Home Life Sciences What you see is what you get: activity-based probes in single-cell analysis of enzymatic activities
Article
Licensed
Unlicensed Requires Authentication

What you see is what you get: activity-based probes in single-cell analysis of enzymatic activities

  • Christian S. Lentz

    Christian Lentz studied Molecular Biomedicine at the University of Bonn, Germany, where he also obtained his PhD on the identification of heme biosynthesis inhibitors of endosymbiotic bacteria in parasitic worms. During his postdoctoral work in the lab of Matthew Bogyo at Stanford University, California, he became intrigued about the versatility of activity-based probes and their application for molecular imaging. His current research at the Helmholtz-Center for Infection Research in Braunschweig, Germany, focuses on the dissection of functional diversity of bacterial pathogens using activity-based probes.

    ORCID logo EMAIL logo
Published/Copyright: July 10, 2019

Abstract

Molecular imaging methods can provide spatio-temporal information about the distribution of biomolecules or biological processes, such as certain enzymatic activities, in single cells. Within a cell, it is possible to define the subcellular location of a target, its trafficking through the cell, colocalization with other biomolecules of interest and involvement in certain cell biological processes. On the other hand, single-cell imaging promises to distinguish cells that are phenotypically different from each other. The corresponding cellular diversity comprises the presence of functionally distinct cells in a population (‘phenotypic heterogeneity’), as well as dynamic cellular responses to external stimuli (‘phenotypic plasticity’), which is highly relevant, e.g. during cell differentiation, activation (of immune cells), or cell death. This review focuses on applications of a certain class of chemical probes, the so-called activity-based probes (ABPs), for visualization of enzymatic activities in the single-cell context. It discusses the structure of ABPs and other chemical probes, exemplary applications of ABPs in single-cell studies in human, mouse and bacterial systems and considerations to be made with regard to data interpretation.

About the author

Christian S. Lentz

Christian Lentz studied Molecular Biomedicine at the University of Bonn, Germany, where he also obtained his PhD on the identification of heme biosynthesis inhibitors of endosymbiotic bacteria in parasitic worms. During his postdoctoral work in the lab of Matthew Bogyo at Stanford University, California, he became intrigued about the versatility of activity-based probes and their application for molecular imaging. His current research at the Helmholtz-Center for Infection Research in Braunschweig, Germany, focuses on the dissection of functional diversity of bacterial pathogens using activity-based probes.

Acknowledgments

The author thanks Brett Babin and Mark Brönstrup for helpful suggestions and proof-reading of the manuscript.

References

Abd-Elrahman, I., Meir, K., Kosuge, H., Ben-Nun, Y., Weiss Sadan, T., Rubinstein, C., Samet, Y., McConnell, M.V., and Blum, G. (2016). Characterizing cathepsin activity and macrophage subtypes in excised human carotid plaques. Stroke 47, 1101–1108.10.1161/STROKEAHA.115.011573Search in Google Scholar PubMed

Ackermann, M. (2015). A functional perspective on phenotypic heterogeneity in microorganisms. Nat. Rev. Microbiol. 13, 497–508.10.1038/nrmicro3491Search in Google Scholar PubMed

Bedner, E., Smolewski, P., Amstad, P., and Darzynkiewicz, Z. (2000). Activation of caspases measured in situ by binding of fluorochrome-labeled inhibitors of caspases (FLICA): correlation with DNA fragmentation. Exp. Cell Res. 259, 308–313.10.1006/excr.2000.4955Search in Google Scholar PubMed

Berger, A.B., Vitorino, P.M., and Bogyo, M. (2004). Activity-based protein profiling: applications to biomarker discovery, in vivo imaging and drug discovery. Am. J. Pharmacogenomics 4, 371–381.10.2165/00129785-200404060-00004Search in Google Scholar PubMed

Bertrand, R., Wolf, A., Ivashchenko, Y., Lohn, M., Schafer, M., Bronstrup, M., Gotthardt, M., Derdau, V., and Plettenburg, O. (2016). Synthesis and characterization of a promising novel FFAR1/GPR40 targeting fluorescent probe for β-cell imaging. ACS Chem. Biol. 11, 1745–1754.10.1021/acschembio.5b00791Search in Google Scholar PubMed

