Evolution, purification, and characterization of RC0497: a peptidoglycan amidase from the prototypical spotted fever species Rickettsia conorii
-
Jignesh G. Patel
, Hema P. Narra, Krishna Mohan Sepuru
, Abha Sahni , Sandhya R. Golla , Aishwarya Sahni , Amber Singh , Casey L.C. Schroeder , Imran H. Chowdhury , Vsevolod L. Popov und Sanjeev K. Sahni
Abstract
Rickettsial species have independently lost several genes owing to reductive evolution while retaining those predominantly implicated in virulence, survival, and biosynthetic pathways. In this study, we have identified a previously uncharacterized Rickettsia conorii gene RC0497 as an N-acetylmuramoyl-L-alanine amidase constitutively expressed during infection of cultured human microvascular endothelial cells at the levels of both mRNA transcript and encoded protein. A homology-based search of rickettsial genomes reveals that RC0497 homologs, containing amidase_2 family and peptidoglycan binding domains, are highly conserved among the spotted fever group (SFG) rickettsiae. The recombinant RC0497 protein exhibits α-helix secondary structure, undergoes a conformational change in the presence of zinc, and exists as a dimer at higher concentrations. We have further ascertained the enzymatic activity of RC0497 via demonstration of its ability to hydrolyze Escherichia coli peptidoglycan. Confocal microscopy on E. coli expressing RC0497 and transmission immunoelectron microscopy of R. conorii revealed its localization predominantly to the cell wall, septal regions of replicating bacteria, and the membrane of vesicles pinching off the cell wall. In summary, we have identified and functionally characterized RC0497 as a peptidoglycan hydrolase unique to spotted fever rickettsiae, which may potentially serve as a novel moonlighting protein capable of performing multiple functions during host-pathogen interactions.
Funding source: National Institute of Allergy and Infectious Diseases
Award Identifier / Grant number: 5R21 AI115231-02
Award Identifier / Grant number: 5R21 AI117483-02
Funding statement: The authors thank and acknowledge the support of Sealy Center for Structural Biology and Molecular Biophysics at the University of Texas Medical Branch (UTMB) at Galveston for providing the research equipment and resources used in this study. The authors also thank the laboratories of Dr. David Walker, MD, and Dr. Rong Fang, MD, PhD, at the UTMB for providing the RC0497 antibody. This work was supported in part by research project grants 5R21 AI115231-02 and 5R21 AI117483-02 from the National Institute of Allergy and Infectious Diseases, Funder Id: http://dx.doi.org/10.13039/100000060 at the National Institutes of Health, Bethesda, MD, and by institutional support funds from the UTMB to our laboratory. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
References
Ades, E.W., Candal, F.J., Swerlick, R.A., George, V.G., Summers, S., Bosse, D.C., and Lawley, T.J. (1992). HMEC-1: establishment of an immortalized human microvascular endothelial cell line. J. Invest. Dermatol. 99, 683–690.10.1111/1523-1747.ep12613748Suche in Google Scholar
Amano, K., Fujita, M., and Suto, T. (1993). Chemical properties of lipopolysaccharides from spotted fever group rickettsiae and their common antigenicity with lipopolysaccharides from Proteus species. Infect. Immun. 61, 4350–4355.10.1128/iai.61.10.4350-4355.1993Suche in Google Scholar
