Abstract
Actin dynamics, the coordinated assembly and disassembly of actin filaments (F-actin), are essential for fundamental cellular processes, including cell shaping and motility, cell division or organelle transport. Recent studies highlighted a novel role for actin dynamics in the regulation of mitochondrial morphology and function, for example, through mitochondrial recruitment of dynamin-related protein 1 (Drp1), a key factor in the mitochondrial fission machinery. Mitochondria are dynamic organelles, and permanent fission and fusion is essential to maintain their function in energy metabolism, calcium homeostasis and regulation of reactive oxygen species (ROS). Here, we summarize recent insights into the emerging role of cofilin1, a key regulator of actin dynamics, for mitochondrial shape and function under physiological conditions and during cellular stress, respectively. This is of peculiar importance in neurons, which are particularly prone to changes in actin regulation and mitochondrial integrity and function. In neurons, cofilin1 may contribute to degenerative processes through formation of cofilin-actin rods, and through enhanced mitochondrial fission, mitochondrial membrane permeabilization, and the release of cytochrome c. Overall, mitochondrial impairment induced by dysfunction of actin-regulating proteins such as cofilin1 emerge as important mechanisms of neuronal death with relevance to acute brain injury and neurodegenerative diseases, such as Parkinson’s or Alzheimer’s disease.
Funding source: Deutsche Forschungsgemeinschaft
Award Identifier / Grant number: 2018_1_1_2
Funding statement: This work was supported by the DFG Research Training Group ‘Membrane Plasticity in Tissue Development and Remodeling’, GRK 2213, Grant Number: 2018_1_1_2, Funder Id: http://dx.doi.org/10.13039/501100001659, DFG CU 43/12-1 and the FCMH Flexifunds to the Mitochondrial Network consortium.
References
Andrianantoandro, E. and Pollard, T.D. (2006). Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin. Mol. Cell 24, 13–23.10.1016/j.molcel.2006.08.006Suche in Google Scholar PubMed
Arber, S., Barbayannis, F.A., Hanser, H., Schneider, C., Stanyon, C.A., Bernard, O., and Caroni, P. (1998). Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393, 805–809.10.1038/31729Suche in Google Scholar PubMed
Bamburg, J.R., Bernstein, B.W., Davis, R.C., Flynn, K.C., Goldsbury, C., Jensen, J.R., Maloney, M.T., Marsden, I.T., Minamide, L.S., Pak, C.W., et al. (2010). ADF/cofilin-actin rods in neurodegenerative diseases. Cur. Alzheimer Res. 7, 241–250.10.2174/156720510791050902Suche in Google Scholar PubMed PubMed Central
Bellenchi, G.C., Gurniak, C.B., Perlas, E., Middei, S., Ammassari-Teule, M., and Witke, W. (2007). N-cofilin is associated with neuronal migration disorders and cell cycle control in the cerebral cortex. Genes Dev. 21, 2347–2357.10.1101/gad.434307Suche in Google Scholar PubMed PubMed Central
Bernstein, B.W. and Bamburg, J.R. (2010). ADF/cofilin: a functional node in cell biology. Trends Cell Biol. 20, 187–195.10.1016/j.tcb.2010.01.001Suche in Google Scholar PubMed PubMed Central
Bernstein, B.W., Chen, H., Boyle, J.A., and Bamburg, J.R. (2006). Formation of actin-ADF/cofilin rods transiently retards decline of mitochondrial potential and ATP in stressed neurons. Am. J. Physiol. Cell Physiol. 291, C828–C839.10.1152/ajpcell.00066.2006Suche in Google Scholar PubMed
Boldogh, I.R., Nowakowski, D.W., Yang, H.-C., Chung, H., Karmon, S., Royes, P., and Pon, L.A. (2003). A protein complex containing Mdm10p, Mdm12p, and Mmm1p links mitochondrial membranes and DNA to the cytoskeleton-based segregation machinery. Mol. Biol. Cell 14, 4618–4627.10.1091/mbc.e03-04-0225Suche in Google Scholar PubMed PubMed Central
