Startseite Lebenswissenschaften Genetic, epigenetic and biochemical regulation of succinate dehydrogenase function
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Genetic, epigenetic and biochemical regulation of succinate dehydrogenase function

  • Behrooz Moosavi EMAIL logo , Xiao-lei Zhu , Wen-Chao Yang und Guang-Fu Yang EMAIL logo
Veröffentlicht/Copyright: 13. August 2019

Abstract

Succinate dehydrogenase (SDH), complex II or succinate:quinone oxidoreductase (SQR) is a crucial enzyme involved in both the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS), the two primary metabolic pathways for generating ATP. Impaired function of SDH results in deleterious disorders from cancer to neurodegeneration. SDH function is tailored to meet the energy demands in different cell types. Thus, understanding how SDH function is regulated and how it operates in distinct cell types can support the development of therapeutic approaches against the diseases. In this article we discuss the molecular pathways which regulate SDH function and describe extra roles played by SDH in specific cell types.

Award Identifier / Grant number: 2017YFD0200500

Award Identifier / Grant number: 21837001

Funding statement: Research on the biochemistry of SDH in the authors’ laboratories was supported by the National Key Research and Development Program of China (No. 2017YFD0200500) and the National Natural Science Foundation of China (No. 21837001). We acknowledge the help of Yan Aiming with drawing Figure 1.

References

Acin-Perez, R., Carrascoso, I., Baixauli, F., Roche-Molina, M., Latorre-Pellicer, A., Fernandez-Silva, P., Mittelbrunn, M., Sanchez-Madrid, F., Perez-Martos, A., Lowell, C.A., et al. (2014). ROS-triggered phosphorylation of complex II by Fgr kinase regulates cellular adaptation to fuel use. Cell Metab. 19, 1020–1033.10.1016/j.cmet.2014.04.015Suche in Google Scholar PubMed PubMed Central

Anderson, N.M., Mucka, P., Kern, J.G., and Feng, H. (2018). The emerging role and targetability of the TCA cycle in cancer metabolism. Protein Cell 9, 216–237.10.1007/s13238-017-0451-1Suche in Google Scholar PubMed PubMed Central

Ardehali, H., Chen, Z., Ko, Y., Mejia-Alvarez, R., and Marban, E. (2004). Multiprotein complex containing succinate dehydrogenase confers mitochondrial ATP-sensitive K+ channel activity. Proc. Natl. Acad. Sci. USA 101, 11880–11885.10.1073/pnas.0401703101Suche in Google Scholar PubMed PubMed Central

Au, H.C. and Scheffler, I.E. (1998). Promoter analysis of the human succinate dehydrogenase iron-protein gene. Eur. J. Biochem. 251, 164–174.10.1046/j.1432-1327.1998.2510164.xSuche in Google Scholar PubMed

Baysal, B.E. (2007). A recurrent stop-codon mutation in succinate dehydrogenase subunit B gene in normal peripheral blood and childhood T-cell acute leukemia. PLoS One 2, e436.10.1371/journal.pone.0000436Suche in Google Scholar PubMed PubMed Central

Baysal, B.E. (2013). Mitochondrial complex II and genomic imprinting in inheritance of paraganglioma tumors. Biochim. Biophys. Acta Bioenerg. 1827, 573–577.10.1016/j.bbabio.2012.12.005Suche in Google Scholar PubMed

Baysal, B.E., Lawrence, E.C., and Ferrell, R.E. (2007). Sequence variation in human succinate dehydrogenase genes: evidence for long-term balancing selection on SDHA. BMC Biol. 5, 12.10.1186/1741-7007-5-12Suche in Google Scholar PubMed PubMed Central

Baysal, B.E., De Jong, K., Liu, B., Wang, J., Patnaik, S.K., Wallace, P.K., and Taggart, R.T. (2013). Hypoxia-inducible C-to-U coding RNA editing downregulates SDHB in monocytes. Peer J. 1, e152.10.7717/peerj.152Suche in Google Scholar PubMed PubMed Central