Amano, K.I., Williams, J.C., and Dasch, G.A. (1998). Structural properties of lipopolysaccharides from Rickettsia typhi and Rickettsia prowazekii and their chemical similarity to the lipopolysaccharide from Proteus vulgaris OX19 used in the Weil-Felix test. Infect. Immun. 66, 923–926.10.1128/IAI.66.3.923-926.1998Suche in Google Scholar
Babu, M.M., Priya, M.L., Selvan, A.T., Madera, M., Gough, J., Aravind, L., and Sankaran, K. (2006). A database of bacterial lipoproteins (DOLOP) with functional assignments to predicted lipoproteins. J. Bacteriol. 188, 2761–2773.10.1128/JB.188.8.2761-2773.2006Suche in Google Scholar
Bai, J., Kim, S.I., Ryu, S., and Yoon, H. (2014). Identification and characterization of outer membrane vesicle-associated proteins in Salmonella enterica serovar Typhimurium. Infect. Immun. 82, 4001–4010.10.1128/IAI.01416-13Suche in Google Scholar
Bechelli, J., Vergara, L., Smalley, C., Buzhdygan, T.P., Bender, S., Zhang, W., Liu, Y., Popov, V.L., Wang, J., Garg, N., et al. (2019). Atg5 supports Rickettsia australis infection in macrophages in vitro and in vivo. Infect. Immun. 87, e00651-18.10.1128/IAI.00651-18Suche in Google Scholar
Berendt, S., Lehner, J., Zhang, Y.V., Rasse, T.M., Forchhammer, K., and Maldener, I. (2012). Cell wall amidase AmiC1 is required for cellular communication and heterocyst development in the cyanobacterium Anabaena PCC 7120 but not for filament integrity. J. Bacteriol. 194, 5218–5227.10.1128/JB.00912-12Suche in Google Scholar
Chen, X., Gao, T., Peng, Q., Zhang, J., Chai, Y., and Song, F. (2018). Novel cell wall hydrolase CwlC from Bacillus thuringiensis is essential for mother cell lysis. Appl. Environ. Microbiol. 84, e02640-17.10.1128/AEM.02640-17Suche in Google Scholar
Coffin, S.R. and Reich, N.O. (2009). Escherichia coli DNA adenine methyltransferase: intrasite processivity and substrate-induced dimerization and activation. Biochemistry 48, 7399–7410.10.1021/bi9008006Suche in Google Scholar
Cummings, D.J. (1963). Subunit basis of head configurational changes in T2 bacteriophage. Biochim. Biophys. Acta 68, 472–480.10.1016/0926-6550(63)90465-1Suche in Google Scholar
Curto, P., Simoes, I., Riley, S.P., and Martinez, J.J. (2016). Differences in intracellular fate of two spotted fever group Rickettsia in macrophage-like cells. Front. Cell. Infect. Microbiol. 6, 80.10.3389/fcimb.2016.00080Suche in Google Scholar PubMed PubMed Central
Curto, P., Riley, S.P., Simoes, I., and Martinez, J.J. (2019a). Macrophages infected by a pathogen and a non-pathogen spotted fever group Rickettsia reveal differential reprogramming signatures early in infection. Front. Cell. Infect. Microbiol. 9, 97.10.3389/fcimb.2019.00097Suche in Google Scholar PubMed PubMed Central
Curto, P., Santa, C., Allen, P., Manadas, B., Simoes, I., and Martinez, J.J. (2019b). A pathogen and a non-pathogen spotted fever group Rickettsia trigger differential proteome signatures in macrophages. Front. Cell. Infect. Microbiol. 9, 43.10.3389/fcimb.2019.00043Suche in Google Scholar PubMed PubMed Central
De Las Rivas, B., Garcia, J.L., Lopez, R., and Garcia, P. (2002). Purification and polar localization of pneumococcal LytB, a putative endo-β-N-acetylglucosaminidase: the chain-dispersing murein hydrolase. J. Bacteriol. 184, 4988–5000.10.1128/JB.184.18.4988-5000.2002Suche in Google Scholar PubMed PubMed Central
