Home Cysteine, glutathione and a new genetic code: biochemical adaptations of the primordial cells that spread into open water and survived biospheric oxygenation
Article
Licensed
Unlicensed Requires Authentication

Cysteine, glutathione and a new genetic code: biochemical adaptations of the primordial cells that spread into open water and survived biospheric oxygenation

  • Bernd Moosmann EMAIL logo , Mario Schindeldecker and Parvana Hajieva
Published/Copyright: July 18, 2019

Abstract

Life most likely developed under hyperthermic and anaerobic conditions in close vicinity to a stable geochemical source of energy. Epitomizing this conception, the first cells may have arisen in submarine hydrothermal vents in the middle of a gradient established by the hot and alkaline hydrothermal fluid and the cooler and more acidic water of the ocean. To enable their escape from this energy-providing gradient layer, the early cells must have overcome a whole series of obstacles. Beyond the loss of their energy source, the early cells had to adapt to a loss of external iron-sulfur catalysis as well as to a formidable temperature drop. The developed solutions to these two problems seem to have followed the principle of maximum parsimony: Cysteine was introduced into the genetic code to anchor iron-sulfur clusters, and fatty acid unsaturation was installed to maintain lipid bilayer viscosity. Unfortunately, both solutions turned out to be detrimental when the biosphere became more oxidizing after the evolution of oxygenic photosynthesis. To render cysteine thiol groups and fatty acid unsaturation compatible with life under oxygen, numerous counter-adaptations were required including the advent of glutathione and the addition of the four latest amino acids (methionine, tyrosine, tryptophan, selenocysteine) to the genetic code. In view of the continued diversification of derived antioxidant mechanisms, it appears that modern life still struggles with the initially developed strategies to escape from its hydrothermal birthplace. Only archaea may have found a more durable solution by entirely exchanging their lipid bilayer components and rigorously restricting cysteine usage.

Acknowledgments

The authors would like to thank William F. Martin for providing original figure files from Martin and Russell, 2003, one of which was used in the preparation of Figure 1.

References

Allocati, N., Federici, L., Masulli, M., and Di Ilio, C. (2012). Distribution of glutathione transferases in Gram-positive bacteria and Archaea. Biochimie 94, 588–596.10.1016/j.biochi.2011.09.008Search in Google Scholar

Arai, N., Yoshimoto, Y., Yasuoka, K., and Ebisuzaki, T. (2016). Self-assembly behaviours of primitive and modern lipid membrane solutions: a coarse-grained molecular simulation study. Phys. Chem. Chem. Phys. 18, 19426–19432.10.1039/C6CP02380KSearch in Google Scholar

Arenas, F.A., Díaz, W.A., Leal, C.A., Pérez-Donoso, J.M., Imlay, J.A., and Vásquez, C.C. (2010). The Escherichia coli btuE gene, encodes a glutathione peroxidase that is induced under oxidative stress conditions. Biochem. Biophys. Res. Commun. 398, 690–694.10.1016/j.bbrc.2010.07.002Search in Google Scholar

Baross, J.A. and Hoffman, S.E. (1985). Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Orig. Life Evol. Biosph. 15, 327–345.10.1007/BF01808177Search in Google Scholar

Bechinger, B. (2001). Membrane insertion and orientation of polyalanine peptides: a (15)N solid-state NMR spectroscopy investigation. Biophys. J. 81, 2251–2256.10.1016/S0006-3495(01)75872-9Search in Google Scholar

Beckman, K.B. and Ames, B.N. (1998). The free radical theory of aging matures. Physiol. Rev. 78, 547–581.10.1152/physrev.1998.78.2.547Search in Google Scholar

Bender, A., Hajieva, P., and Moosmann, B. (2008). Adaptive antioxidant methionine accumulation in respiratory chain complexes explains the use of a deviant genetic code in mitochondria. Proc. Natl. Acad. Sci. U.S.A. 105, 16496–16501.10.1073/pnas.0802779105Search in Google Scholar

Bisby, R.H., Ahmed, S., and Cundall, R.B. (1984). Repair of amino acid radicals by a vitamin E analogue. Biochem. Biophys. Res. Commun. 119, 245–251.10.1016/0006-291X(84)91644-9Search in Google Scholar

Brettel, K. and Byrdin, M. (2010). Reaction mechanisms of DNA photolyase. Curr. Opin. Struct. Biol. 20, 693–701.10.1016/j.sbi.2010.07.003Search in Google Scholar PubMed