Bezawork-Geleta, A., Rohlena, J., Dong, L., Pacak, K., and Neuzil, J. (2017). Mitochondrial complex II: at the crossroads. Trends Biochem. Sci. 42, 312–325.10.1016/j.tibs.2017.01.003Suche in Google Scholar PubMed PubMed Central

Cereghino, G.P., Atencio, D.P., Saghbini, M., Beiner, J., and Scheffler, I.E. (1995). Glucose-dependent turnover of the mRNAs encoding succinate dehydrogenase peptides in Saccharomyces cerevisiae: sequence elements in the 5′ untranslated region of the Ip mRNA play a dominant role. Mol. Biol. Cell. 6, 1125–1143.10.1091/mbc.6.9.1125Suche in Google Scholar PubMed PubMed Central

Chan, S.Y., Zhang, Y.-Y., Hemann, C., Mahoney, C.E., Zweier, J.L., and Loscalzo, J. (2009). MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2. Cell Metab. 10, 273–284.10.1016/j.cmet.2009.08.015Suche in Google Scholar

Cimen, H., Han, M.J., Yang, Y., Tong, Q., Koc, H., and Koc, E.C. (2010). Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria. Biochemistry 49, 304–311.10.1021/bi901627uSuche in Google Scholar

Colak, G., Xie, Z., Zhu, A.Y., Dai, L., Lu, Z., Zhang, Y., Wan, X., Chen, Y., Cha, Y.H., Lin, H., et al. (2013). Identification of lysine succinylation substrates and the succinylation regulatory enzyme CobB in Escherichia coli. Mol. Cell. Proteomics 12, 3509–3520.10.1074/mcp.M113.031567Suche in Google Scholar

Daignan-Fornier, B., Valens, M., Lemire, B.D., and Bolotin-Fukuhara, M. (1994). Structure and regulation of SDH3, the yeast gene encoding the cytochrome b560 subunit of respiratory complex II. J. Biol. Chem. 269, 15469–15472.10.1016/S0021-9258(17)40702-2Suche in Google Scholar

Damiano, M., Diguet, E., Malgorn, C., D’Aurelio, M., Galvan, L., Petit, F., Benhaim, L., Guillermier, M., Houitte, D., Dufour, N., et al. (2013). A role of mitochondrial complex II defects in genetic models of Huntington’s disease expressing N-terminal fragments of mutant huntingtin. Hum. Mol. Genet. 22, 3869–3882.10.1093/hmg/ddt242Suche in Google Scholar PubMed PubMed Central

Drose, S. (2013). Differential effects of complex II on mitochondrial ROS production and their relation to cardioprotective pre- and postconditioning. Biochim. Biophys. Acta 1827, 578–587.10.1016/j.bbabio.2013.01.004Suche in Google Scholar PubMed

Du, J., Zhou, Y., Su, X., Yu, J.J., Khan, S., Jiang, H., Kim, J., Woo, J., Kim, J.H., Choi, B.H., et al. (2011). Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 334, 806–809.10.1126/science.1207861Suche in Google Scholar PubMed PubMed Central

Escolar, L., Pérez-Martín, J., and de Lorenzo, V. (1999). Opening the iron box: transcriptional metalloregulation by the Fur protein. J. Bacteriol. 181, 6223–6229.10.1128/JB.181.20.6223-6229.1999Suche in Google Scholar PubMed PubMed Central

Fedotcheva, N.I., Kondrashova, M.N., Litvinova, E.G., Zakharchenko, M.V., Khunderyakova, N.V., and Beloborodova, N.V. (2018). Modulation of the activity of succinate dehydrogenase by acetylation with chemicals, drugs, and microbial metabolites. Biophysics 63, 743–750.10.1134/S0006350918050081Suche in Google Scholar

Finley, L.W., Haas, W., Desquiret-Dumas, V., Wallace, D.C., Procaccio, V., Gygi, S.P., and Haigis, M.C. (2011). Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity. PLoS One 6, e23295.10.1371/journal.pone.0023295Suche in Google Scholar PubMed PubMed Central