Driscoll, T.P., Verhoeve, V.I., Guillotte, M.L., Lehman, S.S., Rennoll, S.A., Beier-Sexton, M., Rahman, M.S., Azad, A.F., and Gillespie, J.J. (2017). Wholly Rickettsia! Reconstructed metabolic profile of the quintessential bacterial parasite of eukaryotic cells. MBio 8, e00859-17.10.1128/mBio.00859-17Suche in Google Scholar PubMed PubMed Central
Dunphy, P.S., Luo, T., and McBride, J.W. (2013). Ehrlichia moonlighting effectors and interkingdom interactions with the mononuclear phagocyte. Microbes Infect. 15, 1005–1016.10.1016/j.micinf.2013.09.011Suche in Google Scholar PubMed PubMed Central
Dziarski, R. and Gupta, D. (2010). Review: Mammalian peptidoglycan recognition proteins (PGRPs) in innate immunity. Innate Immun. 16, 168–174.10.1177/1753425910366059Suche in Google Scholar PubMed
Frygin, C. and Siwecka, M. (1966). Muramic acid from cell wall preparations of Rickettsia prowazakii. Med. Dosw. Mikrobiol. 18, 127–132.Suche in Google Scholar
Gillespie, J.J., Williams, K., Shukla, M., Snyder, E.E., Nordberg, E.K., and Ceraul, S.M. (2008). Rickettsia phylogenomics: unwinding the intricacies of obligate intracellular life. PLoS One 3, e2018.10.1371/journal.pone.0002018Suche in Google Scholar PubMed PubMed Central
Gillespie, J.J., Driscoll, T.P., Verhoeve, V.I., Utsuki, T., Husseneder, C., Chouljenko, V.N., Azad, A.F., and Macaluso, K.R. (2015a). Genomic diversification in strains of Rickettsia felis isolated from different arthropods. Genome Biol. Evol. 7, 35–56.10.1093/gbe/evu262Suche in Google Scholar PubMed PubMed Central
Gillespie, J.J., Kaur, S.J., Rahman, M.S., Rennoll-Bankert, K., Sears, K.T., Beier-Sexton, M., and Azad, A.F. (2015b). Secretome of obligate intracellular Rickettsia.. FEMS Microbiol. Rev. 39, 47–80.10.1111/1574-6976.12084Suche in Google Scholar PubMed PubMed Central
Gouin, E., Egile, C., Dehoux, P., Villiers, V., Adams, J., Gertler, F., Li, R., and Cossart, P. (2004). The RickA protein of Rickettsia conorii activates the Arp2/3 complex. Nature 427, 457–461.10.1038/nature02318Suche in Google Scholar PubMed
Guillotte, M.L., Gillespie, J.J., Chandler, C.E., Rahman, M.S., Ernst, R.K., and Azad, A.F. (2018). Rickettsia lipid A biosynthesis utilizes the late acyltransferase LpxJ for secondary fatty acid addition. J. Bacteriol. 200, e00334-18.10.1128/JB.00334-18Suche in Google Scholar PubMed PubMed Central
Heidrich, C., Templin, M.F., Ursinus, A., Merdanovic, M., Berger, J., Schwarz, H., de Pedro, M.A., and Holtje, J.V. (2001). Involvement of N-acetylmuramyl-L-alanine amidases in cell separation and antibiotic-induced autolysis of Escherichia coli. Mol. Microbiol. 41, 167–178.10.1046/j.1365-2958.2001.02499.xSuche in Google Scholar PubMed
Kajimura, J., Fujiwara, T., Yamada, S., Suzawa, Y., Nishida, T., Oyamada, Y., Hayashi, I., Yamagishi, J., Komatsuzawa, H., and Sugai, M. (2005). Identification and molecular characterization of an N-acetylmuramyl-L-alanine amidase Sle1 involved in cell separation of Staphylococcus aureus. Mol. Microbiol. 58, 1087–1101.10.1111/j.1365-2958.2005.04881.xSuche in Google Scholar PubMed
Kaur, S.J., Rahman, M.S., Ammerman, N.C., Beier-Sexton, M., Ceraul, S.M., Gillespie, J.J., and Azad, A.F. (2012). TolC-dependent secretion of an ankyrin repeat-containing protein of Rickettsia typhi. J. Bacteriol. 194, 4920–4932.10.1128/JB.00793-12Suche in Google Scholar PubMed PubMed Central