Bridges, H.R., Bill, E., and Hirst, J. (2012). Mössbauer spectroscopy on respiratory complex I: the iron-sulfur cluster ensemble in the NADH-reduced enzyme is partially oxidized. Biochemistry 51, 149–158.10.1021/bi201644xSearch in Google Scholar PubMed PubMed Central

Brochier-Armanet, C., Gribaldo, S., and Forterre, P. (2012). Spotlight on the Thaumarchaeota. ISME J. 6, 227–230.10.1038/ismej.2011.145Search in Google Scholar

Broderick, J.B., Duffus, B.R., Duschene, K.S., and Shepard, E.M. (2014). Radical S-adenosylmethionine enzymes. Chem. Rev. 114, 4229–4317.10.1021/cr4004709Search in Google Scholar

Brot, N. and Weissbach, H. (1983). Biochemistry and physiological role of methionine sulfoxide residues in proteins. Arch. Biochem. Biophys. 223, 271–281.10.1016/0003-9861(83)90592-1Search in Google Scholar

Buettner, C., Harney, J.W., and Berry, M.J. (1999). The Caenorhabditis elegans homologue of thioredoxin reductase contains a selenocysteine insertion sequence (SECIS) element that differs from mammalian SECIS elements but directs selenocysteine incorporation. J. Biol. Chem. 274, 21598–21602.10.1074/jbc.274.31.21598Search in Google Scholar PubMed

Burton, G.W. and Ingold, K.U. (1981). Autoxidation of biological molecules. 1. Antioxidant activity of vitamin E and related chain-breaking phenolic antioxidants in vitro. J. Am. Chem. Soc. 103, 6472–6477.10.1021/ja00411a035Search in Google Scholar

Cardona, T. (2019). Thinking twice about the evolution of photosynthesis. Open Biol. 9, 180246.10.1098/rsob.180246Search in Google Scholar PubMed PubMed Central

Cardona, T., Sánchez-Baracaldo, P., Rutherford, A.W., and Larkum, A.W. (2019). Early Archean origin of Photosystem II. Geobiology 17, 127–150.10.1111/gbi.12322Search in Google Scholar PubMed PubMed Central

Cavalier-Smith, T. (2001). Obcells as proto-organisms: membrane heredity, lithophosphorylation, and the origins of the genetic code, the first cells, and photosynthesis. J. Mol. Evol. 53, 555–595.10.1007/s002390010245Search in Google Scholar PubMed

Cavalier-Smith, T. (2006a). Cell evolution and Earth history: stasis and revolution. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361, 969–1006.10.1098/rstb.2006.1842Search in Google Scholar PubMed PubMed Central

Cavalier-Smith, T. (2006b). Rooting the tree of life by transition analyses. Biol. Direct 1, 19.10.1186/1745-6150-1-19Search in Google Scholar PubMed PubMed Central

Cha, M.K., Kim, W.C., Lim, C.J., Kim, K., and Kim, I.H. (2004). Escherichia coli periplasmic thiol peroxidase acts as lipid hydroperoxide peroxidase and the principal antioxidative function during anaerobic growth. J. Biol. Chem. 279, 8769–8778.10.1074/jbc.M312388200Search in Google Scholar

Cobbett, C.S. (2000). Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr. Opin. Plant Biol. 3, 211–216.10.1016/S1369-5266(00)00066-2Search in Google Scholar

Collinson, E.J. and Grant, C.M. (2003). Role of yeast glutaredoxins as glutathione S-transferases. J. Biol. Chem. 278, 22492–22497.10.1074/jbc.M301387200Search in Google Scholar

Copley, S.D. and Dhillon, J.K. (2002). Lateral gene transfer and parallel evolution in the history of glutathione biosynthesis genes. Genome Biol. 3, 25.10.1186/gb-2002-3-5-research0025Search in Google Scholar

Cronan, J.E. and Gelmann, E.P. (1973). An estimate of the minimum amount of unsaturated fatty acid required for growth of Escherichia coli. J. Biol. Chem. 248, 1188–1195.10.1016/S0021-9258(19)44280-4Search in Google Scholar

Damer, B. and Deamer, D. (2015). Coupled phases and combinatorial selection in fluctuating hydrothermal pools: a scenario to guide experimental approaches to the origin of cellular life. Life (Basel) 5, 872–887.10.3390/life5010872Search in Google Scholar PubMed PubMed Central