Fok, E.T., Davignon, L., Fanucchi, S., and Mhlanga, M.M. (2019). The lncRNA connection between cellular metabolism and epigenetics in trained immunity. Front. Immunol. 9, 3184.10.3389/fimmu.2018.03184Suche in Google Scholar

Galmozzi, A., Mitro, N., Ferrari, A., Gers, E., Gilardi, F., Godio, C., Cermenati, G., Gualerzi, A., Donetti, E., Rotili, D., et al. (2013). Inhibition of class I histone deacetylases unveils a mitochondrial signature and enhances oxidative metabolism in skeletal muscle and adipose tissue. Diabetes 62, 732–742.10.2337/db12-0548Suche in Google Scholar

Garaude, J., Acin-Perez, R., Martinez-Cano, S., Enamorado, M., Ugolini, M., Nistal-Villan, E., Hervas-Stubbs, S., Pelegrin, P., Sander, L.E., Enriquez, J.A., et al. (2016). Mitochondrial respiratory-chain adaptations in macrophages contribute to antibacterial host defense. Nat. Immunol. 17, 1037–1045.10.1038/ni.3509Suche in Google Scholar

Gaupp, R., Schlag, S., Liebeke, M., Lalk, M., and Gotz, F. (2010). Advantage of upregulation of succinate dehydrogenase in Staphylococcus aureus biofilms. J. Bacteriol. 192, 2385–2394.10.1128/JB.01472-09Suche in Google Scholar

Gebert, N., Gebert, M., Oeljeklaus, S., von der Malsburg, K., Stroud, D.A., Kulawiak, B., Wirth, C., Zahedi, R.P., Dolezal, P., Wiese, S., et al. (2011). Dual function of Sdh3 in the respiratory chain and TIM22 protein translocase of the mitochondrial inner membrane. Mol. Cell. 44, 811–818.10.1016/j.molcel.2011.09.025Suche in Google Scholar

Grimm, S. (2013). Respiratory chain complex II as general sensor for apoptosis. Biochim. Biophys. Acta Bioenerg. 1827, 565–572.10.1016/j.bbabio.2012.09.009Suche in Google Scholar

Gutman, M. (1978). Modulation of mitochondrial succinate dehydrogenase activity, mechanism and function. Mol. Cell. Biochem. 20, 41–60.10.1007/BF00229453Suche in Google Scholar

Gutman, M., Bonomi, F., Pagani, S., Cerletti, P., and Kroneck, P. (1980). Modulation of the flavin redox potential as mode of regulation of succinate dehydrogenase activity. Biochim. Biophys. Acta 591, 400–408.10.1016/0005-2728(80)90171-1Suche in Google Scholar

Hägerhäll, C. (1997). Succinate: quinone oxidoreductases: variations on a conserved theme. Biochim. Biophys. Acta Bioenerg. 1320, 107–141.10.1016/S0005-2728(97)00019-4Suche in Google Scholar

Hartman, T., Weinrick, B., Vilchèze, C., Berney, M., Tufariello, J., Cook, G.M., and Jacobs Jr., W.R. (2014). Succinate dehydrogenase is the regulator of respiration in mycobacterium tuberculosis. PLoS Pathog. 10, e1004510.10.1371/journal.ppat.1004510Suche in Google Scholar PubMed PubMed Central

Hoekstra, A.S. and Bayley, J.-P. (2013). The role of complex II in disease. Biochim. Biophys. Acta Bioenerg. 1827, 543–551.10.1016/j.bbabio.2012.11.005Suche in Google Scholar

Hwang, M.-S., Rohlena, J., Dong, L.-F., Neuzil, J., and Grimm, S. (2014). Powerhouse down: complex II dissociation in the respiratory chain. Mitochondrion 19, 20–28.10.1016/j.mito.2014.06.001Suche in Google Scholar

Ishii, N., Fujii, M., Hartman, P.S., and Tsuda, M. (1998). A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes. Nature 394, 694.10.1038/29331Suche in Google Scholar

