Home Life Sciences Evolution, purification, and characterization of RC0497: a peptidoglycan amidase from the prototypical spotted fever species Rickettsia conorii
Article
Licensed
Unlicensed Requires Authentication

Evolution, purification, and characterization of RC0497: a peptidoglycan amidase from the prototypical spotted fever species Rickettsia conorii

  • Jignesh G. Patel , Hema P. Narra EMAIL logo , Krishna Mohan Sepuru , Abha Sahni , Sandhya R. Golla , Aishwarya Sahni , Amber Singh , Casey L.C. Schroeder , Imran H. Chowdhury , Vsevolod L. Popov and Sanjeev K. Sahni EMAIL logo
Published/Copyright: July 11, 2019

Abstract

Rickettsial species have independently lost several genes owing to reductive evolution while retaining those predominantly implicated in virulence, survival, and biosynthetic pathways. In this study, we have identified a previously uncharacterized Rickettsia conorii gene RC0497 as an N-acetylmuramoyl-L-alanine amidase constitutively expressed during infection of cultured human microvascular endothelial cells at the levels of both mRNA transcript and encoded protein. A homology-based search of rickettsial genomes reveals that RC0497 homologs, containing amidase_2 family and peptidoglycan binding domains, are highly conserved among the spotted fever group (SFG) rickettsiae. The recombinant RC0497 protein exhibits α-helix secondary structure, undergoes a conformational change in the presence of zinc, and exists as a dimer at higher concentrations. We have further ascertained the enzymatic activity of RC0497 via demonstration of its ability to hydrolyze Escherichia coli peptidoglycan. Confocal microscopy on E. coli expressing RC0497 and transmission immunoelectron microscopy of R. conorii revealed its localization predominantly to the cell wall, septal regions of replicating bacteria, and the membrane of vesicles pinching off the cell wall. In summary, we have identified and functionally characterized RC0497 as a peptidoglycan hydrolase unique to spotted fever rickettsiae, which may potentially serve as a novel moonlighting protein capable of performing multiple functions during host-pathogen interactions.

Award Identifier / Grant number: 5R21 AI115231-02

Award Identifier / Grant number: 5R21 AI117483-02

Funding statement: The authors thank and acknowledge the support of Sealy Center for Structural Biology and Molecular Biophysics at the University of Texas Medical Branch (UTMB) at Galveston for providing the research equipment and resources used in this study. The authors also thank the laboratories of Dr. David Walker, MD, and Dr. Rong Fang, MD, PhD, at the UTMB for providing the RC0497 antibody. This work was supported in part by research project grants 5R21 AI115231-02 and 5R21 AI117483-02 from the National Institute of Allergy and Infectious Diseases, Funder Id: http://dx.doi.org/10.13039/100000060 at the National Institutes of Health, Bethesda, MD, and by institutional support funds from the UTMB to our laboratory. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

References

Ades, E.W., Candal, F.J., Swerlick, R.A., George, V.G., Summers, S., Bosse, D.C., and Lawley, T.J. (1992). HMEC-1: establishment of an immortalized human microvascular endothelial cell line. J. Invest. Dermatol. 99, 683–690.10.1111/1523-1747.ep12613748Search in Google Scholar

Amano, K., Fujita, M., and Suto, T. (1993). Chemical properties of lipopolysaccharides from spotted fever group rickettsiae and their common antigenicity with lipopolysaccharides from Proteus species. Infect. Immun. 61, 4350–4355.10.1128/iai.61.10.4350-4355.1993Search in Google Scholar

Amano, K.I., Williams, J.C., and Dasch, G.A. (1998). Structural properties of lipopolysaccharides from Rickettsia typhi and Rickettsia prowazekii and their chemical similarity to the lipopolysaccharide from Proteus vulgaris OX19 used in the Weil-Felix test. Infect. Immun. 66, 923–926.10.1128/IAI.66.3.923-926.1998Search in Google Scholar

Babu, M.M., Priya, M.L., Selvan, A.T., Madera, M., Gough, J., Aravind, L., and Sankaran, K. (2006). A database of bacterial lipoproteins (DOLOP) with functional assignments to predicted lipoproteins. J. Bacteriol. 188, 2761–2773.10.1128/JB.188.8.2761-2773.2006Search in Google Scholar