Darimont, B. and Sterner, R. (1994). Sequence, assembly and evolution of a primordial ferredoxin from Thermotoga maritima. EMBO J. 13, 1772–1781.10.1002/j.1460-2075.1994.tb06445.xSearch in Google Scholar PubMed PubMed Central

Davies, M.J. (2016). Protein oxidation and peroxidation. Biochem. J. 473, 805–825.10.1042/BJ20151227Search in Google Scholar PubMed PubMed Central

Dayer, R., Fischer, B.B., Eggen, R.I., and Lemaire, S.D. (2008). The peroxiredoxin and glutathione peroxidase families in Chlamydomonas reinhardtii. Genetics 179, 41–57.10.1534/genetics.107.086041Search in Google Scholar PubMed PubMed Central

Deamer, D.W. and Pashley, R.M. (1989). Amphiphilic components of the Murchison carbonaceous chondrite: surface properties and membrane formation. Orig. Life Evol. Biosph. 19, 21–38.10.1007/BF01808285Search in Google Scholar PubMed

De Giacomo, A.J., Schindeldecker, M., Behl, C., Hajieva, P., and Moosmann, B. (2013). Toxicity of intramembrane thiols in vivo. Free Radic. Biol. Med. 65, S141.10.1016/j.freeradbiomed.2013.10.750Search in Google Scholar

De Mendoza, D. and Cronan, J.E. (1983). Thermal regulation of membrane lipid fluidity in bacteria. Trends Biochem. Sci. 8, 49–52.10.1016/0968-0004(83)90388-2Search in Google Scholar

Delong, E.F. and Yayanos, A.A. (1986). Biochemical function and ecological significance of novel bacterial lipids in deep-sea procaryotes. Appl. Environ. Microbiol. 51, 730–737.10.1128/aem.51.4.730-737.1986Search in Google Scholar PubMed PubMed Central

Deponte, M. (2013). Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim. Biophys. Acta 1830, 3217–3266.10.1016/j.bbagen.2012.09.018Search in Google Scholar PubMed

Domazou, A.S., Koppenol, W.H., and Gebicki, J.M. (2009). Efficient repair of protein radicals by ascorbate. Free Radic. Biol. Med. 46, 1049–1057.10.1016/j.freeradbiomed.2009.01.001Search in Google Scholar PubMed

Elling, F.J., Becker, K.W., Könneke, M., Schröder, J.M., Kellermann, M.Y., Thomm, M., and Hinrichs, K.U. (2016). Respiratory quinones in archaea: phylogenetic distribution and application as biomarkers in the marine environment. Environ. Microbiol. 18, 692–707.10.1111/1462-2920.13086Search in Google Scholar PubMed

Fahey, R.C. (2013). Glutathione analogs in prokaryotes. Biochim. Biophys. Acta 1830, 3182–3198.10.1016/j.bbagen.2012.10.006Search in Google Scholar PubMed

Fahey, R.C., Brown, W.C., Adams, W.B., and Worsham, M.B. (1978). Occurrence of glutathione in bacteria. J. Bacteriol. 133, 1126–1129.10.1128/jb.133.3.1126-1129.1978Search in Google Scholar PubMed PubMed Central

Fichtner, M., Voigt, K., and Schuster, S. (2017). The tip and hidden part of the iceberg: proteinogenic and non-proteinogenic aliphatic amino acids. Biochim. Biophys. Acta Gen. Subj. 1861, 3258–3269.10.1016/j.bbagen.2016.08.008Search in Google Scholar PubMed

Forterre, P. (2013). The common ancestor of archaea and eukarya was not an archaeon. Archaea 2013, 372396.10.1155/2013/372396Search in Google Scholar PubMed PubMed Central

Friedmann Angeli, J.P. and Conrad, M. (2018). Selenium and GPX4, a vital symbiosis. Free Radic. Biol. Med. 127, 153–159.10.1016/j.freeradbiomed.2018.03.001Search in Google Scholar

Gaber, A., Tamoi, M., Takeda, T., Nakano, Y., and Shigeoka, S. (2001). NADPH-dependent glutathione peroxidase-like proteins (Gpx-1, Gpx-2) reduce unsaturated fatty acid hydroperoxides in Synechocystis PCC 6803. FEBS Lett. 499, 32–36.10.1016/S0014-5793(01)02517-0Search in Google Scholar

Gest, N., Gautier, H., and Stevens, R. (2013). Ascorbate as seen through plant evolution: the rise of a successful molecule? J. Exp. Bot. 64, 33–53.10.1093/jxb/ers297Search in Google Scholar