Kerff, F., Petrella, S., Mercier, F., Sauvage, E., Herman, R., Pennartz, A., Zervosen, A., Luxen, A., Frere, J.M., Joris, B., et al. (2010). Specific structural features of the N-acetylmuramoyl-L-alanine amidase AmiD from Escherichia coli and mechanistic implications for enzymes of this family. J. Mol. Biol. 397, 249–259.10.1016/j.jmb.2009.12.038Suche in Google Scholar PubMed
Kitagawa, R., Takaya, A., Ohya, M., Mizunoe, Y., Takade, A., Yoshida, S., Isogai, E., and Yamamoto, T. (2010). Biogenesis of Salmonella enterica serovar typhimurium membrane vesicles provoked by induction of PagC. J. Bacteriol. 192, 5645–5656.10.1128/JB.00590-10Suche in Google Scholar PubMed PubMed Central
Kumar, S., Puniya, B.L., Parween, S., Nahar, P., and Ramachandran, S. (2013). Identification of novel adhesins of M. tuberculosis H37Rv using integrated approach of multiple computational algorithms and experimental analysis. PLoS One 8, e69790.10.1371/journal.pone.0069790Suche in Google Scholar PubMed PubMed Central
Lee, S.M., Kwon, H.Y., Im, J.H., Baek, J.H., Kang, J.S., and Lee, J.S. (2015). Identification of outer membrane vesicles derived from Orientia tsutsugamushi. J. Korean Med. Sci. 30, 866–870.10.3346/jkms.2015.30.7.866Suche in Google Scholar PubMed PubMed Central
Lehman, S.S., Noriea, N.F., Aistleitner, K., Clark, T.R., Dooley, C.A., Nair, V., Kaur, S.J., Rahman, M.S., Gillespie, J.J., Azad, A.F., et al. (2018). The rickettsial ankyrin repeat protein 2 is a type IV secreted effector that associates with the endoplasmic reticulum. MBio 9, e00975-18.10.1128/mBio.00975-18Suche in Google Scholar PubMed PubMed Central
Lehner, J., Zhang, Y., Berendt, S., Rasse, T.M., Forchhammer, K., and Maldener, I. (2011). The morphogene AmiC2 is pivotal for multicellular development in the cyanobacterium Nostoc punctiforme. Mol. Microbiol. 79, 1655–1669.10.1111/j.1365-2958.2011.07554.xSuche in Google Scholar PubMed
Lenz, J.D., Hackett, K.T., and Dillard, J.P. (2017). A single dual-function enzyme controls the production of inflammatory NOD agonist peptidoglycan fragments by Neisseria gonorrhoeae. MBio 8, e01464-17.10.1128/mBio.01464-17Suche in Google Scholar PubMed PubMed Central
Mellroth, P., Karlsson, J., and Steiner, H. (2003). A scavenger function for a Drosophila peptidoglycan recognition protein. J. Biol. Chem. 278, 7059–7064.10.1074/jbc.M208900200Suche in Google Scholar PubMed
Micsonai, A., Wien, F., Bulyaki, E., Kun, J., Moussong, E., Lee, Y.H., Goto, Y., Refregiers, M., and Kardos, J. (2018). BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra. Nucleic Acids Res. 46, W315–W322.10.1093/nar/gky497Suche in Google Scholar PubMed PubMed Central
Moya, B., Juan, C., Alberti, S., Perez, J.L., and Oliver, A. (2008). Benefit of having multiple ampD genes for acquiring beta-lactam resistance without losing fitness and virulence in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 52, 3694–3700.10.1128/AAC.00172-08Suche in Google Scholar PubMed PubMed Central
Myers, W.F., Ormsbee, R.A., Osterman, J.V., and Wisseman Jr, C.L. (1967). The presence of diaminopemilic acid in rickettsiae. Exp. Biol. Med. 125, 459–463.10.3181/00379727-125-32119Suche in Google Scholar