Blum, G., Mullins, S.R., Keren, K., Fonovic, M., Jedeszko, C., Rice, M.J., Sloane, B.F., and Bogyo, M. (2005). Dynamic imaging of protease activity with fluorescently quenched activity-based probes. Nat. Chem. Biol. 1, 203–209.10.1038/nchembio728Search in Google Scholar PubMed

Blum, G., von Degenfeld, G., Merchant, M.J., Blau, H.M., and Bogyo, M. (2007). Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes. Nat. Chem. Biol. 3, 668–677.10.1038/nchembio.2007.26Search in Google Scholar PubMed

Borne, A.L., Huang, T., McCloud, R.L., Pachaiyappan, B., Bullock, T.N.J., and Hsu, K.L. (2019). Deciphering T cell immunometabolism with activity-based protein profiling. Curr. Top Microbiol. Immunol. 420, 175–210.10.1007/82_2018_124Search in Google Scholar PubMed PubMed Central

Böttcher, T. and Sieber, S.A. (2012). β-Lactams and β-lactones as activity-based probes in chemical biology. MedChemComm. 3, 408–417.10.1039/c2md00275bSearch in Google Scholar

Chakrabarty, S., Kahler, J.P., van de Plassche, M.A.T., Vanhoutte, R., and Verhelst, S.H.L. (2019). Recent advances in activity-based protein profiling of proteases. Curr. Top Microbiol. Immunol. 420, 253–281.10.1007/82_2018_138Search in Google Scholar PubMed

Chen, D., Fan, F., Zhao, X., Xu, F., Chen, P., Wang, J., Ban, L., Liu, Z., Feng, X., Zhang, Y., et al. (2016). Single cell chemical proteomics with membrane-permeable activity-based probe for identification of functional proteins in lysosome of tumors. Anal. Chem. 88, 2466–2471.10.1021/acs.analchem.5b04645Search in Google Scholar PubMed

Chen, L., Keller, L.J., Cordasco, E., Bogyo, M., and Lentz, C.S. (2019). Fluorescent triazole urea activity-based probes for the single-cell phenotypic characterization of Staphylococcus aureus. Angew. Chem. Int. Ed. 58, 5643–5647.10.1002/anie.201900511Search in Google Scholar PubMed PubMed Central

Cheng, Y., Xie, J., Lee, K.H., Gaur, R.L., Song, A., Dai, T., Ren, H., Wu, J., Sun, Z., Banaei, N., et al. (2018). Rapid and specific labeling of single live Mycobacterium tuberculosis with a dual-targeting fluorogenic probe. Sci. Transl. Med. 10, pii: eaar4470.10.1126/scitranslmed.aar4470Search in Google Scholar PubMed PubMed Central

Daniel, R.A. and Errington, J. (2003). Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell 113, 767–776.10.1016/S0092-8674(03)00421-5Search in Google Scholar PubMed

Davis, K.M. and Isberg, R.R. (2016). Defining heterogeneity within bacterial populations via single cell approaches. Bioessays 38, 782–790.10.1002/bies.201500121Search in Google Scholar PubMed

Desrochers, G.F. and Pezacki, J.P. (2019). ABPP and host-virus interactions. Curr. Top Microbiol. Immunol. 420, 131–154.10.1007/82_2018_139Search in Google Scholar PubMed PubMed Central

Edgington, L.E., Berger, A.B., Blum, G., Albrow, V.E., Paulick, M.G., Lineberry, N., and Bogyo, M. (2009). Noninvasive optical imaging of apoptosis by caspase-targeted activity-based probes. Nat. Med. 15, 967–973.10.1038/nm.1938Search in Google Scholar PubMed PubMed Central

Edgington, L.E., van Raam, B.J., Verdoes, M., Wierschem, C., Salvesen, G.S., and Bogyo, M. (2012). An optimized activity-based probe for the study of caspase-6 activation. Chem. Biol. 19, 340–352.10.1016/j.chembiol.2011.12.021Search in Google Scholar PubMed PubMed Central

