamoto, H., Goto, S.N. and Umemoto, T. (2014). Effects of rosuvastatin versus atorvastatin on small dense low-density lipoprotein: a meta-analysis of randomized trials. Heart Vessels 29: 287–299, DOI: https://doi.org/10.1007/s00380-013-0358-6.Search in Google Scholar PubMed
Tan, K.C., Pang, R.W., Tiu, S.C. and Lam, K.S. (2003). Effects of treatment with Sandostatin LAR on small dense LDL and remnant-like lipoproteins in patients with acromegaly. Clin. Endocrinol. (Oxf.) 59: 558–564, DOI: https://doi.org/10.1046/j.1365-2265.2003.01849.x.Search in Google Scholar PubMed
Tani, S., Nagao, K. and Hirayama, A. (2013). Association between urinary albumin excretion and low-density lipoprotein heterogeneity following treatment of type 2 diabetes patients with the dipeptidyl peptidase-4 inhibitor, vildagliptin: a pilot study. Am. J. Cardiovasc. Drugs 13: 443–450, DOI: https://doi.org/10.1007/s40256-013-0043-2.Search in Google Scholar PubMed
Tapan, S., Karadurmus, N., Dogru, T., Ercin, C.N., Tasci, I., Bilgi, C., Kurt, I. and Erbil, M.K. (2011). Decreased small dense LDL levels in Gilbert’s syndrome. Clin. Biochem. 44: 300–303, DOI: https://doi.org/10.1016/j.clinbiochem.2010.12.003.Search in Google Scholar PubMed
Toledo, F.G., Sniderman, A.D. and Kelley, D.E. (2006). Influence of hepatic steatosis (fatty liver) on severity and composition of dyslipidemia in type 2 diabetes. Diabetes Care 29: 1845–1850, DOI: https://doi.org/10.2337/dc06-0455.Search in Google Scholar PubMed
Torimoto, K., Okada, Y., Mori, H., Hajime, M., Tanaka, K., Kurozumi, A., Narisawa, M., Yamamoto, S., Arao, T., Matsuoka, H., et al. (2013). Efficacy of combination of ezetimibe 10 mg and rosuvastatin 2.5 mg versus rosuvastatin 5 mg monotherapy for hypercholesterolemia in patients with type 2 diabetes. Lipids Health Dis. 12: 137, DOI: https://doi.org/10.1186/1476-511X-12-137.10.1186/1476-511X-12-137Search in Google Scholar PubMed PubMed Central
Toth, P.P. (2014). Insulin resistance, small LDL particles, and risk for atherosclerotic disease. Curr. Vasc. Pharmacol. 12: 653–657, DOI: https://doi.org/10.2174/15701611113119990125.Search in Google Scholar PubMed
Toth, P.P., Patti, A.M., Nikolic, D., Giglio, R.V., Castellino, G., Biancucci, T., Geraci, F., David, S., Montalto, G., Rizvi, A., et al. (2015). Bergamot reduces plasma lipids, atherogenic small dense LDL, and subclinical atherosclerosis in subjects with moderate hypercholesterolemia: a 6 months prospective study. Front. Pharmacol. 6: 299, DOI: https://doi.org/10.3389/fphar.2015.00299.Search in Google Scholar PubMed PubMed Central
Tribble, D.L., Farnier, M., Macdonell, G., Perevozskaya, I., Davies, M.J., Gumbiner, B. and Musliner, T.A. (2008). Effects of fenofibrate and ezetimibe, both as monotherapy and in coadministration, on cholesterol mass within lipoprotein subfractions and low-density lipoprotein peak particle size in patients with mixed hyperlipidemia. Metabolism 57: 796–801, DOI: https://doi.org/10.1016/j.metabol.2008.01.026.Search in Google Scholar PubMed
Tuccinardi, D., Farr, O.M., Upadhyay, J., Oussaada, S.M., Klapa, M.I., Candela, M., Rampelli, S., Lehoux, S., Lazaro, I., Sala-Vila, A., et al. (2019). Mechanisms underlying the cardiometabolic protective effect of walnut consumption in obese people: a cross-over, randomized, double-blind, controlled inpatient physiology study. Diabetes Obes. Metab. 21: 2086–2095, DOI: https://doi.org/10.1111/dom.13773.Search in Google Scholar PubMed PubMed Central
Ueda, S., Shimabukuro, M., Arasaki, O., Node, K., Nomiyama, T. and Morimoto, T. (2018). Effect of anagliptin and sitagliptin on low-density lipoprotein cholesterol in type 2 diabetic patients with dyslipidemia and cardiovascular risk: rationale and study design of the REASON trial. Cardiovasc. Drugs. Ther. 32: 73–80, DOI: https://doi.org/10.1007/s10557-018-6776-z.Search in Google Scholar PubMed PubMed Central