Jones, R., McDonald, K.E., Willson, J.A., Ghesquière, B., Sammut, D., Daniel, E., Harris, A.J., Lewis, A., Thompson, A.A.R., Dickinson, R.S., et al. (2016). Mutations in succinate dehydrogenase B (SDHB) enhance neutrophil survival independent of HIF-1α expression. Blood 127, 2641–2644.10.1182/blood-2016-02-696922Suche in Google Scholar

Lampropoulou, V., Sergushichev, A., Bambouskova, M., Nair, S., Vincent, E.E., Loginicheva, E., Cervantes-Barragan, L., Ma, X., Huang, S.C., Griss, T., et al. (2016). Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab. 24, 158–166.10.1016/j.cmet.2016.06.004Suche in Google Scholar

Lemire, B.D. and Oyedotun, K.S. (2002). The Saccharomyces cerevisiae mitochondrial succinate:ubiquinone oxidoreductase. Biochim. Biophys. Acta Bioenerg. 1553, 102–116.10.1016/S0005-2728(01)00229-8Suche in Google Scholar

Li, F., He, X., Ye, D., Lin, Y., Yu, H., Yao, C., Huang, L., Zhang, J., Wang, F., Xu, S., et al. (2015). NADP+-IDH mutations promote hypersuccinylation that impairs mitochondria respiration and induces apoptosis resistance. Mol. Cell. 60, 661–675.10.1016/j.molcel.2015.10.017Suche in Google Scholar PubMed

Li, L., Shi, L., Yang, S., Yan, R., Zhang, D., Yang, J., He, L., Li, W., Yi, X., Sun, L., et al. (2016). SIRT7 is a histone desuccinylase that functionally links to chromatin compaction and genome stability. Nat. Commun. 7, 12235.10.1038/ncomms12235Suche in Google Scholar PubMed PubMed Central

Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., Della-Morte, D., Gargiulo, G., Testa, G., Cacciatore, F., Bonaduce, D., et al. (2018). Oxidative stress, aging, and diseases. Clin. Interv. Aging 13, 757–772.10.2147/CIA.S158513Suche in Google Scholar PubMed PubMed Central

Lkhagva, B., Kao, Y.-H., Lee, T.-I., Lee, T.-W., Cheng, W.-L., and Chen, Y.-J. (2018). Activation of Class I histone deacetylases contributes to mitochondrial dysfunction in cardiomyocytes with altered complex activities. Epigenetics 13, 376–385.10.1080/15592294.2018.1460032Suche in Google Scholar PubMed PubMed Central

Lombardo, A., Cereghino, G.P., and Scheffler, I.E. (1992). Control of mRNA turnover as a mechanism of glucose repression in Saccharomyces cerevisiae. Mol. Cell. Biol. 12, 2941–2948.10.1128/MCB.12.7.2941Suche in Google Scholar

Ma, Y., Qi, Y., Wang, L., Zheng, Z., Zhang, Y., and Zheng, J. (2019). SIRT5-mediated SDHA desuccinylation promotes clear cell renal cell carcinoma tumorigenesis. Free Radic. Biol. Med. 134, 458–467.10.1016/j.freeradbiomed.2019.01.030Suche in Google Scholar PubMed

Metruccio, M.M.E., Fantappiè, L., Serruto, D., Muzzi, A., Roncarati, D., Donati, C., Scarlato, V., and Delany, I. (2009). The Hfq-dependent small noncoding RNA NrrF directly mediates Fur-dependent positive regulation of succinate dehydrogenase in Neisseria meningitidis. J. Bacteriol. 191, 1330–1342.10.1128/JB.00849-08Suche in Google Scholar PubMed PubMed Central

Mills, E.L., Kelly, B., Logan, A., Costa, A.S.H., Varma, M., Bryant, C.E., Tourlomousis, P., Dabritz, J.H.M., Gottlieb, E., Latorre, I., et al. (2016). Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167, 457–470.e413.10.1016/j.cell.2016.08.064Suche in Google Scholar PubMed PubMed Central

Moosavi, B., Berry, E.A., Zhu, X.-L., Yang, W.-C., and Yang, G.-F. (2019). The assembly of succinate dehydrogenase: a key enzyme in bioenergetics. Cell. Mol. Life Sci. https://doi.org/10.1007/s00018-019-03200-710.1007/s00018-019-03200-7Suche in Google Scholar PubMed