Edgington-Mitchell, L.E., Wartmann, T., Fleming, A.K., Gocheva, V., van der Linden, W.A., Withana, N.P., Verdoes, M., Aurelio, L., Edgington-Mitchell, D., Lieu, T., et al. (2016). Legumain is activated in macrophages during pancreatitis. Am. J. Physiol. Gastrointest. Liver Physiol. 311, G548–560.10.1152/ajpgi.00047.2016Search in Google Scholar PubMed PubMed Central

Garland, M., Yim, J.J., and Bogyo, M. (2016). A bright future for precision medicine: advances in fluorescent chemical probe design and their clinical application. Cell Chem. Biol. 23, 122–136.10.1016/j.chembiol.2015.12.003Search in Google Scholar PubMed PubMed Central

Gocheva, V., Wang, H.W., Gadea, B.B., Shree, T., Hunter, K.E., Garfall, A.L., Berman, T., and Joyce, J.A. (2010). IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev. 24, 241–255.10.1158/1538-7445.AM10-LB-379Search in Google Scholar

Guerra, M., Frey, D., Hagner, M., Dittrich, S., Paulsen, M., Mall, M.A., and Schultz, C. (2019). Cathepsin G activity as a new marker for detecting airway inflammation by microscopy and flow cytometry. ACS Cent. Sci. 5, 539–548.10.1021/acscentsci.8b00933Search in Google Scholar PubMed PubMed Central

Harms, A., Maisonneuve, E., and Gerdes, K. (2016). Mechanisms of bacterial persistence during stress and antibiotic exposure. Science 354, pii: aaf4268.10.1126/science.aaf4268Search in Google Scholar PubMed

Harris, J.L., Backes, B.J., Leonetti, F., Mahrus, S., Ellman, J.A., and Craik, C.S. (2000). Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries. Proc. Natl. Acad. Sci. USA 97, 7754–7759.10.1073/pnas.140132697Search in Google Scholar PubMed PubMed Central

Hu, H.Y., Gehrig, S., Reither, G., Subramanian, D., Mall, M.A., Plettenburg, O., and Schultz, C. (2014). FRET-based and other fluorescent proteinase probes. Biotechnol. J. 9, 266–281.10.1002/biot.201300201Search in Google Scholar PubMed

Jarzembowski, T., Wisniewska, K., Jozwik, A., Bryl, E., and Witkowski, J. (2008). Flow cytometry as a rapid test for detection of penicillin resistance directly in bacterial cells in Enterococcus faecalis and Staphylococcus aureus. Curr. Microbiol. 57, 167–169.10.1007/s00284-008-9179-8Search in Google Scholar PubMed

Jarzembowski, T., Wisniewska, K., Jozwik, A., and Witkowski, J. (2009). Heterogeneity of methicillin-resistant Staphylococcus aureus strains (MRSA) characterized by flow cytometry. Curr. Microbiol. 59, 78–80.10.1007/s00284-009-9395-xSearch in Google Scholar PubMed

Joyce, J.A., Baruch, A., Chehade, K., Meyer-Morse, N., Giraudo, E., Tsai, F.Y., Greenbaum, D.C., Hager, J.H., Bogyo, M., and Hanahan, D. (2004). Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell 5, 443–453.10.1016/S1535-6108(04)00111-4Search in Google Scholar PubMed

Kallemeijn, W.W., Li, K.Y., Witte, M.D., Marques, A.R., Aten, J., Scheij, S., Jiang, J., Willems, L.I., Voorn-Brouwer, T.M., van Roomen, C.P., et al. (2012). Novel activity-based probes for broad-spectrum profiling of retaining β-exoglucosidases in situ and in vivo. Angew. Chem. Int. Ed. 51, 12529–12533.10.1002/anie.201207771Search in Google Scholar PubMed

Kallemeijn, W.W., Scheij, S., Hoogendoorn, S., Witte, M.D., Herrera Moro Chao, D., van Roomen, C.P., Ottenhoff, R., Overkleeft, H.S., Boot, R.G., and Aerts, J.M. (2017). Investigations on therapeutic glucocerebrosidases through paired detection with fluorescent activity-based probes. PLoS One 12, e0170268.10.1371/journal.pone.0170268Search in Google Scholar PubMed PubMed Central