Gibney, B.R., Mulholland, S.E., Rabanal, F., and Dutton, P.L. (1996). Ferredoxin and ferredoxin-heme maquettes. Proc. Natl. Acad. Sci. U.S.A. 93, 15041–15046.10.1073/pnas.93.26.15041Search in Google Scholar

Giles, G.I. and Jacob, C. (2002). Reactive sulfur species: an emerging concept in oxidative stress. Biol. Chem. 383, 375–388.10.1515/BC.2002.042Search in Google Scholar

Giles, N.M., Watts, A.B., Giles, G.I., Fry, F.H., Littlechild, J.A., and Jacob, C. (2003). Metal and redox modulation of cysteine protein function. Chem. Biol. 10, 677–693.10.1016/S1074-5521(03)00174-1Search in Google Scholar

Glaser, T., Hedman, B., Hodgson, K.O., and Solomon, E.I. (2000). Ligand K-edge X-ray absorption spectroscopy: a direct probe of ligand-metal covalency. Acc. Chem. Res. 33, 859–868.10.1021/ar990125cSearch in Google Scholar PubMed

Good, M. and Vasák, M. (1986). Iron(II)-substituted metallothionein: evidence for the existence of iron-thiolate clusters. Biochemistry 25, 8353–8356.10.1021/bi00374a003Search in Google Scholar PubMed

Granold, M., Hajieva, P., Tosa, M.I., Irimie, F.D., and Moosmann, B. (2018). Modern diversification of the amino acid repertoire driven by oxygen. Proc. Natl. Acad. Sci. U.S.A. 115, 41–46.10.1073/pnas.1717100115Search in Google Scholar PubMed PubMed Central

Grau, R. and de Mendoza, D. (1993). Regulation of the synthesis of unsaturated fatty acids by growth temperature in Bacillus subtilis. Mol. Microbiol. 8, 535–542.10.1111/j.1365-2958.1993.tb01598.xSearch in Google Scholar PubMed

Gray, H.B. and Winkler, J.R. (2015). Hole hopping through tyrosine/tryptophan chains protects proteins from oxidative damage. Proc. Natl. Acad. Sci. U.S.A. 112, 10920–10925.10.1073/pnas.1512704112Search in Google Scholar PubMed PubMed Central

Gribaldo, S. and Brochier-Armanet, C. (2006). The origin and evolution of archaea: a state of the art. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361, 1007–1022.10.1098/rstb.2006.1841Search in Google Scholar PubMed PubMed Central

Gromer, S., Johansson, L., Bauer, H., Arscott, L.D., Rauch, S., Ballou, D.P., Williams, C.H., Schirmer, R.H., and Arnér, E.S. (2003). Active sites of thioredoxin reductases: why selenoproteins? Proc. Natl. Acad. Sci. U.S.A. 100, 12618–12623.10.1073/pnas.2134510100Search in Google Scholar PubMed PubMed Central

Hajieva, P., Mocko, J.B., Moosmann, B., and Behl, C. (2009). Novel imine antioxidants at low nanomolar concentrations protect dopaminergic cells from oxidative neurotoxicity. J. Neurochem. 110, 118–132.10.1111/j.1471-4159.2009.06114.xSearch in Google Scholar PubMed

Hajieva, P., Bayatti, N., Granold, M., Behl, C., and Moosmann, B. (2015). Membrane protein oxidation determines neuronal degeneration. J. Neurochem. 133, 352–367.10.1111/jnc.12987Search in Google Scholar PubMed

Hall, D.O., Lumsden, J., and Tel-Or, E. (1977). Iron-sulfur proteins and superoxide dismutases in the evolution of photosynthetic bacteria and algae. In: Chemical evolution of the early Precambrian, C. Ponnamperuma, ed. (New York, NY: Academic Press), pp. 191–210.10.1016/B978-0-12-561360-6.50026-6Search in Google Scholar

Hammond, E.G. and White, P.J. (2011). A brief history of lipid oxidation. J. Am. Oil Chem. Soc. 88, 891–897.10.1007/s11746-011-1761-8Search in Google Scholar

Hanczyc, M.M. and Monnard, P.A. (2017). Primordial membranes: more than simple container boundaries. Curr. Opin. Chem. Biol. 40, 78–86.10.1016/j.cbpa.2017.07.009Search in Google Scholar PubMed

Hanschmann, E.M., Godoy, J.R., Berndt, C., Hudemann, C., and Lillig, C.H. (2013). Thioredoxins, glutaredoxins, and peroxiredoxins – molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid. Redox Signal. 19, 1539–1605.10.1089/ars.2012.4599Search in Google Scholar PubMed PubMed Central