Ueno, H., Koyama, H., Mima, Y., Fukumoto, S., Tanaka, S., Shoji, T., Emoto, M., Shoji, T., Nishizawa, Y. and Inaba, M. (2011). Comparison of the effect of cilostazol with aspirin on circulating endothelial progenitor cells and small-dense LDL cholesterol in diabetic patients with cerebral ischemia: a randomized controlled pilot trial. J. Atheroscler. Thromb. 18: 883–890, DOI: https://doi.org/10.5551/jat.9225.Search in Google Scholar PubMed
Urahama, N., Iguchi, G., Shimizu, M., Fujihira, K., Kobayashi, S. and Baba, H. (2008). Smoking and small, dense low-density lipoprotein particles: cross-sectional study. Nicotine Tob. Res. 10: 1391–1395, DOI: https://doi.org/10.1080/14622200802238852.Search in Google Scholar PubMed
Utarwuthipong, T., Komindr, S., Pakpeankitvatana, V., Songchitsomboon, S. and Thongmuang, N. (2009). Small dense low-density lipoprotein concentration and oxidative susceptibility changes after consumption of soybean oil, rice bran oil, palm oil and mixed rice bran/palm oil in hypercholesterolaemic women. J. Int. Med. Res. 37: 96–104, DOI: https://doi.org/10.1177/147323000903700111.Search in Google Scholar PubMed
van Tits, L.J., Smilde, T.J., van Wissen, S., de Graaf, J., Kastelein, J.J. and Stalenhoef, A.F. (2004). Effects of atorvastatin and simvastatin on low-density lipoprotein subtraction profile, low-density lipoprotein oxidizability, and antibodies to oxidized low-density lipoprotein in relation to carotid intima media thickness in familial hypercholesterolemia. J. Investig. Med. 52: 177–184, DOI: https://doi.org/10.1136/jim-52-03-32.Search in Google Scholar PubMed
Varady, K.A., Bhutani, S., Klempel, M.C. and Kroeger, C.M. (2011). Comparison of effects of diet versus exercise weight loss regimens on LDL and HDL particle size in obese adults. Lipids Health Dis. 10: 119, DOI: https://doi.org/10.1186/1476-511X-10-119.10.1186/1476-511X-10-119Search in Google Scholar PubMed PubMed Central
Vecka, M., Dusejovska, M., Stankova, B., Zeman, M., Vavrova, L., Kodydkova, J., Slaby, A. and Zak, A. (2012). N-3 polyunsaturated fatty acids in the treatment of atherogenic dyslipidemia. Neuro. Endocrinol. Lett. 33(Suppl. 2): 87–92.Search in Google Scholar
Verges, B. (2007). Effects of glitazones in the treatment of diabetes and/or hyperlipidaemia: glycaemic control and plasma lipid levels. Fundam. Clin. Pharmacol. 21: 15–18, DOI: https://doi.org/10.1111/j.1472-8206.2007.00532.x.Search in Google Scholar PubMed
Vitek, L. (2012). The role of bilirubin in diabetes, metabolic syndrome, and cardiovascular diseases. Front. Pharmacol. 3: 55, DOI: https://doi.org/10.3389/fphar.2012.00055.10.3389/fphar.2012.00055Search in Google Scholar PubMed PubMed Central
Williams, P.T., Bergeron, N., Chiu, S. and Krauss, R.M. (2019). A randomized, controlled trial on the effects of almonds on lipoprotein response to a higher carbohydrate, lower fat diet in men and women with abdominal adiposity. Lipids Health Dis. 18: 83, DOI: https://doi.org/10.1186/s12944-019-1025-4.Search in Google Scholar PubMed PubMed Central
Winkler, K., Jacob, S., Muller-Schewe, T., Hoffmann, M.M. and Konrad, T. (2012). Ezetimibe alone and in combination lowers the concentration of small, dense low-density lipoproteins in type 2 diabetes mellitus. Atherosclerosis 220: 189–193, DOI: https://doi.org/10.1016/j.atherosclerosis.2011.10.043.Search in Google Scholar PubMed
Wolak, T., Toledano, R., Novack, V., Sharon, A., Shalev, A. and Wolak, A. (2014). Doxazosin to treat hypertension: it’s time to take it personally--a retrospective analysis of 19, 495 patients. J. Hypertens. 32: 1132–1137; discussion 1137, DOI: https://doi.org/10.1097/HJH.0000000000000119.Search in Google Scholar PubMed