Kasperkiewicz, P., Poreba, M., Snipas, S.J., Parker, H., Winterbourn, C.C., Salvesen, G.S., and Drag, M. (2014). Design of ultrasensitive probes for human neutrophil elastase through hybrid combinatorial substrate library profiling. Proc. Natl. Acad. Sci. USA 111, 2518–2523.10.1073/pnas.1318548111Search in Google Scholar PubMed PubMed Central

Kasperkiewicz, P., Poreba, M., Snipas, S.J., Lin, S.J., Kirchhofer, D., Salvesen, G.S., and Drag, M. (2015). Design of a selective substrate and activity based probe for human neutrophil serine protease 4. PLoS One 10, e0132818.10.1371/journal.pone.0132818Search in Google Scholar PubMed PubMed Central

Kasperkiewicz, P., Altman, Y., D’Angelo, M., Salvesen, G.S., and Drag, M. (2017). Toolbox of fluorescent probes for parallel imaging reveals uneven location of serine proteases in neutrophils. J. Am. Chem. Soc. 139, 10115–10125.10.1021/jacs.7b04394Search in Google Scholar PubMed PubMed Central

Kato, D., Boatright, K.M., Berger, A.B., Nazif, T., Blum, G., Ryan, C., Chehade, K.A., Salvesen, G.S., and Bogyo, M. (2005). Activity-based probes that target diverse cysteine protease families. Nat. Chem. Biol. 1, 33–38.10.1038/nchembio707Search in Google Scholar PubMed

Kocaoglu, O. and Carlson, E.E. (2013). Penicillin-binding protein imaging probes. Curr. Protoc. Chem. Biol. 5, 239–250.10.1002/9780470559277.ch130102Search in Google Scholar PubMed PubMed Central

Kocaoglu, O., Calvo, R.A., Sham, L.T., Cozy, L.M., Lanning, B.R., Francis, S., Winkler, M.E., Kearns, D.B., and Carlson, E.E. (2012). Selective penicillin-binding protein imaging probes reveal substructure in bacterial cell division. ACS Chem. Biol. 7, 1746–1753.10.1021/cb300329rSearch in Google Scholar PubMed PubMed Central

Koenders, S.T.A., Gagestein, B., and van der Stelt, M. (2019). Opportunities for lipid-based probes in the field of immunology. Curr. Top Microbiol. Immunol. 420, 283–319.10.1007/82_2018_127Search in Google Scholar PubMed

Kovalyova, Y. and Hatzios, S.K. (2019). Activity-based protein profiling at the host-pathogen interface. Curr. Top Microbiol. Immunol. 420, 73–91.10.1007/82_2018_129Search in Google Scholar PubMed

Kumar, B.V., Ma, W., Miron, M., Granot, T., Guyer, R.S., Carpenter, D.J., Senda, T., Sun, X., Ho, S.H., Lerner, H., et al. (2017). Human tissue-resident memory T cells are defined by core transcriptional and functional signatures in lymphoid and mucosal sites. Cell Rep. 20, 2921–2934.10.1016/j.celrep.2017.08.078Search in Google Scholar PubMed PubMed Central

Kuo, C.L., van Meel, E., Kytidou, K., Kallemeijn, W.W., Witte, M., Overkleeft, H.S., Artola, M.E., and Aerts, J.M. (2018). Activity-based probes for glycosidases: profiling and other applications. Methods Enzymol. 598, 217–235.10.1016/bs.mie.2017.06.039Search in Google Scholar PubMed

Lentz, C.S., Ordonez, A.A., Kasperkiewicz, P., La Greca, F., O’Donoghue, A.J., Schulze, C.J., Powers, J.C., Craik, C.S., Drag, M., Jain, S.K., et al. (2016). Design of selective substrates and activity-based probes for hydrolase important for pathogenesis 1 (HIP1) from Mycobacterium tuberculosis. ACS Infect. Dis. 2, 807–815.10.1021/acsinfecdis.6b00092Search in Google Scholar PubMed PubMed Central

Lentz, C.S., Sheldon, J.R., Crawford, L.A., Cooper, R., Garland, M., Amieva, M.R., Weerapana, E., Skaar, E.P., and Bogyo, M. (2018). Identification of a S . aureus virulence factor by activity-based protein profiling (ABPP). Nat. Chem. Biol. 14, 609–617.10.1038/s41589-018-0060-1Search in Google Scholar PubMed PubMed Central