Narra, H.P., Cordes, M.H., and Ochman, H. (2008). Structural features and the persistence of acquired proteins. Proteomics 8, 4772–4781.10.1002/pmic.200800061Suche in Google Scholar PubMed PubMed Central
Narra, H.P., Schroeder, C.L., Sahni, A., Rojas, M., Khanipov, K., Fofanov, Y., and Sahni, S.K. (2016). Small regulatory RNAs of Rickettsia conorii. Sci. Rep. 6, 36728.10.1038/srep36728Suche in Google Scholar PubMed PubMed Central
Ohnishi, R., Ishikawa, S., and Sekiguchi, J. (1999). Peptidoglycan hydrolase LytF plays a role in cell separation with CwlF during vegetative growth of Bacillus subtilis. J. Bacteriol. 181, 3178–3184.10.1128/JB.181.10.3178-3184.1999Suche in Google Scholar PubMed PubMed Central
Otten, C., Brilli, M., Vollmer, W., Viollier, P.H., and Salje, J. (2018). Peptidoglycan in obligate intracellular bacteria. Mol. Microbiol. 107, 142–163.10.1111/mmi.13880Suche in Google Scholar PubMed PubMed Central
Pang, H. and Winkler, H.H. (1994). Analysis of the peptidoglycan of Rickettsia prowazekii. J. Bacteriol. 176, 923–926.10.1128/jb.176.3.923-926.1994Suche in Google Scholar PubMed PubMed Central
Ponting, C.P., Aravind, L., Schultz, J., Bork, P., and Koonin, E.V. (1999). Eukaryotic signalling domain homologues in archaea and bacteria. Ancient ancestry and horizontal gene transfer. J. Mol. Biol. 289, 729–745.10.1006/jmbi.1999.2827Suche in Google Scholar PubMed
Priyadarshini, R., Popham, D.L., and Young, K.D. (2006). Daughter cell separation by penicillin-binding proteins and peptidoglycan amidases in Escherichia coli. J. Bacteriol. 188, 5345–5355.10.1128/JB.00476-06Suche in Google Scholar PubMed PubMed Central
Priyadarshini, R., de Pedro, M.A., and Young, K.D. (2007). Role of peptidoglycan amidases in the development and morphology of the division septum in Escherichia coli. J. Bacteriol. 189, 5334–5347.10.1128/JB.00415-07Suche in Google Scholar PubMed PubMed Central
Radulovic, S., Price, P.W., Beier, M.S., Gaywee, J., Macaluso, J.A., and Azad, A. (2002). Rickettsia-macrophage interactions: host cell responses to Rickettsia akari and Rickettsia typhi. Infect. Immun. 70, 2576–2582.10.1128/IAI.70.5.2576-2582.2002Suche in Google Scholar PubMed PubMed Central
Ramachandran, S., Kota, P., Ding, F., and Dokholyan, N.V. (2011). Automated minimization of steric clashes in protein structures. Proteins 79, 261–270.10.1002/prot.22879Suche in Google Scholar PubMed PubMed Central
Renesto, P., Azza, S., Dolla, A., Fourquet, P., Vestris, G., Gorvel, J.P., and Raoult, D. (2005). Proteome analysis of Rickettsia conorii by two-dimensional gel electrophoresis coupled with mass spectrometry. FEMS Microbiol. Lett. 245, 231–238.10.1016/j.femsle.2005.03.004Suche in Google Scholar PubMed
Rennoll-Bankert, K.E., Rahman, M.S., Gillespie, J.J., Guillotte, M.L., Kaur, S.J., Lehman, S.S., Beier-Sexton, M., and Azad, A.F. (2015). Which way in? The RalF Arf-GEF orchestrates Rickettsia host cell invasion. PLoS Pathog. 11, e1005115.10.1371/journal.ppat.1005115Suche in Google Scholar PubMed PubMed Central
Romero, P., Lopez, R., and Garcia, E. (2004). Characterization of LytA-like N-acetylmuramoyl-L-alanine amidases from two new Streptococcus mitis bacteriophages provides insights into the properties of the major pneumococcal autolysin. J. Bacteriol. 186, 8229–8239.10.1128/JB.186.24.8229-8239.2004Suche in Google Scholar PubMed PubMed Central