Yamashita, S., Arai, H., Yokote, K., Araki, E., Matsushita, M., Nojima, T., Suganami, H. and Ishibashi, S. (2019). Efficacy and safety of pemafibrate, a novel selective peroxisome proliferator-activated receptor alpha modulator (SPPARMα): pooled analysis of phase 2 and 3 studies in dyslipidemic patients with or without statin combination. Int. J. Mol. Sci. 20, 480–27. https://doi.org/10.3390/ijms20225537.Search in Google Scholar PubMed PubMed Central
Yoshino, G., Hirano, T. and Kazumi, T. (2002). Treatment of small dense LDL. J. Atheroscler. Thromb. 9: 266–275, DOI: https://doi.org/10.5551/jat.9.266.Search in Google Scholar PubMed
Younis, N., Charlton-Menys, V., Sharma, R., Soran, H. and Durrington, P.N. (2009). Glycation of LDL in non-diabetic people: small dense LDL is preferentially glycated both in vivo and in vitro. Atherosclerosis 202: 162–168, DOI: https://doi.org/10.1016/j.atherosclerosis.2008.04.036.Search in Google Scholar PubMed
Yu, D., Murdoch, S.J., Parikh, S.J., Marcovina, S.M., Cobitz, A., Chen, H. and Brunzell, J.D. (2006). Rosiglitazone increases LDL particle size and buoyancy and decreases C-reactive protein in patients with type 2 diabetes on statin therapy. Diab. Vasc. Dis. Res. 3: 189–196, DOI: https://doi.org/10.3132/dvdr.2006.029.Search in Google Scholar PubMed
Yunoki, K., Nakamura, K., Miyoshi, T., Enko, K., Kubo, M., Murakami, M., Hata, Y., Kohno, K., Morita, H., Kusano, K.F., et al. (2011). Impact of hypertriglyceridemia on endothelial dysfunction during statin +/- ezetimibe therapy in patients with coronary heart disease. Am. J. Cardiol. 108: 333–339, DOI: https://doi.org/10.1016/j.amjcard.2011.03.049.Search in Google Scholar PubMed
Zahr, R. and Fleseriu, M. (2018). Updates in diagnosis and treatment of acromegaly. Eur. Endocrinol. 14: 57–61, DOI: https://doi.org/10.17925/EE.2018.14.2.57.Search in Google Scholar PubMed PubMed Central
Zampelas, A. (2013). Nuts and not olive oil decrease small and dense LDL: results from the PREDIMED study. Atherosclerosis 231: 59–60, DOI: https://doi.org/10.1016/j.atherosclerosis.2013.07.058.Search in Google Scholar PubMed
Zhang, Y., Xu, R.X., Li, S., Zhu, C.G., Guo, Y.L., Sun, J. and Li, J.J. (2015). Association of plasma small dense LDL cholesterol with PCSK9 levels in patients with angiographically proven coronary artery disease. Nutr. Metab. Cardiovasc. Dis. 25: 426–433, DOI: https://doi.org/10.1016/j.numecd.2015.01.006.Search in Google Scholar PubMed
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Reviews
- Small dense low-density lipoprotein-lowering agents
- The piRNA pathway in planarian flatworms: new model, new insights
- Research Articles
- Anti-amyloidogenic effect of artemin on α-synuclein
- Galectin-3 is modulated in pancreatic cancer cells under hypoxia and nutrient deprivation
- Role of protein tyrosine phosphatase 1B (PTP1B) in the increased sensitivity of endothelial cells to a promigratory effect of erythropoietin in an inflammatory environment
- Effects of extracellular Hsp70, lipopolysaccharide and lipoteichoic acid on human monocyte-derived macrophages and differentiated THP-1 cells
- High-mobility group box 3 (HMGB3) silencing inhibits non-small cell lung cancer development through regulating Wnt/β-catenin pathway
Articles in the same Issue
- Frontmatter
- Reviews
- Small dense low-density lipoprotein-lowering agents
- The piRNA pathway in planarian flatworms: new model, new insights
- Research Articles
- Anti-amyloidogenic effect of artemin on α-synuclein
- Galectin-3 is modulated in pancreatic cancer cells under hypoxia and nutrient deprivation
- Role of protein tyrosine phosphatase 1B (PTP1B) in the increased sensitivity of endothelial cells to a promigratory effect of erythropoietin in an inflammatory environment
- Effects of extracellular Hsp70, lipopolysaccharide and lipoteichoic acid on human monocyte-derived macrophages and differentiated THP-1 cells
- High-mobility group box 3 (HMGB3) silencing inhibits non-small cell lung cancer development through regulating Wnt/β-catenin pathway