Nam, T.-W., Park, Y.-H., Jeong, H.-J., Ryu, S., and Seok, Y.-J. (2005). Glucose repression of the Escherichia coli sdhCDAB operon, revisited: regulation by the CRP-cAMP complex. Nucleic Acids Res. 33, 6712–6722.10.1093/nar/gki978Suche in Google Scholar PubMed PubMed Central

Nath, A.K., Ryu, J.H., Jin, Y.N., Roberts, L.D., Dejam, A., Gerszten, R.E., and Peterson, R.T. (2015). PTPMT1 inhibition lowers glucose through succinate dehydrogenase phosphorylation.Cell Rep. 10, 694–701.10.1016/j.celrep.2015.01.010Suche in Google Scholar PubMed PubMed Central

Nickens, K.P., Wikstrom, J.D., Shirihai, O.S., Patierno, S.R., and Ceryak, S. (2013). A bioenergetic profile of non-transformed fibroblasts uncovers a link between death-resistance and enhanced spare respiratory capacity. Mitochondrion 13, 662–667.10.1016/j.mito.2013.09.005Suche in Google Scholar PubMed PubMed Central

Ogura, M., Yamaki, J., Homma, M.K., and Homma, Y. (2012). Mitochondrial c-Src regulates cell survival through phosphorylation of respiratory chain components. Biochem. J. 447, 281–289.10.1042/BJ20120509Suche in Google Scholar PubMed PubMed Central

Okanishi, H., Kim, K., Masui, R., and Kuramitsu, S. (2014). Lysine propionylation is a prevalent post-translational modification in Thermus thermophilus. Mol. Cell. Proteomics 13, 2382–2398.10.1074/mcp.M113.035659Suche in Google Scholar PubMed PubMed Central

Pagliarini, D.J., Worby, C.A., and Dixon, J.E. (2004). A PTEN-like phosphatase with a novel substrate specificity. J. Biol. Chem. 279, 38590–38596.10.1074/jbc.M404959200Suche in Google Scholar PubMed

Park, S.J., Tseng, C.P., and Gunsalus, R.P. (1995). Regulation of succinate dehydrogenase (sdhCDAB) operon expression in Escherichia coli in response to carbon supply and anaerobiosis: role of ArcA and Fnr. Mol. Microbiol. 15, 473–482.10.1111/j.1365-2958.1995.tb02261.xSuche in Google Scholar

Park, J., Chen, Y., Tishkoff, D.X., Peng, C., Tan, M., Dai, L., Xie, Z., Zhang, Y., Zwaans, B.M., Skinner, M.E., et al. (2013). SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol. Cell. 50, 919–930.10.1016/j.molcel.2013.06.001Suche in Google Scholar

Pfleger, J., He, M., and Abdellatif, M. (2015). Mitochondrial complex II is a source of the reserve respiratory capacity that is regulated by metabolic sensors and promotes cell survival. Cell Death Dis. 6, e1835.10.1038/cddis.2015.202Suche in Google Scholar

Piantadosi, C.A. and Suliman, H.B. (2008). Transcriptional Regulation of SDHa flavoprotein by nuclear respiratory factor-1 prevents pseudo-hypoxia in aerobic cardiac cells. J. Biol. Chem. 283, 10967–10977.10.1074/jbc.M709741200Suche in Google Scholar

Pineiro, M., Hernandez, F., and Palacian, E. (1992). Succinylation of histone amino groups facilitates transcription of nucleosomal cores. Biochim. Biophys. Acta 1129, 183–187.10.1016/0167-4781(92)90485-ISuche in Google Scholar

Puisségur, M.P., Mazure, N.M., Bertero, T., Pradelli, L., Grosso, S., Robbe-Sermesant, K., Maurin, T., Lebrigand, K., Cardinaud, B., Hofman, V., et al. (2010). miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity. Cell Death Differ. 18, 465.10.1038/cdd.2010.119Suche in Google Scholar PubMed PubMed Central