Rydkina, E., Sahni, S.K., Santucci, L.A., Turpin, L.C., Baggs, R.B., and Silverman, D.J. (2004). Selective modulation of antioxidant enzyme activities in host tissues during Rickettsia conorii infection. Microb. Pathog. 36, 293–301.10.1016/j.micpath.2004.01.002Suche in Google Scholar PubMed
Rydkina, E., Silverman, D.J., and Sahni, S.K. (2005). Activation of p38 stress-activated protein kinase during Rickettsia rickettsii infection of human endothelial cells: role in the induction of chemokine response. Cell. Microbiol. 7, 1519–1530.10.1111/j.1462-5822.2005.00574.xSuche in Google Scholar
Sahni, S.K., Narra, H.P., Sahni, A., and Walker, D.H. (2013). Recent molecular insights into rickettsial pathogenesis and immunity. Future Microbiol. 8, 1265–1288.10.2217/fmb.13.102Suche in Google Scholar
Sahni, A., Patel, J., Narra, H.P., Schroeder, C.L.C., Walker, D.H., and Sahni, S.K. (2017). Fibroblast growth factor receptor-1 mediates internalization of pathogenic spotted fever rickettsiae into host endothelium. PLoS One 12, e0183181.10.1371/journal.pone.0183181Suche in Google Scholar
Schenk, M., Mahapatra, S., Le, P., Kim, H.J., Choi, A.W., Brennan, P.J., Belisle, J.T., and Modlin, R.L. (2016). Human NOD2 recognizes structurally unique muramyl dipeptides from Mycobacterium leprae. Infect. Immun. 84, 2429–2438.10.1128/IAI.00334-16Suche in Google Scholar
Schuck, P. (2000). Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys. J. 78, 1606–1619.10.1016/S0006-3495(00)76713-0Suche in Google Scholar
Senzani, S., Li, D., Bhaskar, A., Ealand, C., Chang, J., Rimal, B., Liu, C., Joon Kim, S., Dhar, N., and Kana, B. (2017). An Amidase_3 domain-containing N-acetylmuramyl-L-alanine amidase is required for mycobacterial cell division. Sci. Rep. 7, 1140.10.1038/s41598-017-01184-7Suche in Google Scholar PubMed PubMed Central
Shida, T., Hattori, H., Ise, F., and Sekiguchi, J. (2001). Mutational analysis of catalytic sites of the cell wall lytic N-acetylmuramoyl-L-alanine amidases CwlC and CwlV. J. Biol. Chem. 276, 28140–28146.10.1074/jbc.M103903200Suche in Google Scholar PubMed
Sieber, K.B., Bromley, R.E., and Dunning Hotopp, J.C. (2017). Lateral gene transfer between prokaryotes and eukaryotes. Exp. Cell Res. 358, 421–426.10.1016/j.yexcr.2017.02.009Suche in Google Scholar PubMed PubMed Central
Tandberg, J.I., Lagos, L.X., Langlete, P., Berger, E., Rishovd, A.L., Roos, N., Varkey, D., Paulsen, I.T., and Winther-Larsen, H.C. (2016). Comparative analysis of membrane vesicles from three Piscirickettsia salmonis isolates reveals differences in vesicle characteristics. PLoS One 11, e0165099.10.1371/journal.pone.0165099Suche in Google Scholar PubMed PubMed Central
Uehara, T. and Park, J.T. (2007). An anhydro-N-acetylmuramyl-L-alanine amidase with broad specificity tethered to the outer membrane of Escherichia coli. J. Bacteriol. 189, 5634–5641.10.1128/JB.00446-07Suche in Google Scholar PubMed PubMed Central
van Heijenoort, J. (2011). Peptidoglycan hydrolases of Escherichia coli. Microbiol. Mol. Biol. Rev. 75, 636–663.10.1128/MMBR.00022-11Suche in Google Scholar PubMed PubMed Central
van Teeseling, M.C.F., de Pedro, M.A., and Cava, F. (2017). Determinants of bacterial morphology: from fundamentals to possibilities for antimicrobial targeting. Front. Microbiol. 8, 1264.10.3389/fmicb.2017.01264Suche in Google Scholar PubMed PubMed Central