Hargreaves, W.R., Mulvihill, S.J., and Deamer, D.W. (1977). Synthesis of phospholipids and membranes in prebiotic conditions. Nature 266, 78–80.10.1038/266078a0Search in Google Scholar PubMed

Hill, K.E., Motley, A.K., Li, X., May, J.M., and Burk, R.F. (2001). Combined selenium and vitamin E deficiency causes fatal myopathy in guinea pigs. J. Nutr. 131, 1798–1802.10.1093/jn/131.6.1798Search in Google Scholar

Holland, H.D. (2006). The oxygenation of the atmosphere and oceans. Phil. Trans. R. Soc. Lond. B Biol. Sci. 361, 903–915.10.1098/rstb.2006.1838Search in Google Scholar

Hoppe, A., Pandelia, M.E., Gärtner, W., and Lubitz, W. (2011). [Fe₄S₄]- and [Fe₃S₄]-cluster formation in synthetic peptides. Biochim. Biophys. Acta 1807, 1414–1422.10.1016/j.bbabio.2011.06.017Search in Google Scholar

Hren, M.T., Tice, M.M., and Chamberlain, C.P. (2009). Oxygen and hydrogen isotope evidence for a temperate climate 3.42 billion years ago. Nature 462, 205–208.10.1038/nature08518Search in Google Scholar

Huber, C. and Wächtershäuser, G. (1997). Activated acetic acid by carbon fixation on (Fe,Ni)S under primordial conditions. Science 276, 245–247.10.1126/science.276.5310.245Search in Google Scholar

Hulbert, A.J., Pamplona, R., Buffenstein, R., and Buttemer, W.A. (2007). Life and death: metabolic rate, membrane composition, and life span of animals. Physiol. Rev. 87, 1175–1213.10.1152/physrev.00047.2006Search in Google Scholar

Imai, H., Hirao, F., Sakamoto, T., Sekine, K., Mizukura, Y., Saito, M., Kitamoto, T., Hayasaka, M., Hanaoka, K., and Nakagawa, Y. (2003). Early embryonic lethality caused by targeted disruption of the mouse PHGPx gene. Biochem. Biophys. Res. Commun. 305, 278–286.10.1016/S0006-291X(03)00734-4Search in Google Scholar

Imlay, J.A. (2006). Iron-sulphur clusters and the problem with oxygen. Mol. Microbiol. 59, 1073–1082.10.1111/j.1365-2958.2006.05028.xSearch in Google Scholar PubMed

Isani, G. and Carpenè, E. (2014). Metallothioneins, unconventional proteins from unconventional animals: a long journey from nematodes to mammals. Biomolecules 4, 435–457.10.3390/biom4020435Search in Google Scholar PubMed PubMed Central

Johnson, D.C., Dean, D.R., Smith, A.D., and Johnson, M.K. (2005). Structure, function, and formation of biological iron-sulfur clusters. Annu. Rev. Biochem. 74, 247–281.10.1146/annurev.biochem.74.082803.133518Search in Google Scholar PubMed

Jomova, K., Baros, S., and Valko, M. (2012). Redox active metal-induced oxidative stress in biological systems. Transit. Metal Chem. 37, 127–134.10.1007/s11243-012-9583-6Search in Google Scholar

Jones, T.E., Ribas de Pouplana, L., and Alexander, R.W. (2013). Evidence for late resolution of the aux codon box in evolution. J. Biol. Chem. 288, 19625–19632.10.1074/jbc.M112.449249Search in Google Scholar

Kaulmann, U. and Hertweck, C. (2002). Biosynthesis of polyunsaturated fatty acids by polyketide synthases. Angew. Chem. Int. Ed. 41, 1866–1869.10.1002/1521-3773(20020603)41:11<1866::AID-ANIE1866>3.0.CO;2-3Search in Google Scholar

Koga, Y. (2012). Thermal adaptation of the archaeal and bacterial lipid membranes. Archaea 2012, 789652.10.1155/2012/789652Search in Google Scholar

Koga, Y. (2014). From promiscuity to the lipid divide: on the evolution of distinct membranes in archaea and bacteria. J. Mol. Evol. 78, 234–242.10.1007/s00239-014-9613-4Search in Google Scholar

Koga, Y. and Morii, H. (2007). Biosynthesis of ether-type polar lipids in archaea and evolutionary considerations. Microbiol. Mol. Biol. Rev. 71, 97–120.10.1128/MMBR.00033-06Search in Google Scholar