Bai, J., Kim, S.I., Ryu, S., and Yoon, H. (2014). Identification and characterization of outer membrane vesicle-associated proteins in Salmonella enterica serovar Typhimurium. Infect. Immun. 82, 4001–4010.10.1128/IAI.01416-13Search in Google Scholar

Bechelli, J., Vergara, L., Smalley, C., Buzhdygan, T.P., Bender, S., Zhang, W., Liu, Y., Popov, V.L., Wang, J., Garg, N., et al. (2019). Atg5 supports Rickettsia australis infection in macrophages in vitro and in vivo. Infect. Immun. 87, e00651-18.10.1128/IAI.00651-18Search in Google Scholar

Berendt, S., Lehner, J., Zhang, Y.V., Rasse, T.M., Forchhammer, K., and Maldener, I. (2012). Cell wall amidase AmiC1 is required for cellular communication and heterocyst development in the cyanobacterium Anabaena PCC 7120 but not for filament integrity. J. Bacteriol. 194, 5218–5227.10.1128/JB.00912-12Search in Google Scholar

Chen, X., Gao, T., Peng, Q., Zhang, J., Chai, Y., and Song, F. (2018). Novel cell wall hydrolase CwlC from Bacillus thuringiensis is essential for mother cell lysis. Appl. Environ. Microbiol. 84, e02640-17.10.1128/AEM.02640-17Search in Google Scholar

Coffin, S.R. and Reich, N.O. (2009). Escherichia coli DNA adenine methyltransferase: intrasite processivity and substrate-induced dimerization and activation. Biochemistry 48, 7399–7410.10.1021/bi9008006Search in Google Scholar

Cummings, D.J. (1963). Subunit basis of head configurational changes in T2 bacteriophage. Biochim. Biophys. Acta 68, 472–480.10.1016/0926-6550(63)90465-1Search in Google Scholar

Curto, P., Simoes, I., Riley, S.P., and Martinez, J.J. (2016). Differences in intracellular fate of two spotted fever group Rickettsia in macrophage-like cells. Front. Cell. Infect. Microbiol. 6, 80.10.3389/fcimb.2016.00080Search in Google Scholar PubMed PubMed Central

Curto, P., Riley, S.P., Simoes, I., and Martinez, J.J. (2019a). Macrophages infected by a pathogen and a non-pathogen spotted fever group Rickettsia reveal differential reprogramming signatures early in infection. Front. Cell. Infect. Microbiol. 9, 97.10.3389/fcimb.2019.00097Search in Google Scholar PubMed PubMed Central

Curto, P., Santa, C., Allen, P., Manadas, B., Simoes, I., and Martinez, J.J. (2019b). A pathogen and a non-pathogen spotted fever group Rickettsia trigger differential proteome signatures in macrophages. Front. Cell. Infect. Microbiol. 9, 43.10.3389/fcimb.2019.00043Search in Google Scholar PubMed PubMed Central

De Las Rivas, B., Garcia, J.L., Lopez, R., and Garcia, P. (2002). Purification and polar localization of pneumococcal LytB, a putative endo-β-N-acetylglucosaminidase: the chain-dispersing murein hydrolase. J. Bacteriol. 184, 4988–5000.10.1128/JB.184.18.4988-5000.2002Search in Google Scholar PubMed PubMed Central

Driscoll, T.P., Verhoeve, V.I., Guillotte, M.L., Lehman, S.S., Rennoll, S.A., Beier-Sexton, M., Rahman, M.S., Azad, A.F., and Gillespie, J.J. (2017). Wholly Rickettsia! Reconstructed metabolic profile of the quintessential bacterial parasite of eukaryotic cells. MBio 8, e00859-17.10.1128/mBio.00859-17Search in Google Scholar PubMed PubMed Central

Dunphy, P.S., Luo, T., and McBride, J.W. (2013). Ehrlichia moonlighting effectors and interkingdom interactions with the mononuclear phagocyte. Microbes Infect. 15, 1005–1016.10.1016/j.micinf.2013.09.011Search in Google Scholar PubMed PubMed Central

Dziarski, R. and Gupta, D. (2010). Review: Mammalian peptidoglycan recognition proteins (PGRPs) in innate immunity. Innate Immun. 16, 168–174.10.1177/1753425910366059Search in Google Scholar PubMed