Vollmer, W., Joris, B., Charlier, P., and Foster, S. (2008). Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol. Rev. 32, 259–286.10.1111/j.1574-6976.2007.00099.xSuche in Google Scholar PubMed
Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F.T., de Beer, T.A.P., Rempfer, C., Bordoli, L., et al. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303.10.1093/nar/gky427Suche in Google Scholar PubMed PubMed Central
Wilmes, M., Meier, K., Schiefer, A., Josten, M., Otten, C.F., Klockner, A., Henrichfreise, B., Vollmer, W., Hoerauf, A., and Pfarr, K. (2017). AmiD is a novel peptidoglycan amidase in Wolbachia endosymbionts of Drosophila melanogaster. Front. Cell. Infect. Microbiol. 7, 353.10.3389/fcimb.2017.00353Suche in Google Scholar PubMed PubMed Central
Zheng, Z., Omairi-Nasser, A., Li, X., Dong, C., Lin, Y., Haselkorn, R., and Zhao, J. (2017). An amidase is required for proper intercellular communication in the filamentous cyanobacterium Anabaena sp. PCC 7120. Proc. Natl. Acad. Sci. U.S.A. 114, E1405–E1412.10.1073/pnas.1621424114Suche in Google Scholar PubMed PubMed Central
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2018-0389).
©2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Reviews
- Cysteine, glutathione and a new genetic code: biochemical adaptations of the primordial cells that spread into open water and survived biospheric oxygenation
- What you see is what you get: activity-based probes in single-cell analysis of enzymatic activities
- Research Articles/Short Communications
- Protein Structure and Function
- Evolution, purification, and characterization of RC0497: a peptidoglycan amidase from the prototypical spotted fever species Rickettsia conorii
- Cell Biology and Signaling
- Sohlh2 alleviates malignancy of EOC cells under hypoxia via inhibiting the HIF1α/CA9 signaling pathway
- Thioredoxin inhibitor PX-12 induces mitochondria-mediated apoptosis in acute lymphoblastic leukemia cells
- TMEM100 expression suppresses metastasis and enhances sensitivity to chemotherapy in gastric cancer
- Inhibitory effect of activin A on IL-9 production by mouse NK cells through Smad3 signaling
- Intracellular distribution of pseudorabies virus UL2 and detection of its nuclear import mechanism
Artikel in diesem Heft
- Frontmatter
- Reviews
- Cysteine, glutathione and a new genetic code: biochemical adaptations of the primordial cells that spread into open water and survived biospheric oxygenation
- What you see is what you get: activity-based probes in single-cell analysis of enzymatic activities
- Research Articles/Short Communications
- Protein Structure and Function
- Evolution, purification, and characterization of RC0497: a peptidoglycan amidase from the prototypical spotted fever species Rickettsia conorii
- Cell Biology and Signaling
- Sohlh2 alleviates malignancy of EOC cells under hypoxia via inhibiting the HIF1α/CA9 signaling pathway
- Thioredoxin inhibitor PX-12 induces mitochondria-mediated apoptosis in acute lymphoblastic leukemia cells
- TMEM100 expression suppresses metastasis and enhances sensitivity to chemotherapy in gastric cancer
- Inhibitory effect of activin A on IL-9 production by mouse NK cells through Smad3 signaling
- Intracellular distribution of pseudorabies virus UL2 and detection of its nuclear import mechanism