Liu, Y., Patricelli, M.P., and Cravatt, B.F. (1999). Activity-based protein profiling: the serine hydrolases. Proc. Natl. Acad. Sci. USA 96, 14694–14699.10.1073/pnas.96.26.14694Search in Google Scholar PubMed PubMed Central

Liu, S.Y., Xiong, H., Li, R.R., Yang, W.C., and Yang, G.F. (2019). Activity-based near-infrared fluorogenic probe enables in vitro and in vivo profiling of neutrophil elastase. Anal. Chem. 91, 3877–3884.10.1021/acs.analchem.8b04455Search in Google Scholar PubMed

Man, S.M., Karki, R., and Kanneganti, T.D. (2017). Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol. Rev. 277, 61–75.10.1111/imr.12534Search in Google Scholar PubMed PubMed Central

Morimoto, K. and van der Hoorn, R.A. (2016). The increasing impact of activity-based protein profiling in plant science. Plant Cell Physiol. 57, 446–461.10.1093/pcp/pcw003Search in Google Scholar PubMed

Niphakis, M.J. and Cravatt, B.F. (2014). Enzyme inhibitor discovery by activity-based protein profiling. Annu. Rev. Biochem. 83, 341–377.10.1146/annurev-biochem-060713-035708Search in Google Scholar PubMed

Nomura, D.K. and Maimone, T.J. (2019). Target identification of bioactive covalently acting natural products. Curr. Top Microbiol. Immunol. 420, 351–374.10.1007/82_2018_121Search in Google Scholar PubMed

Nomura, D.K., Dix, M.M., and Cravatt, B.F. (2010). Activity-based protein profiling for biochemical pathway discovery in cancer. Nat. Rev. Cancer 10, 630–638.10.1038/nrc2901Search in Google Scholar PubMed PubMed Central

O’Donoghue, A.J., Eroy-Reveles, A.A., Knudsen, G.M., Ingram, J., Zhou, M., Statnekov, J.B., Greninger, A.L., Hostetter, D.R., Qu,G., Maltby, D.A., et al. (2012). Global identification of peptidase specificity by multiplex substrate profiling. Nat. Methods 9, 1095–1100.10.1038/nmeth.2182Search in Google Scholar PubMed PubMed Central

Ofori, L.O., Withana, N.P., Prestwood, T.R., Verdoes, M., Brady, J.J., Winslow, M.M., Sorger, J., and Bogyo, M. (2015). Design of protease activated optical contrast agents that exploit a latent lysosomotropic effect for use in fluorescence-guided surgery. ACS Chem. Biol. 10, 1977–1988.10.1021/acschembio.5b00205Search in Google Scholar PubMed PubMed Central

Patel, H.V., Li, M., and Seeliger, J.C. (2019). Opportunities and challenges in activity-based protein profiling of mycobacteria. Curr. Top Microbiol. Immunol. 420, 49–72.10.1007/82_2018_125Search in Google Scholar PubMed

Patterson, A.W., Wood, W.J., Hornsby, M., Lesley, S., Spraggon, G., and Ellman, J.A. (2006). Identification of selective, nonpeptidic nitrile inhibitors of cathepsin S using the substrate activity screening method. J. Med. Chem. 49, 6298–6307.10.1021/jm060701sSearch in Google Scholar PubMed

Poreba, M., Kasperkiewicz, P., Snipas, S.J., Fasci, D., Salvesen, G.S., and Drag, M. (2014). Unnatural amino acids increase sensitivity and provide for the design of highly selective caspase substrates. Cell Death Differ. 21, 1482–1492.10.1038/cdd.2014.64Search in Google Scholar PubMed PubMed Central

Poreba, M., Rut, W., Vizovisek, M., Groborz, K., Kasperkiewicz, P., Finlay, D., Vuori, K., Turk, D., Turk, B., Salvesen, G.S., et al. (2018). Selective imaging of cathepsin L in breast cancer by fluorescent activity-based probes. Chem. Sci. 9, 2113–2129.10.1039/C7SC04303ASearch in Google Scholar

Pozarowski, P., Huang, X., Halicka, D.H., Lee, B., Johnson, G., and Darzynkiewicz, Z. (2003). Interactions of fluorochrome-labeled caspase inhibitors with apoptotic cells: a caution in data interpretation. Cytometry A 55, 50–60.10.1002/cyto.a.10074Search in Google Scholar PubMed