Rardin, M.J., He, W., Nishida, Y., Newman, J.C., Carrico, C., Danielson, S.R., Guo, A., Gut, P., Sahu, A.K., Li, B., et al. (2013). SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metab. 18, 920–933.10.1016/j.cmet.2013.11.013Suche in Google Scholar PubMed PubMed Central

Rivadeneira, D.B., Caino, M.C., Seo, J.H., Angelin, A., Wallace, D.C., Languino, L.R., and Altieri, D.C. (2015). Survivin promotes oxidative phosphorylation, subcellular mitochondrial repositioning, and tumor cell invasion. Sci. Signal. 8, ra80.10.1126/scisignal.aab1624Suche in Google Scholar PubMed PubMed Central

Rosales, C. (2018). Neutrophil: a cell with many roles in inflammation or several cell types? Front. Physiol. 9, 113.10.3389/fphys.2018.00113Suche in Google Scholar PubMed PubMed Central

Rutter, J., Winge, D.R., and Schiffman, J.D. (2010). Succinate dehydrogenase – assembly, regulation and role in human disease. Mitochondrion 10, 393–401.10.1016/j.mito.2010.03.001Suche in Google Scholar PubMed PubMed Central

Salvi, M., Morrice, N.A., Brunati, A.M., and Toninello, A. (2007). Identification of the flavoprotein of succinate dehydrogenase and aconitase as in vitro mitochondrial substrates of Fgr tyrosine kinase. FEBS Lett. 581, 5579–5585.10.1016/j.febslet.2007.11.005Suche in Google Scholar

Satoh, N., Yokoyama, C., Itamura, N., Miyajima-Nakano, Y., and Hisatomi, H. (2015). Alternative splicing isoform in succinate dehydrogenase complex, subunit C causes downregulation of succinate-coenzyme Q oxidoreductase activity in mitochondria. Oncol. Lett. 9, 330–334.10.3892/ol.2014.2699Suche in Google Scholar

Senoo-Matsuda, N., Yasuda, K., Tsuda, M., Ohkubo, T., Yoshimura, S., Nakazawa, H., Hartman, P.S., and Ishii, N. (2001). A defect in the cytochrome b large subunit in complex II causes both superoxide anion overproduction and abnormal energy metabolism in Caenorhabditis elegans. J. Biol. Chem. 276, 41553–41558.10.1074/jbc.M104718200Suche in Google Scholar

Seo, J.H., Rivadeneira, D.B., Caino, M.C., Chae, Y.C., Speicher, D.W., Tang, H.-Y., Vaira, V., Bosari, S., Palleschi, A., Rampini, P., et al. (2016). The mitochondrial unfoldase-peptidase complex ClpXP controls bioenergetics stress and metastasis. PLoS Biol. 14, e1002507.10.1371/journal.pbio.1002507Suche in Google Scholar

Seto, E. and Yoshida, M. (2014). Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb. Perspect. Biol. 6, a018713.10.1101/cshperspect.a018713Suche in Google Scholar

Smestad, J., Erber, L., Chen, Y., and Maher 3rd, L.J. (2018). Chromatin succinylation correlates with active gene expression and is perturbed by defective TCA cycle metabolism. iScience 2, 63–75.10.1016/j.isci.2018.03.012Suche in Google Scholar

Sun, Y., Li, J., Xu, Z., Xu, J., Shi, M., and Liu, P. (2019). Chidamide, a novel histone deacetylase inhibitor, inhibits multiple myeloma cells proliferation through succinate dehydrogenase subunit A. Am. J. Cancer Res. 9, 574–584.10.1182/blood-2018-99-112747Suche in Google Scholar

Takeda, S.-i., Matsushika, A., and Mizuno, T. (1999). Repression of the gene encoding succinate dehydrogenase in response to glucose is mediated by the EIICBGlc protein in Escherichia coli. J. Biochem. (Tokyo) 126, 354–360.10.1093/oxfordjournals.jbchem.a022457Suche in Google Scholar