Kromkamp, J. (1987). Formation and functional significance of storage products in cyanobacteria. N. Z. J. Mar. Freshw. Res. 21, 457–465.10.1080/00288330.1987.9516241Search in Google Scholar

Kunath, S. and Moosmann, B. (2019). What is the rate-limiting step towards aging? Chemical reaction kinetics might reconcile contradictory observations in experimental aging research Geroscience in press. DOI: 10.1007/s11357-019-00058-2.10.1007/s11357-019-00058-2Search in Google Scholar

Labunskyy, V.M., Hatfield, D.L., and Gladyshev, V.N. (2014). Selenoproteins: molecular pathways and physiological roles. Physiol. Rev. 94, 739–777.10.1152/physrev.00039.2013Search in Google Scholar

Levine, R.L., Mosoni, L., Berlett, B.S., and Stadtman, E.R. (1996). Methionine residues as endogenous antioxidants in proteins. Proc. Natl. Acad. Sci. U.S.A. 93, 15036–15040.10.1073/pnas.93.26.15036Search in Google Scholar

Li, M., Liang, D., Pu, F., Ma, F., Hou, C., and Lu, T. (2009). Ascorbate levels and the activity of key enzymes in ascorbate biosynthesis and recycling in the leaves of 22 Chinese persimmon cultivars. Sci. Hortic. 120, 250–256.10.1016/j.scienta.2008.10.010Search in Google Scholar

Lim, J.M., Kim, G., and Levine, R.L. (2019). Methionine in proteins: it’s not just for protein initiation anymore. Neurochem. Res. 44, 247–257.10.1007/s11064-017-2460-0Search in Google Scholar

Liu, C.C. and Schultz, P.G. (2010). Adding new chemistries to the genetic code. Annu. Rev. Biochem. 79, 413–444.10.1146/annurev.biochem.052308.105824Search in Google Scholar

Lombard, J., López-García, P., and Moreira, D. (2012). The early evolution of lipid membranes and the three domains of life. Nat. Rev. Microbiol. 10, 507–515.10.1038/nrmicro2815Search in Google Scholar

Longo, L.M. and Blaber, M. (2012). Protein design at the interface of the pre-biotic and biotic worlds. Arch. Biochem. Biophys. 526, 16–21.10.1016/j.abb.2012.06.009Search in Google Scholar

Longo, L.M., Tenorio, C.A., Kumru, O.S., Middaugh, C.R., and Blaber, M. (2015). A single aromatic core mutation converts a designed ‘primitive’ protein from halophile to mesophile folding. Protein Sci. 24, 27–37.10.1002/pro.2580Search in Google Scholar

Los, D.A. and Murata, N. (1998). Structure and expression of fatty acid desaturases. Biochim. Biophys. Acta 1394, 3–15.10.1016/S0005-2760(98)00091-5Search in Google Scholar

Lu, J. and Holmgren, A. (2014). The thioredoxin antioxidant system. Free Radic. Biol. Med. 66, 75–87.10.1016/j.freeradbiomed.2013.07.036Search in Google Scholar PubMed

Lu, Z., Sethu, R., and Imlay, J.A. (2018). Endogenous superoxide is a key effector of the oxygen sensitivity of a model obligate anaerobe. Proc. Natl. Acad. Sci. U.S.A. 115, E3266–E3275.10.1073/pnas.1800120115Search in Google Scholar PubMed PubMed Central

Maeda, H. and DellaPenna, D. (2007). Tocopherol functions in photosynthetic organisms. Curr. Opin. Plant Biol. 10, 260–265.10.1016/j.pbi.2007.04.006Search in Google Scholar PubMed

Mailloux, R.J. and Willmore, W.G. (2014). S-glutathionylation reactions in mitochondrial function and disease. Front. Cell Dev. Biol. 2, 68.10.3389/fcell.2014.00068Search in Google Scholar PubMed PubMed Central

Maiorino, M., Conrad, M., and Ursini, F. (2018). GPx4, lipid peroxidation, and cell death: discoveries, rediscoveries, and open issues. Antioxid. Redox Signal. 29, 61–74.10.1089/ars.2017.7115Search in Google Scholar PubMed

Manchester, L.C., Coto-Montes, A., Boga, J.A., Andersen, L.P., Zhou, Z., Galano, A., Vriend, J., Tan, D.X., and Reiter, R.J. (2015). Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J. Pineal Res. 59, 403–419.10.1111/jpi.12267Search in Google Scholar PubMed