Boldogh, I.R. and Pon, L.A. (2006). Interactions of mitochondria with the actin cytoskeleton. Biochim. Biophys. Acta 1763, 450–462.10.1016/j.bbamcr.2006.02.014Suche in Google Scholar PubMed
Boldogh, I.R. and Pon, L.A. (2007). Mitochondria on the move. Trends Cell Biol. 17, 502–510.10.1016/j.tcb.2007.07.008Suche in Google Scholar PubMed
Carlier, M.-F., Laurent, V., Santolini, J., Melki, R., Didry, D., Xia, G.-X., Hong, Y., Chua, N.-H., and Pantaloni, D. (1997). Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J. Cell Biol. 136, 1307–1322.10.1083/jcb.136.6.1307Suche in Google Scholar PubMed PubMed Central
Cerveny, K.L., McCaffery, J.M., and Jensen, R.E. (2001). Division of mitochondria requires a novel DNM1-interacting protein, Net2p. Mol. Biol. Cell 12, 309–321.10.1091/mbc.12.2.309Suche in Google Scholar PubMed PubMed Central
Chakrabarti, R., Ji, W.-K., Stan, R.V., Juan Sanz, J., Ryan, T.A., and Higgs, H.N. (2018). INF2-mediated actin polymerization at the ER stimulates mitochondrial calcium uptake, inner membrane constriction, and division. J. Cell Biol. 217, 251–268.10.1083/jcb.201709111Suche in Google Scholar PubMed PubMed Central
Chen, T.-J., Gehler, S., Shaw, A.E., Bamburg, J.R., and Letourneau, P.C. (2006). Cdc42 participates in the regulation of ADF/cofilin and retinal growth cone filopodia by brain derived neurotrophic factor. J. Neurobiol. 66, 103–114.10.1002/neu.20204Suche in Google Scholar PubMed
Chen, S.D., Lin, T.K., Yang, D.I., Lee, S.Y., Shaw, F.Z., Liou, C.W., and Chuang, Y.C. (2015). Roles of PTEN-induced putative kinase 1 and dynamin-related protein 1 in transient global ischemia-induced hippocampal neuronal injury. Biochem. Biophys. Res. Commun. 460, 397–403.10.1016/j.bbrc.2015.03.045Suche in Google Scholar PubMed
Chua, B.T., Volbracht, C., Tan, K.O., Li, R., Yu, V.C., and Li, P. (2003). Mitochondrial translocation of cofilin is an early step in apoptosis induction. Nat. Cell Biol. 5, 1083–1089.10.1038/ncb1070Suche in Google Scholar PubMed
Cichon, J., Sun, C., Chen, B., Jiang, M., Chen, X.A., Sun, Y., Wang, Y., and Chen, G. (2012). Cofilin aggregation blocks intracellular trafficking and induces synaptic loss in hippocampal neurons. J. Biol. Chem. 287, 3919–3929.10.1074/jbc.M111.301911Suche in Google Scholar PubMed PubMed Central
Coles, C.H. and Bradke, F. (2015). Coordinating neuronal actin-microtubule dynamics. Curr. Biol. 25, R677–R691.10.1016/j.cub.2015.06.020Suche in Google Scholar PubMed
Culmsee, C. and Krieglstein, J. (2007). Ischaemic brain damage after stroke: new insights into efficient therapeutic strategies. International Symposium on Neurodegeneration and Neuroprotection. EMBO Rep. 8, 129–133.10.1038/sj.embor.7400892Suche in Google Scholar PubMed PubMed Central
da Silva, J.S. and Dotti, C.G. (2002). Breaking the neuronal sphere: regulation of the actin cytoskeleton in neuritogenesis. Nat. Rev. Neurosci. 3, 694–704.10.1038/nrn918Suche in Google Scholar PubMed
Deng, Y., Wei, J., Cheng, J., Zhong, P., Xiong, Z., Liu, A., Lin, L., Chen, S., and Yan, Z. (2016). Partial amelioration of synaptic and cognitive deficits by inhibiting cofilin dephosphorylation in an animal model of Alzheimer’s disease. J. Alzheimer’s Dis. 53, 1419–1432.10.3233/JAD-160167Suche in Google Scholar PubMed
Dirnagl, U., Iadecola, C., and Moskowitz, M.A. (1999). Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 22, 391–397.10.1016/S0166-2236(99)01401-0Suche in Google Scholar