Puri, A.W., Broz, P., Shen, A., Monack, D.M., and Bogyo, M. (2012). Caspase-1 activity is required to bypass macrophage apoptosis upon Salmonella infection. Nat. Chem. Biol. 8, 745–747.10.1038/nchembio.1023Search in Google Scholar PubMed PubMed Central

Rego, E.H., Audette, R.E., and Rubin, E.J. (2017). Deletion of a mycobacterial divisome factor collapses single-cell phenotypic heterogeneity. Nature 546, 153–157.10.1038/nature22361Search in Google Scholar PubMed PubMed Central

Roth-Konforti, M.E., Bauer, C.R., and Shabat, D. (2017). Unprecedented sensitivity in a probe for monitoring cathepsin B: chemiluminescence microscopy cell-imaging of a natively expressed enzyme. Angew. Chem. Int. Ed. 56, 15633–15638.10.1002/anie.201709347Search in Google Scholar PubMed

Sanman, L.E. and Bogyo, M. (2014). Activity-based profiling of proteases. Annu. Rev. Biochem. 83, 249–273.10.1146/annurev-biochem-060713-035352Search in Google Scholar PubMed

Sanman, L.E., Qian, Y., Eisele, N.A., Ng, T.M., van der Linden, W.A., Monack, D.M., Weerapana, E., and Bogyo, M. (2016a). Disruption of glycolytic flux is a signal for inflammasome signaling and pyroptotic cell death. eLife 5, e13663.10.7554/eLife.13663Search in Google Scholar PubMed PubMed Central

Sanman, L.E., van der Linden, W.A., Verdoes, M., and Bogyo, M. (2016b). Bifunctional probes of cathepsin protease activity and ph reveal alterations in endolysosomal pH during bacterial infection. Cell Chem. Biol. 23, 793–804.10.1016/j.chembiol.2016.05.019Search in Google Scholar PubMed PubMed Central

Sharifzadeh, S., Boersma, M.J., Kocaoglu, O., Shokri, A., Brown, C.L., Shirley, J.D., Winkler, M.E., and Carlson, E.E. (2017). Novel electrophilic scaffold for imaging of essential penicillin-binding proteins in Streptococcus pneumoniae. ACS Chem. Biol. 12, 2849–2857.10.1021/acschembio.7b00614Search in Google Scholar PubMed PubMed Central

Sharifzadeh, S., Shirley, J.D., and Carlson, E.E. (2019). Activity-based protein profiling methods to study bacteria: the power of small-molecule electrophiles. Curr. Top Microbiol. Immunol. 420, 23–48.10.1007/82_2018_135Search in Google Scholar PubMed

Shaulov-Rotem, Y., Merquiol, E., Weiss-Sadan, T., Moshel, O., Salpeter, S., Shabat, D., Kaschani, F., Kaiser, M., and Blum, G. (2016). A novel quenched fluorescent activity-based probe reveals caspase-3 activity in the endoplasmic reticulum during apoptosis. Chem. Sci. 7, 1322–1337.10.1039/C5SC03207ESearch in Google Scholar

Siegrist, M.S., Swarts, B.M., Fox, D.M., Lim, S.A., and Bertozzi, C.R. (2015). Illumination of growth, division and secretion by metabolic labeling of the bacterial cell surface. FEMS Microbiol. Rev. 39, 184–202.10.1093/femsre/fuu012Search in Google Scholar PubMed PubMed Central

Tiyanont, K., Doan, T., Lazarus, M.B., Fang, X., Rudner, D.Z., and Walker, S. (2006). Imaging peptidoglycan biosynthesis in Bacillus subtilis with fluorescent antibiotics. Proc. Natl. Acad. Sci. USA 103, 11033–11038.10.1073/pnas.0600829103Search in Google Scholar PubMed PubMed Central