Mansy, S.S. and Szostak, J.W. (2008). Thermostability of model protocell membranes. Proc. Natl. Acad. Sci. U.S.A. 105, 13351–13355.10.1073/pnas.0805086105Search in Google Scholar PubMed PubMed Central

Marino, S.M. and Gladyshev, V.N. (2010). Cysteine function governs its conservation and degeneration and restricts its utilization on protein surfaces. J. Mol. Biol. 404, 902–916.10.1016/j.jmb.2010.09.027Search in Google Scholar PubMed PubMed Central

Marino, S.M. and Gladyshev, V.N. (2012). Analysis and functional prediction of reactive cysteine residues. J. Biol. Chem. 287, 4419–4425.10.1074/jbc.R111.275578Search in Google Scholar PubMed PubMed Central

Marqusee, S., Robbins, V.H., and Baldwin, R.L. (1989). Unusually stable helix formation in short alanine-based peptides. Proc. Natl. Acad. Sci. U.S.A. 86, 5286–5290.10.1073/pnas.86.14.5286Search in Google Scholar PubMed PubMed Central

Martin, W. and Russell, M.J. (2003). On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358, 59–83.10.1098/rstb.2002.1183Search in Google Scholar PubMed PubMed Central

Matsumi, R., Atomi, H., Driessen, A.J., and van der Oost, J. (2011). Isoprenoid biosynthesis in archaea – biochemical and evolutionary implications. Res. Microbiol. 162, 39–52.10.1016/j.resmic.2010.10.003Search in Google Scholar PubMed

May, J.M., Mendiratta, S., Hill, K.E., and Burk, R.F. (1997). Reduction of dehydroascorbate to ascorbate by the selenoenzyme thioredoxin reductase. J. Biol. Chem. 272, 22607–22610.10.1074/jbc.272.36.22607Search in Google Scholar PubMed

Mayer, C., Schreiber, U., and Dávila, M.J. (2017). Selection of prebiotic molecules in amphiphilic environments. Life (Basel) 7, 3.10.3390/life7010003Search in Google Scholar PubMed PubMed Central

Mecozzi, S., West, A.P., and Dougherty, D.A. (1996). Cation-pi interactions in aromatics of biological and medicinal interest: electrostatic potential surfaces as a useful qualitative guide. Proc. Natl. Acad. Sci. U.S.A. 93, 10566–10571.10.1073/pnas.93.20.10566Search in Google Scholar PubMed PubMed Central

Minnihan, E.C., Nocera, D.G., and Stubbe, J. (2013). Reversible, long-range radical transfer in E. coli class Ia ribonucleotide reductase. Acc. Chem. Res. 46, 2524–2535.10.1021/ar4000407Search in Google Scholar PubMed PubMed Central

Mishra, S. and Imlay, J. (2012). Why do bacteria use so many enzymes to scavenge hydrogen peroxide? Arch. Biochem. Biophys. 525, 145–160.10.1016/j.abb.2012.04.014Search in Google Scholar PubMed PubMed Central

Molińska nee Sosińska, E., Klimczak, U., Komaszyło, J., Derewiaka, D., Obiedziński, M., Kania, M., Danikiewicz, W., and Swiezewska, E. (2015). Double bond stereochemistry influences the susceptibility of short-chain isoprenoids and polyprenols to decomposition by thermo-oxidation. Lipids 50, 359–370.10.1007/s11745-015-4013-0Search in Google Scholar PubMed PubMed Central

Moosmann, B. (2011). Respiratory chain cysteine and methionine usage indicate a causal role for thiyl radicals in aging. Exp. Gerontol. 46, 164–169.10.1016/j.exger.2010.08.034Search in Google Scholar PubMed

Moosmann, B. and Behl, C. (2000). Cytoprotective antioxidant function of tyrosine and tryptophan residues in transmembrane proteins. Eur. J. Biochem. 267, 5687–5692.10.1046/j.1432-1327.2000.01658.xSearch in Google Scholar PubMed

Moosmann, B. and Behl, C. (2002). Secretory peptide hormones are biochemical antioxidants: Structure-activity relationship. Mol. Pharmacol. 61, 260–268.10.1124/mol.61.2.260Search in Google Scholar PubMed

Moosmann, B. and Behl, C. (2008). Mitochondrially encoded cysteine predicts animal lifespan. Aging Cell 7, 32–46.10.1111/j.1474-9726.2007.00349.xSearch in Google Scholar PubMed