Duffney, L.J., Zhong, P., Wei, J., Matas, E., Cheng, J., Qin, L., Ma, K., Dietz, D.M., Kajiwara, Y., Buxbaum, J.D., et al. (2015). Autism-like deficits in Shank3-deficient mice are rescued by targeting actin regulators. Cell Rep. 11, 1400–1413.10.1016/j.celrep.2015.04.064Suche in Google Scholar PubMed PubMed Central
Flynn, K.C., Hellal, F., Neukirchen, D., Jacob, S., Tahirovic, S., Dupraz, S., Stern, S., Garvalov, B.K., Gurniak, C., Shaw, A.E., et al. (2012). ADF/cofilin-mediated actin retrograde flow directs neurite formation in the developing brain. Neuron 76, 1091–1107.10.1016/j.neuron.2012.09.038Suche in Google Scholar PubMed
Frederick, R.L. and Shaw, J.M. (2007). Moving mitochondria: establishing distribution of an essential organelle. Traffic 8, 1668–1675.10.1111/j.1600-0854.2007.00644.xSuche in Google Scholar PubMed PubMed Central
Gellert, M., Hanschmann, E.-M., Lepka, K., Berndt, C., and Lillig, C.H. (2015). Redox regulation of cytoskeletal dynamics during differentiation and de-differentiation. Biochim. Biophys. Acta 1850, 1575–1587.10.1016/j.bbagen.2014.10.030Suche in Google Scholar PubMed
Gohla, A., Birkenfeld, J., and Bokoch, G.M. (2005). Chronophin, a novel HAD-type serine protein phosphatase, regulates cofilin-dependent actin dynamics. Nat. Cell Biol. 7, 21–29.10.1038/ncb1201Suche in Google Scholar PubMed
Goodson, M., Rust, M.B., Witke, W., Bannerman, D., Mott, R., Ponting, C.P., and Flint, J. (2012). Cofilin-1: a modulator of anxiety in mice. PLoS Genet. 8, e1002970.10.1371/journal.pgen.1002970Suche in Google Scholar PubMed PubMed Central
Grohm, J., Kim, S.-W., Mamrak, U., Tobaben, S., Cassidy-Stone, A., Nunnari, J., Plesnila, N., and Culmsee, C. (2012). Inhibition of Drp1 provides neuroprotection in vitro and in vivo. Cell Death Differ. 19, 1446–1458.10.1038/cdd.2012.18Suche in Google Scholar PubMed PubMed Central
Gu, J., Lee, C.W., Fan, Y., Komlos, D., Tang, X., Sun, C., Yu, K., Hartzell, H.C., Chen, G., Bamburg, J.R., et al. (2010). ADF/cofilin-mediated actin dynamics regulate AMPA receptor trafficking during synaptic plasticity. Nat. Neurosci. 13, 1208–1215.10.1038/nn.2634Suche in Google Scholar PubMed PubMed Central
Gurniak, C.B., Chevessier, F., Jokwitz, M., Jönsson, F., Perlas, E., Richter, H., Matern, G., Boyl, P.P., Chaponnier, C., Fürst, D., et al. (2014). Severe protein aggregate myopathy in a knockout mouse model points to an essential role of cofilin2 in sarcomeric actin exchange and muscle maintenance. Eur. J. Cell Biol. 93, 252–266.10.1016/j.ejcb.2014.01.007Suche in Google Scholar PubMed
Hatch, A.L., Gurel, P.S., and Higgs, H.N. (2014). Novel roles for actin in mitochondrial fission. J. Cell Sci. 127, 4549–4560.10.1242/jcs.153791Suche in Google Scholar PubMed PubMed Central
Hatch, A.L., Ji, W.-K., Merrill, R.A., Strack, S., and Higgs, H.N. (2016). Actin filaments as dynamic reservoirs for Drp1 recruitment. Mol. Biol. Cell 27, 3109–3121.10.1091/mbc.e16-03-0193Suche in Google Scholar
Hild, G., Kalmár, L., Kardos, R., Nyitrai, M., and Bugyi, B. (2014). The other side of the coin: functional and structural versatility of ADF/cofilins. Eur. J. Cell Biol. 93, 238–251.10.1016/j.ejcb.2013.12.001Suche in Google Scholar PubMed
Hotulainen, P., Llano, O., Smirnov, S., Tanhuanpää, K., Faix, J., Rivera, C., and Lappalainen, P. (2009). Defining mechanisms of actin polymerization and depolymerization during dendritic spine morphogenesis. J. Cell Biol. 185, 323–339.10.1083/jcb.200809046Suche in Google Scholar PubMed PubMed Central
Huang, T.Y., Minamide, L.S., Bamburg, J.R., and Bokoch, G.M. (2008). Chronophin mediates an ATP-sensing mechanism for cofilin dephosphorylation and neuronal cofilin-actin rod formation. Dev. Cell 15, 691–703.10.1016/j.devcel.2008.09.017Suche in Google Scholar PubMed PubMed Central