Frygin, C. and Siwecka, M. (1966). Muramic acid from cell wall preparations of Rickettsia prowazakii. Med. Dosw. Mikrobiol. 18, 127–132.Search in Google Scholar

Gillespie, J.J., Williams, K., Shukla, M., Snyder, E.E., Nordberg, E.K., and Ceraul, S.M. (2008). Rickettsia phylogenomics: unwinding the intricacies of obligate intracellular life. PLoS One 3, e2018.10.1371/journal.pone.0002018Search in Google Scholar PubMed PubMed Central

Gillespie, J.J., Driscoll, T.P., Verhoeve, V.I., Utsuki, T., Husseneder, C., Chouljenko, V.N., Azad, A.F., and Macaluso, K.R. (2015a). Genomic diversification in strains of Rickettsia felis isolated from different arthropods. Genome Biol. Evol. 7, 35–56.10.1093/gbe/evu262Search in Google Scholar PubMed PubMed Central

Gillespie, J.J., Kaur, S.J., Rahman, M.S., Rennoll-Bankert, K., Sears, K.T., Beier-Sexton, M., and Azad, A.F. (2015b). Secretome of obligate intracellular Rickettsia.. FEMS Microbiol. Rev. 39, 47–80.10.1111/1574-6976.12084Search in Google Scholar PubMed PubMed Central

Gouin, E., Egile, C., Dehoux, P., Villiers, V., Adams, J., Gertler, F., Li, R., and Cossart, P. (2004). The RickA protein of Rickettsia conorii activates the Arp2/3 complex. Nature 427, 457–461.10.1038/nature02318Search in Google Scholar PubMed

Guillotte, M.L., Gillespie, J.J., Chandler, C.E., Rahman, M.S., Ernst, R.K., and Azad, A.F. (2018). Rickettsia lipid A biosynthesis utilizes the late acyltransferase LpxJ for secondary fatty acid addition. J. Bacteriol. 200, e00334-18.10.1128/JB.00334-18Search in Google Scholar PubMed PubMed Central

Heidrich, C., Templin, M.F., Ursinus, A., Merdanovic, M., Berger, J., Schwarz, H., de Pedro, M.A., and Holtje, J.V. (2001). Involvement of N-acetylmuramyl-L-alanine amidases in cell separation and antibiotic-induced autolysis of Escherichia coli. Mol. Microbiol. 41, 167–178.10.1046/j.1365-2958.2001.02499.xSearch in Google Scholar PubMed

Kajimura, J., Fujiwara, T., Yamada, S., Suzawa, Y., Nishida, T., Oyamada, Y., Hayashi, I., Yamagishi, J., Komatsuzawa, H., and Sugai, M. (2005). Identification and molecular characterization of an N-acetylmuramyl-L-alanine amidase Sle1 involved in cell separation of Staphylococcus aureus. Mol. Microbiol. 58, 1087–1101.10.1111/j.1365-2958.2005.04881.xSearch in Google Scholar PubMed

Kaur, S.J., Rahman, M.S., Ammerman, N.C., Beier-Sexton, M., Ceraul, S.M., Gillespie, J.J., and Azad, A.F. (2012). TolC-dependent secretion of an ankyrin repeat-containing protein of Rickettsia typhi. J. Bacteriol. 194, 4920–4932.10.1128/JB.00793-12Search in Google Scholar PubMed PubMed Central

Kerff, F., Petrella, S., Mercier, F., Sauvage, E., Herman, R., Pennartz, A., Zervosen, A., Luxen, A., Frere, J.M., Joris, B., et al. (2010). Specific structural features of the N-acetylmuramoyl-L-alanine amidase AmiD from Escherichia coli and mechanistic implications for enzymes of this family. J. Mol. Biol. 397, 249–259.10.1016/j.jmb.2009.12.038Search in Google Scholar PubMed

Kitagawa, R., Takaya, A., Ohya, M., Mizunoe, Y., Takade, A., Yoshida, S., Isogai, E., and Yamamoto, T. (2010). Biogenesis of Salmonella enterica serovar typhimurium membrane vesicles provoked by induction of PagC. J. Bacteriol. 192, 5645–5656.10.1128/JB.00590-10Search in Google Scholar PubMed PubMed Central