Tomitsuka, E., Kita, K., and Esumi, H. (2009). Regulation of succinate-ubiquinone reductase and fumarate reductase activities in human complex II by phosphorylation of its flavoprotein subunit. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 85, 258–265.10.2183/pjab.85.258Suche in Google Scholar

Vinogradov, A.D., Kotlyar, A.B., Burov, V.I., and Belikova, Y.O. (1989). Regulation of succinate dehydrogenase and tautomerization of oxaloacetate. Adv. Enzyme Regul. 28, 271–280.10.1016/0065-2571(89)90076-9Suche in Google Scholar

Wagner, G.R. and Payne, R.M. (2013). Widespread and enzyme-independent nepsilon-acetylation and nepsilon-succinylation of proteins in the chemical conditions of the mitochondrial matrix. J. Biol. Chem. 288, 29036–29045.10.1074/jbc.M113.486753Suche in Google Scholar PubMed PubMed Central

Wang, R., Zou, J., Meng, J., and Wang, J. (2018). Integrative analysis of genome-wide lncRNA and mRNA expression in newly synthesized Brassica hexaploids. Ecol. Evol. 8, 6034–6052.10.1002/ece3.4152Suche in Google Scholar PubMed PubMed Central

Wojtovich, A.P., Smith, C.O., Haynes, C.M., Nehrke, K.W., and Brookes, P.S. (2013). Physiological consequences of complex II inhibition for aging, disease, and the mKATP channel. Biochim. Biophys. Acta Bioenerg. 1827, 598–611.10.1016/j.bbabio.2012.12.007Suche in Google Scholar PubMed PubMed Central

Xie, Z., Dai, J., Dai, L., Tan, M., Cheng, Z., Wu, Y., Boeke, J.D., and Zhao, Y. (2012). Lysine succinylation and lysine malonylation in histones. Mol. Cell. Proteomics 11, 100–107.10.1074/mcp.M111.015875Suche in Google Scholar PubMed PubMed Central

Yadava, N. and Nicholls, D.G. (2007). Spare respiratory capacity rather than oxidative stress regulates glutamate excitotoxicity after partial respiratory inhibition of mitochondrial complex I with rotenone. J. Neurosci. 27, 7310–7317.10.1523/JNEUROSCI.0212-07.2007Suche in Google Scholar PubMed PubMed Central

Young-Yon, K., Kyung-Mi, C., ChangYeon, C., and Cheol-Koo, L. (2015). Mitochondrial efficiency-dependent viability of Saccharomyces cerevisiae mutants carrying individual electron transport chain component deletions. Mol. Cell. 38, 1054–1063.10.14348/molcells.2015.0153Suche in Google Scholar PubMed PubMed Central

Zhang, J., Guan, Z., Murphy, A.N., Wiley, S.E., Perkins, G.A., Worby, C.A., Engel, J.L., Heacock, P., Nguyen, O.K., Wang, J.H., et al. (2011a). Mitochondrial phosphatase PTPMT1 is essential for cardiolipin biosynthesis. Cell Metab. 13, 690–700.10.1016/j.cmet.2011.04.007Suche in Google Scholar PubMed PubMed Central

Zhang, Z., Tan, M., Xie, Z., Dai, L., Chen, Y., and Zhao, Y. (2011b). Identification of lysine succinylation as a new post-translational modification. Nat. Chem. Biol. 7, 58–63.10.1038/nchembio.495Suche in Google Scholar PubMed PubMed Central

Zhang, Y., Bharathi, S.S., Rardin, M.J., Lu, J., Maringer, K.V., Sims-Lucas, S., Prochownik, E.V., Gibson, B.W., and Goetzman, E.S. (2017). Lysine desuccinylase SIRT5 binds to cardiolipin and regulates the electron transport chain. J. Biol. Chem. 292, 10239–10249.10.1074/jbc.M117.785022Suche in Google Scholar PubMed PubMed Central

Received: 2019-05-20
Accepted: 2019-08-08
Published Online: 2019-08-13
Published in Print: 2020-02-25

©2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 7.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2019-0264/pdf
Button zum nach oben scrollen