Ito, U., Kuroiwa, T., Nagasao, J., Kawakami, E., and Oyanagi, K. (2006). Temporal profiles of axon terminals, synapses and spines in the ischemic penumbra of the cerebral cortex: ultrastructure of neuronal remodeling. Stroke 37, 2134–2139.10.1161/01.STR.0000231875.96714.b1Suche in Google Scholar PubMed
Ji, W.-K., Hatch, A.L., Merrill, R.A., Strack, S., and Higgs, H.N. (2015). Actin filaments target the oligomeric maturation of the dynamin GTPase Drp1 to mitochondrial fission sites. eLife 4, e11553.10.7554/eLife.11553.040Suche in Google Scholar
Klamt, F., Zdanov, S., Levine, R.L., Pariser, A., Zhang, Y., Zhang, B., Yu, L.-R., Veenstra, T.D., and Shacter, E. (2009). Oxidant-induced apoptosis is mediated by oxidation of the actin-regulatory protein cofilin. Nat. Cell Biol. 11, 1241–1246.10.1038/ncb1968Suche in Google Scholar PubMed PubMed Central
Korobova, F., Ramabhadran, V., and Higgs, H.N. (2013). An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. Science 339, 464–467.10.1126/science.1228360Suche in Google Scholar PubMed PubMed Central
Kotiadis, V.N., Leadsham, J.E., Bastow, E.L., Gheeraert, A., Whybrew, J.M., Bard, M., Lappalainen, P., and Gourlay, C.W. (2012). Identification of new surfaces of cofilin that link mitochondrial function to the control of multi-drug resistance. J. Cell Sci. 125, 2288–2299.10.1242/jcs.099390Suche in Google Scholar PubMed PubMed Central
Li, S., Xu, S., Roelofs, B.A., Boyman, L., Lederer, W.J., Sesaki, H., and Karbowski, M. (2015a). Transient assembly of F-actin on the outer mitochondrial membrane contributes to mitochondrial fission. J. Cell Biol. 208, 109–123.10.1083/jcb.201404050Suche in Google Scholar PubMed PubMed Central
Li, G., Zhou, J., Budhraja, A., Hu, X., Chen, Y., Cheng, Q., Liu, L., Zhou, T., Li, P., Liu, E., et al. (2015b). Mitochondrial translocation and interaction of cofilin and Drp1 are required for erucin-induced mitochondrial fission and apoptosis. Oncotarget 6, 1834–1849.10.18632/oncotarget.2795Suche in Google Scholar PubMed PubMed Central
Luo, S., Uehara, H., and Shacter, E. (2014). Taurine chloramine-induced inactivation of cofilin protein through methionine oxidation. Free Radic. Biol. Med. 75, 84–94.10.1016/j.freeradbiomed.2014.07.018Suche in Google Scholar PubMed
Maciver, S.K. and Weeds, A.G. (1994). Actophorin preferentially binds monomeric ADP-Actin over ATP-bound actin: consequences for cell locomotion. FEBS Lett. 347, 251–256.10.1016/0014-5793(94)00552-4Suche in Google Scholar PubMed
Manor, U., Bartholomew, S., Golani, G., Christenson, E., Kozlov, M., Higgs, H., Spudich, J., and Lippincott-Schwartz, J. (2015). A mitochondria-anchored isoform of the actin-nucleating spire protein regulates mitochondrial division. eLife 4.10.7554/eLife.08828Suche in Google Scholar PubMed PubMed Central
Minamide, L.S., Striegl, A.M., Boyle, J.A., Meberg, P.J., and Bamburg, J.R. (2000). Neurodegenerative stimuli induce persistent ADF/cofilin-actin rods that disrupt distal neurite function. Nat. Cell Biol. 2, 628–636.10.1038/35023579Suche in Google Scholar PubMed
Minamide, L.S., Maiti, S., Boyle, J.A., Davis, R.C., Coppinger, J.A., Bao, Y., Huang, T.Y., Yates, J., Bokoch, G.M., and Bamburg, J.R. (2010). Isolation and characterization of cytoplasmic cofilin-actin rods. J. Biol. Chem. 285, 5450–5460.10.1074/jbc.M109.063768Suche in Google Scholar PubMed PubMed Central
Mitchison, T.J. and Cramer, L.P. (1996). Actin-based cell motility and cell locomotion. Cell 84, 371–379.10.1016/S0092-8674(00)81281-7Suche in Google Scholar PubMed