Kumar, S., Puniya, B.L., Parween, S., Nahar, P., and Ramachandran, S. (2013). Identification of novel adhesins of M. tuberculosis H37Rv using integrated approach of multiple computational algorithms and experimental analysis. PLoS One 8, e69790.10.1371/journal.pone.0069790Search in Google Scholar PubMed PubMed Central

Lee, S.M., Kwon, H.Y., Im, J.H., Baek, J.H., Kang, J.S., and Lee, J.S. (2015). Identification of outer membrane vesicles derived from Orientia tsutsugamushi. J. Korean Med. Sci. 30, 866–870.10.3346/jkms.2015.30.7.866Search in Google Scholar PubMed PubMed Central

Lehman, S.S., Noriea, N.F., Aistleitner, K., Clark, T.R., Dooley, C.A., Nair, V., Kaur, S.J., Rahman, M.S., Gillespie, J.J., Azad, A.F., et al. (2018). The rickettsial ankyrin repeat protein 2 is a type IV secreted effector that associates with the endoplasmic reticulum. MBio 9, e00975-18.10.1128/mBio.00975-18Search in Google Scholar PubMed PubMed Central

Lehner, J., Zhang, Y., Berendt, S., Rasse, T.M., Forchhammer, K., and Maldener, I. (2011). The morphogene AmiC2 is pivotal for multicellular development in the cyanobacterium Nostoc punctiforme. Mol. Microbiol. 79, 1655–1669.10.1111/j.1365-2958.2011.07554.xSearch in Google Scholar PubMed

Lenz, J.D., Hackett, K.T., and Dillard, J.P. (2017). A single dual-function enzyme controls the production of inflammatory NOD agonist peptidoglycan fragments by Neisseria gonorrhoeae. MBio 8, e01464-17.10.1128/mBio.01464-17Search in Google Scholar PubMed PubMed Central

Mellroth, P., Karlsson, J., and Steiner, H. (2003). A scavenger function for a Drosophila peptidoglycan recognition protein. J. Biol. Chem. 278, 7059–7064.10.1074/jbc.M208900200Search in Google Scholar PubMed

Micsonai, A., Wien, F., Bulyaki, E., Kun, J., Moussong, E., Lee, Y.H., Goto, Y., Refregiers, M., and Kardos, J. (2018). BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra. Nucleic Acids Res. 46, W315–W322.10.1093/nar/gky497Search in Google Scholar PubMed PubMed Central

Moya, B., Juan, C., Alberti, S., Perez, J.L., and Oliver, A. (2008). Benefit of having multiple ampD genes for acquiring beta-lactam resistance without losing fitness and virulence in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 52, 3694–3700.10.1128/AAC.00172-08Search in Google Scholar PubMed PubMed Central

Myers, W.F., Ormsbee, R.A., Osterman, J.V., and Wisseman Jr, C.L. (1967). The presence of diaminopemilic acid in rickettsiae. Exp. Biol. Med. 125, 459–463.10.3181/00379727-125-32119Search in Google Scholar

Narra, H.P., Cordes, M.H., and Ochman, H. (2008). Structural features and the persistence of acquired proteins. Proteomics 8, 4772–4781.10.1002/pmic.200800061Search in Google Scholar PubMed PubMed Central

Narra, H.P., Schroeder, C.L., Sahni, A., Rojas, M., Khanipov, K., Fofanov, Y., and Sahni, S.K. (2016). Small regulatory RNAs of Rickettsia conorii. Sci. Rep. 6, 36728.10.1038/srep36728Search in Google Scholar PubMed PubMed Central

Ohnishi, R., Ishikawa, S., and Sekiguchi, J. (1999). Peptidoglycan hydrolase LytF plays a role in cell separation with CwlF during vegetative growth of Bacillus subtilis. J. Bacteriol. 181, 3178–3184.10.1128/JB.181.10.3178-3184.1999Search in Google Scholar PubMed PubMed Central

Otten, C., Brilli, M., Vollmer, W., Viollier, P.H., and Salje, J. (2018). Peptidoglycan in obligate intracellular bacteria. Mol. Microbiol. 107, 142–163.10.1111/mmi.13880Search in Google Scholar PubMed PubMed Central