Turk, V., Stoka, V., Vasiljeva, O., Renko, M., Sun, T., Turk, B., and Turk, D. (2012). Cysteine cathepsin S: from structure, function and regulation to new frontiers. Biochim. Biophys. Acta. 1824, 68–88.10.1016/j.bbapap.2011.10.002Search in Google Scholar PubMed PubMed Central

van Esbroeck, A.C.M., Janssen, A.P.A., Cognetta, A.B., 3rd, Ogasawara, D., Shpak, G., van der Kroeg, M., Kantae, V., Baggelaar, M.P., de Vrij, F.M.S., Deng, H., et al. (2017). Activity-based protein profiling reveals off-target proteins of the FAAH inhibitor BIA 10-2474. Science 356, 1084–1087.10.1126/science.aaf7497Search in Google Scholar PubMed PubMed Central

van Kasteren, S.I., Florea, B.I., and Overkleeft, H.S. (2017). Activity-based protein profiling: from chemical novelty to biomedical stalwart. Methods Mol. Biol. 1491, 1–8.10.1007/978-1-4939-6439-0_1Search in Google Scholar PubMed

Verdoes, M., Edgington, L.E., Scheeren, F.A., Leyva, M., Blum, G., Weiskopf, K., Bachmann, M.H., Ellman, J.A., and Bogyo, M. (2012). A nonpeptidic cathepsin S activity-based probe for noninvasive optical imaging of tumor-associated macrophages. Chem. Biol. 19, 619–628.10.1016/j.chembiol.2012.03.012Search in Google Scholar PubMed PubMed Central

Verdoes, M., Oresic Bender, K., Segal, E., van der Linden, W.A., Syed, S., Withana, N.P., Sanman, L.E., and Bogyo, M. (2013). Improved quenched fluorescent probe for imaging of cysteine cathepsin activity. J. Am. Chem. Soc. 135, 14726–14730.10.1021/ja4056068Search in Google Scholar PubMed PubMed Central

Vocadlo, D.J. and Bertozzi, C.R. (2004). A strategy for functional proteomic analysis of glycosidase activity from cell lysates. Angew. Chem. Int. Ed. 43, 5338–5342.10.1002/anie.200454235Search in Google Scholar PubMed

Whidbey, C. and Wright, A.T. (2019). Activity-based protein profiling-enabling multimodal functional studies of microbial communities. Curr. Top Microbiol. Immunol. 420, 1–21.10.1007/82_2018_128Search in Google Scholar PubMed PubMed Central

Witte, M.D., Kallemeijn, W.W., Aten, J., Li, K.Y., Strijland, A., Donker-Koopman, W.E., van den Nieuwendijk, A.M., Bleijlevens, B., Kramer, G., Florea, B.I., et al. (2010). Ultrasensitive in situ visualization of active glucocerebrosidase molecules. Nat. Chem. Biol. 6, 907–913.10.1038/nchembio.466Search in Google Scholar PubMed

Wright, M.H. and Sieber, S.A. (2016). Chemical proteomics approaches for identifying the cellular targets of natural products. Nat. Prod. Rep. 33, 681–708.10.1039/C6NP00001KSearch in Google Scholar

Xie, H., Mire, J., Kong, Y., Chang, M., Hassounah, H.A., Thornton, C.N., Sacchettini, J.C., Cirillo, J.D., and Rao, J. (2012). Rapid point-of-care detection of the tuberculosis pathogen using a BlaC-specific fluorogenic probe. Nat. Chem. 4, 802–809.10.1038/nchem.1435Search in Google Scholar PubMed PubMed Central

Xu, F., Zhao, H., Feng, X., Chen, L., Chen, D., Zhang, Y., Nan, F., Liu, J., and Liu, B.F. (2014). Single-cell chemical proteomics with an activity-based probe: identification of low-copy membrane proteins on primary neurons. Angew. Chem. Int. Ed. 53, 6730–6733.10.1002/anie.201402363Search in Google Scholar PubMed

Zhao, G., Meier, T.I., Kahl, S.D., Gee, K.R., and Blaszczak, L.C. (1999). BOCILLIN FL, a sensitive and commercially available reagent for detection of penicillin-binding proteins. Antimicrob. Agents Chemother. 43, 1124–1128.10.1128/AAC.43.5.1124Search in Google Scholar PubMed PubMed Central

Received: 2019-05-20
Accepted: 2019-06-25
Published Online: 2019-07-10
Published in Print: 2020-02-25

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 7.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2019-0262/html
Scroll to top button