Moore, A.S., Wong, Y.C., Simpson, C.L., and Holzbaur, E.L.F. (2016). Dynamic actin cycling through mitochondrial subpopulations locally regulates the fission-fusion balance within mitochondrial networks. Nat. Commun. 7, 12886.10.1038/ncomms12886Suche in Google Scholar PubMed PubMed Central
Moriyama, K., Iida, K., and Yahara, I. (1996). Phosphorylation of Ser-3 of cofilin regulates its essential function on actin. Genes Cells 1, 73–86.10.1046/j.1365-2443.1996.05005.xSuche in Google Scholar PubMed
Moskowitz, M.A., Lo, E.H., and Iadecola, C. (2010). The science of stroke: mechanisms in search of treatments. Neuron 67, 181–198.10.1016/j.neuron.2010.07.002Suche in Google Scholar PubMed PubMed Central
Munsie, L.N. and Truant, R. (2012). The role of the cofilin-actin rod stress response in neurodegenerative diseases uncovers potential new drug targets. Bioarchitecture 2, 204–208.10.4161/bioa.22549Suche in Google Scholar PubMed PubMed Central
Munsie, L., Caron, N., Atwal, R.S., Marsden, I., Wild, E.J., Bamburg, J.R., Tabrizi, S.J., and Truant, R. (2011). Mutant huntingtin causes defective actin remodeling during stress: defining a new role for transglutaminase 2 in neurodegenerative disease. Hum. Mol. Genet. 20, 1937–1951.10.1093/hmg/ddr075Suche in Google Scholar PubMed PubMed Central
Munsie, L.N., Desmond, C.R., and Truant, R. (2012). Cofilin nuclear-cytoplasmic shuttling affects cofilin-actin rod formation during stress. J. Cell Sci. 125, 3977–3988.10.1242/jcs.097667Suche in Google Scholar PubMed
Niwa, R., Nagata-Ohashi, K., Takeichi, M., Mizuno, K., and Uemura, T. (2002). Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell 108, 233–246.10.1016/S0092-8674(01)00638-9Suche in Google Scholar PubMed
Olesen, J. and Leonardi, M. (2003). The burden of brain diseases in Europe. Eur. J. Neurol. 10, 471–477.10.1046/j.1468-1331.2003.00682.xSuche in Google Scholar PubMed
Ordonez, D.G., Lee, M.K., and Feany, M.B. (2018). α-Synuclein induces mitochondrial dysfunction through spectrin and the actin cytoskeleton. Neuron 97, 108–124.e106.10.1016/j.neuron.2017.11.036Suche in Google Scholar PubMed PubMed Central
Pfannstiel, J., Cyrklaff, M., Habermann, A., Stoeva, S., Griffiths, G., Shoeman, R., and Faulstich, H. (2001). Human cofilin forms oligomers exhibiting actin bundling activity. J. Biol Chem. 276, 49476–49484.10.1074/jbc.M104760200Suche in Google Scholar PubMed
Qiu, Y., Chen, W.Y., Wang, Z.Y., Liu, F., Wei, M., Ma, C., and Huang, Y.G. (2016). Simvastatin attenuates neuropathic pain by inhibiting the RhoA/LIMK/cofilin pathway. Neurochem Res. 41, 2457–2469.10.1007/s11064-016-1958-1Suche in Google Scholar PubMed
Rehklau, K., Gurniak, C.B., Conrad, M., Friauf, E., Ott, M., and Rust, M.B. (2012). ADF/cofilin proteins translocate to mitochondria during apoptosis but are not generally required for cell death signaling. Cell Death Differ. 19, 958–967.10.1038/cdd.2011.180Suche in Google Scholar PubMed PubMed Central
Rehklau, K., Hoffmann, L., Gurniak, C.B., Ott, M., Witke, W., Scorrano, L., Culmsee, C., and Rust, M.B. (2017). Cofilin1-dependent actin dynamics control DRP1-mediated mitochondrial fission. Cell Death Dis. 8, e3063.10.1038/cddis.2017.448Suche in Google Scholar PubMed PubMed Central
Revenu, C., Athman, R., Robine, S., and Louvard, D. (2004). The co-workers of actin filaments: from cell structures to signals. Nat. Rev. Mol. Cell Biol. 5, 635–646.10.1038/nrm1437Suche in Google Scholar PubMed
Rust, M.B. (2015). ADF/cofilin: a crucial regulator of synapse physiology and behavior. Cell. Mol. Life Sci. 72, 3521–3529.10.1007/s00018-015-1941-zSuche in Google Scholar PubMed