Pang, H. and Winkler, H.H. (1994). Analysis of the peptidoglycan of Rickettsia prowazekii. J. Bacteriol. 176, 923–926.10.1128/jb.176.3.923-926.1994Search in Google Scholar PubMed PubMed Central

Ponting, C.P., Aravind, L., Schultz, J., Bork, P., and Koonin, E.V. (1999). Eukaryotic signalling domain homologues in archaea and bacteria. Ancient ancestry and horizontal gene transfer. J. Mol. Biol. 289, 729–745.10.1006/jmbi.1999.2827Search in Google Scholar PubMed

Priyadarshini, R., Popham, D.L., and Young, K.D. (2006). Daughter cell separation by penicillin-binding proteins and peptidoglycan amidases in Escherichia coli. J. Bacteriol. 188, 5345–5355.10.1128/JB.00476-06Search in Google Scholar PubMed PubMed Central

Priyadarshini, R., de Pedro, M.A., and Young, K.D. (2007). Role of peptidoglycan amidases in the development and morphology of the division septum in Escherichia coli. J. Bacteriol. 189, 5334–5347.10.1128/JB.00415-07Search in Google Scholar PubMed PubMed Central

Radulovic, S., Price, P.W., Beier, M.S., Gaywee, J., Macaluso, J.A., and Azad, A. (2002). Rickettsia-macrophage interactions: host cell responses to Rickettsia akari and Rickettsia typhi. Infect. Immun. 70, 2576–2582.10.1128/IAI.70.5.2576-2582.2002Search in Google Scholar PubMed PubMed Central

Ramachandran, S., Kota, P., Ding, F., and Dokholyan, N.V. (2011). Automated minimization of steric clashes in protein structures. Proteins 79, 261–270.10.1002/prot.22879Search in Google Scholar PubMed PubMed Central

Renesto, P., Azza, S., Dolla, A., Fourquet, P., Vestris, G., Gorvel, J.P., and Raoult, D. (2005). Proteome analysis of Rickettsia conorii by two-dimensional gel electrophoresis coupled with mass spectrometry. FEMS Microbiol. Lett. 245, 231–238.10.1016/j.femsle.2005.03.004Search in Google Scholar PubMed

Rennoll-Bankert, K.E., Rahman, M.S., Gillespie, J.J., Guillotte, M.L., Kaur, S.J., Lehman, S.S., Beier-Sexton, M., and Azad, A.F. (2015). Which way in? The RalF Arf-GEF orchestrates Rickettsia host cell invasion. PLoS Pathog. 11, e1005115.10.1371/journal.ppat.1005115Search in Google Scholar PubMed PubMed Central

Romero, P., Lopez, R., and Garcia, E. (2004). Characterization of LytA-like N-acetylmuramoyl-L-alanine amidases from two new Streptococcus mitis bacteriophages provides insights into the properties of the major pneumococcal autolysin. J. Bacteriol. 186, 8229–8239.10.1128/JB.186.24.8229-8239.2004Search in Google Scholar PubMed PubMed Central

Rydkina, E., Sahni, S.K., Santucci, L.A., Turpin, L.C., Baggs, R.B., and Silverman, D.J. (2004). Selective modulation of antioxidant enzyme activities in host tissues during Rickettsia conorii infection. Microb. Pathog. 36, 293–301.10.1016/j.micpath.2004.01.002Search in Google Scholar PubMed

Rydkina, E., Silverman, D.J., and Sahni, S.K. (2005). Activation of p38 stress-activated protein kinase during Rickettsia rickettsii infection of human endothelial cells: role in the induction of chemokine response. Cell. Microbiol. 7, 1519–1530.10.1111/j.1462-5822.2005.00574.xSearch in Google Scholar

Sahni, S.K., Narra, H.P., Sahni, A., and Walker, D.H. (2013). Recent molecular insights into rickettsial pathogenesis and immunity. Future Microbiol. 8, 1265–1288.10.2217/fmb.13.102Search in Google Scholar

Sahni, A., Patel, J., Narra, H.P., Schroeder, C.L.C., Walker, D.H., and Sahni, S.K. (2017). Fibroblast growth factor receptor-1 mediates internalization of pathogenic spotted fever rickettsiae into host endothelium. PLoS One 12, e0183181.10.1371/journal.pone.0183181Search in Google Scholar