Rust, M.B., Gurniak, C.B., Renner, M., Vara, H., Morando, L., Görlich, A., Sassoè-Pognetto, M., Banchaabouchi, M.A., Giustetto, M., Triller, A., et al. (2010). Learning, AMPA receptor mobility and synaptic plasticity depend on n-cofilin-mediated actin dynamics. EMBO J. 29, 1889–1902.10.1038/emboj.2010.72Suche in Google Scholar PubMed PubMed Central
Shu, L., Chen, B., Chen, B., Xu, H., Wang, G., Huang, Y., Zhao, Y., Gong, H., Jiang, M., Chen, L., et al. (2018). Brain ischemic insult induces cofilin rod formation leading to synaptic dysfunction in neurons. J. Cereb. Blood Fow Metabol. 271678X18785567.10.1177/0271678X18785567Suche in Google Scholar PubMed PubMed Central
Sungur, A.Ö., Stemmler, L., Wöhr, M., and Rust, M.B. (2018). Impaired object recognition but normal social behavior and ultrasonic communication in cofilin1 mutant mice. Front. Behav. Neurosci. 12, 25.10.3389/fnbeh.2018.00025Suche in Google Scholar PubMed PubMed Central
Tilve, S., Difato, F., and Chieregatti, E. (2015). Cofilin 1 activation prevents the defects in axon elongation and guidance induced by extracellular α-synuclein. Sci. Rep. 5, 16524.10.1038/srep16524Suche in Google Scholar PubMed PubMed Central
Vartiainen, M.K., Mustonen, T., Mattila, P.K., Ojala, P.J., Thesleff, I., Partanen, J., and Lappalainen, P. (2002). The three mouse actin-depolymerizing factor/cofilins evolved to fulfill cell-type-specific requirements for actin dynamics. Mol. Biol. Cell 13, 183–194.10.1091/mbc.01-07-0331Suche in Google Scholar PubMed PubMed Central
Welch, M.D., Mallavarapu, A., Rosenblatt, J., and Mitchison, T.J. (1997). Actin dynamics in vivo. Curr. Opin. Cell Biol. 9, 54–61.10.1016/S0955-0674(97)80152-4Suche in Google Scholar
Wioland, H., Guichard, B., Senju, Y., Myram, S., Lappalainen, P., Jégou, A., and Romet-Lemonne, G. (2017). ADF/cofilin accelerates actin dynamics by severing filaments and promoting their depolymerization at both ends. Curr. Biol. 27, 1956–1967.e1957.10.1016/j.cub.2017.05.048Suche in Google Scholar PubMed PubMed Central
Wolf, M., Zimmermann, A.-M., Görlich, A., Gurniak, C.B., Sassoè-Pognetto, M., Friauf, E., Witke, W., and Rust, M.B. (2015). ADF/cofilin controls synaptic actin dynamics and regulates synaptic vesicle mobilization and exocytosis. Cereb. Cortex 25, 2863–2875.10.1093/cercor/bhu081Suche in Google Scholar PubMed
Won, S.J., Minnella, A.M., Wu, L., Eun, C.H., Rome, E., Herson, P.S., Shaw, A.E., Bamburg, J.R., and Swanson, R.A. (2018). Cofilin-actin rod formation in neuronal processes after brain ischemia. PLoS One 13, e0198709.10.1371/journal.pone.0198709Suche in Google Scholar PubMed PubMed Central
Woo, J.A., Zhao, X., Khan, H., Penn, C., Wang, X., Joly-Amado, A., Weeber, E., Morgan, D., and Kang, D.E. (2015). Slingshot-Cofilin activation mediates mitochondrial and synaptic dysfunction via Aβ ligation to β1-integrin conformers. Cell Death Differ. 22, 921–934.10.1038/cdd.2015.5Suche in Google Scholar PubMed PubMed Central
Wrogemann, K. and Pena, S.D. (1976). Mitochondrial calcium overload: a general mechanism for cell-necrosis in muscle diseases. Lancet 1, 672–674.10.1016/S0140-6736(76)92781-1Suche in Google Scholar PubMed
Yang, N., Higuchi, O., Ohashi, K., Nagata, K., Wada, A., Kangawa, K., Nishida, E., and Mizuno, K. (1998). Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 393, 809–812.10.1038/31735Suche in Google Scholar PubMed
Zhao, Y.X., Cui, M., Chen, S.F., Dong, Q., and Liu, X.Y. (2014). Amelioration of ischemic mitochondrial injury and Bax-dependent outer membrane permeabilization by Mdivi-1. CNS Neurosci. Ther. 20, 528–538.10.1111/cns.12266Suche in Google Scholar PubMed PubMed Central
Zhou, Q., Homma, K.J., and Poo, M.M. (2004). Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron 44, 749–757.10.1016/j.neuron.2004.11.011Suche in Google Scholar PubMed
Zimmermann, A.M., Jene, T., Wolf, M., Gorlich, A., Gurniak, C.B., Sassoe-Pognetto, M., Witke, W., Friauf, E., and Rust, M.B. (2015). Attention-deficit/hyperactivity disorder-like phenotype in a mouse model with impaired actin dynamics. Biol. Psychiatry 78, 95–106.10.1016/j.biopsych.2014.03.011Suche in Google Scholar PubMed
© 2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Highlight: dynamics of the nervous system in health and disease
- Actin(g) on mitochondria – a role for cofilin1 in neuronal cell death pathways
- Neuronal microtubules and proteins linked to Parkinson’s disease: a relevant interaction?
- Contribution of astrocytes to metabolic dysfunction in the Alzheimer’s disease brain
- Chemical LTD, but not LTP, induces transient accumulation of gelsolin in dendritic spines
- Sub-membranous actin rings in the axon initial segment are resistant to the action of latrunculin
- The role of GFAP and vimentin in learning and memory
- Vimentin is required for normal accumulation of body fat
- The microtubule skeleton and the evolution of neuronal complexity in vertebrates
- Amyloidosis causes downregulation of SorLA, SorCS1 and SorCS3 expression in mice
- A fluorescent protein-readout for transcriptional activity reveals regulation of APP nuclear signaling by phosphorylation sites
- Kavalactones from Kava (Piper methysticum) root extract as modulators of recombinant human glycine receptors
- Research Articles/Short Communications
- Cell Biology and Signaling
- LncRNA HOTAIR targets miR-126-5p to promote the progression of Parkinson’s disease through RAB3IP
- Novel Techniques
- In vitro import experiments with semi-intact cells suggest a role of the Sec61 paralog Ssh1 in mitochondrial biogenesis
- Corrigendum
- Corrigendum to: SIAH1/ZEB1/IL-6 axis is involved in doxorubicin (Dox) resistance of osteosarcoma cells
Artikel in diesem Heft
- Frontmatter
- Highlight: dynamics of the nervous system in health and disease
- Actin(g) on mitochondria – a role for cofilin1 in neuronal cell death pathways
- Neuronal microtubules and proteins linked to Parkinson’s disease: a relevant interaction?
- Contribution of astrocytes to metabolic dysfunction in the Alzheimer’s disease brain
- Chemical LTD, but not LTP, induces transient accumulation of gelsolin in dendritic spines
- Sub-membranous actin rings in the axon initial segment are resistant to the action of latrunculin
- The role of GFAP and vimentin in learning and memory
- Vimentin is required for normal accumulation of body fat
- The microtubule skeleton and the evolution of neuronal complexity in vertebrates
- Amyloidosis causes downregulation of SorLA, SorCS1 and SorCS3 expression in mice
- A fluorescent protein-readout for transcriptional activity reveals regulation of APP nuclear signaling by phosphorylation sites
- Kavalactones from Kava (Piper methysticum) root extract as modulators of recombinant human glycine receptors
- Research Articles/Short Communications
- Cell Biology and Signaling
- LncRNA HOTAIR targets miR-126-5p to promote the progression of Parkinson’s disease through RAB3IP
- Novel Techniques
- In vitro import experiments with semi-intact cells suggest a role of the Sec61 paralog Ssh1 in mitochondrial biogenesis
- Corrigendum
- Corrigendum to: SIAH1/ZEB1/IL-6 axis is involved in doxorubicin (Dox) resistance of osteosarcoma cells