Schenk, M., Mahapatra, S., Le, P., Kim, H.J., Choi, A.W., Brennan, P.J., Belisle, J.T., and Modlin, R.L. (2016). Human NOD2 recognizes structurally unique muramyl dipeptides from Mycobacterium leprae. Infect. Immun. 84, 2429–2438.10.1128/IAI.00334-16Search in Google Scholar

Schuck, P. (2000). Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys. J. 78, 1606–1619.10.1016/S0006-3495(00)76713-0Search in Google Scholar

Senzani, S., Li, D., Bhaskar, A., Ealand, C., Chang, J., Rimal, B., Liu, C., Joon Kim, S., Dhar, N., and Kana, B. (2017). An Amidase_3 domain-containing N-acetylmuramyl-L-alanine amidase is required for mycobacterial cell division. Sci. Rep. 7, 1140.10.1038/s41598-017-01184-7Search in Google Scholar PubMed PubMed Central

Shida, T., Hattori, H., Ise, F., and Sekiguchi, J. (2001). Mutational analysis of catalytic sites of the cell wall lytic N-acetylmuramoyl-L-alanine amidases CwlC and CwlV. J. Biol. Chem. 276, 28140–28146.10.1074/jbc.M103903200Search in Google Scholar PubMed

Sieber, K.B., Bromley, R.E., and Dunning Hotopp, J.C. (2017). Lateral gene transfer between prokaryotes and eukaryotes. Exp. Cell Res. 358, 421–426.10.1016/j.yexcr.2017.02.009Search in Google Scholar PubMed PubMed Central

Tandberg, J.I., Lagos, L.X., Langlete, P., Berger, E., Rishovd, A.L., Roos, N., Varkey, D., Paulsen, I.T., and Winther-Larsen, H.C. (2016). Comparative analysis of membrane vesicles from three Piscirickettsia salmonis isolates reveals differences in vesicle characteristics. PLoS One 11, e0165099.10.1371/journal.pone.0165099Search in Google Scholar PubMed PubMed Central

Uehara, T. and Park, J.T. (2007). An anhydro-N-acetylmuramyl-L-alanine amidase with broad specificity tethered to the outer membrane of Escherichia coli. J. Bacteriol. 189, 5634–5641.10.1128/JB.00446-07Search in Google Scholar PubMed PubMed Central

van Heijenoort, J. (2011). Peptidoglycan hydrolases of Escherichia coli. Microbiol. Mol. Biol. Rev. 75, 636–663.10.1128/MMBR.00022-11Search in Google Scholar PubMed PubMed Central

van Teeseling, M.C.F., de Pedro, M.A., and Cava, F. (2017). Determinants of bacterial morphology: from fundamentals to possibilities for antimicrobial targeting. Front. Microbiol. 8, 1264.10.3389/fmicb.2017.01264Search in Google Scholar PubMed PubMed Central

Vollmer, W., Joris, B., Charlier, P., and Foster, S. (2008). Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol. Rev. 32, 259–286.10.1111/j.1574-6976.2007.00099.xSearch in Google Scholar PubMed

Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F.T., de Beer, T.A.P., Rempfer, C., Bordoli, L., et al. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303.10.1093/nar/gky427Search in Google Scholar PubMed PubMed Central

Wilmes, M., Meier, K., Schiefer, A., Josten, M., Otten, C.F., Klockner, A., Henrichfreise, B., Vollmer, W., Hoerauf, A., and Pfarr, K. (2017). AmiD is a novel peptidoglycan amidase in Wolbachia endosymbionts of Drosophila melanogaster. Front. Cell. Infect. Microbiol. 7, 353.10.3389/fcimb.2017.00353Search in Google Scholar PubMed PubMed Central

Zheng, Z., Omairi-Nasser, A., Li, X., Dong, C., Lin, Y., Haselkorn, R., and Zhao, J. (2017). An amidase is required for proper intercellular communication in the filamentous cyanobacterium Anabaena sp. PCC 7120. Proc. Natl. Acad. Sci. U.S.A. 114, E1405–E1412.10.1073/pnas.1621424114Search in Google Scholar PubMed PubMed Central


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2018-0389).


Received: 2018-10-01
Accepted: 2019-06-29
Published Online: 2019-07-11
Published in Print: 2020-02-25

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 7.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2018-0389/html
Scroll to top button