Mulder, D.W., Shepard, E.M., Meuser, J.E., Joshi, N., King, P.W., Posewitz, M.C., Broderick, J.B., and Peters, J.W. (2011). Insights into [FeFe]-hydrogenase structure, mechanism, and maturation. Structure 19, 1038–1052.10.1016/j.str.2011.06.008Search in Google Scholar PubMed

Mulkidjanian, A.Y., Galperin, M.Y., and Koonin, E.V. (2009). Co-evolution of primordial membranes and membrane proteins. Trends Biochem. Sci. 34, 206–215.10.1016/j.tibs.2009.01.005Search in Google Scholar

Mulkidjanian, A.Y., Bychkov, A.Y., Dibrova, D.V., Galperin, M.Y., and Koonin, E.V. (2012). Origin of first cells at terrestrial, anoxic geothermal fields. Proc. Natl. Acad. Sci. U.S.A. 109, E821–E830.10.1073/pnas.1117774109Search in Google Scholar

Munday, R. (1989). Toxicity of thiols and disulphides: involvement of free-radical species. Free Radic. Biol. Med. 7, 659–673.10.1016/0891-5849(89)90147-0Search in Google Scholar

Murata, N. and Wada, H. (1995). Acyl-lipid desaturases and their importance in the tolerance and acclimatization to cold of cyanobacteria. Biochem. J. 308, 1–8.10.1042/bj3080001Search in Google Scholar PubMed PubMed Central

Mushegian, A.R. and Koonin, E.V. (1996). A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc. Natl. Acad. Sci. U.S.A. 93, 10268–10273.10.1073/pnas.93.19.10268Search in Google Scholar PubMed PubMed Central

Namani, T. and Deamer, D.W. (2008). Stability of model membranes in extreme environments. Orig. Life Evol. Biosph. 38, 329–341.10.1007/s11084-008-9131-8Search in Google Scholar PubMed

Nauser, T., Pelling, J., and Schöneich, C. (2004). Thiyl radical reaction with amino acid side chains: rate constants for hydrogen transfer and relevance for posttranslational protein modification. Chem. Res. Toxicol. 17, 1323–1328.10.1021/tx049856ySearch in Google Scholar PubMed

Nauser, T., Steinmann, D., and Koppenol, W.H. (2012). Why do proteins use selenocysteine instead of cysteine? Amino Acids 42, 39–44.10.1007/s00726-010-0602-7Search in Google Scholar PubMed

Nauser, T., Steinmann, D., Grassi, G., and Koppenol, W.H. (2014). Why selenocysteine replaces cysteine in thioredoxin reductase: a radical hypothesis. Biochemistry 53, 5017–5022.10.1021/bi5003376Search in Google Scholar PubMed

Nauser, T., Koppenol, W.H., and Schöneich, C. (2015). Protein thiyl radical reactions and product formation: a kinetic simulation. Free Radic. Biol. Med. 80, 158–163.10.1016/j.freeradbiomed.2014.12.006Search in Google Scholar PubMed PubMed Central

Nishimura, Y. and Eguchi, T. (2006). Biosynthesis of archaeal membrane lipids: digeranylgeranylglycerophospholipid reductase of the thermoacidophilic archaeon Thermoplasma acidophilum. J. Biochem. 139, 1073–1081.10.1093/jb/mvj118Search in Google Scholar PubMed

Novoselov, S.V., Rao, M., Onoshko, N.V., Zhi, H., Kryukov, G.V., Xiang, Y., Weeks, D.P., Hatfield, D.L., and Gladyshev, V.N. (2002). Selenoproteins and selenocysteine insertion system in the model plant cell system, Chlamydomonas reinhardtii. EMBO J. 21, 3681–3693.10.1093/emboj/cdf372Search in Google Scholar PubMed PubMed Central

Nowicka, B. and Kruk, J. (2010). Occurrence, biosynthesis and function of isoprenoid quinones. Biochim. Biophys. Acta 1797, 1587–1605.10.1016/j.bbabio.2010.06.007Search in Google Scholar PubMed

O’Donoghue, P., Sethi, A., Woese, C.R., and Luthey-Schulten, Z.A. (2005). The evolutionary history of Cys-tRNACys formation. Proc. Natl. Acad. Sci. U.S.A. 102, 19003–19008.10.1073/pnas.0509617102Search in Google Scholar PubMed PubMed Central

Oger, P.M. and Cario, A. (2013). Adaptation of the membrane in archaea. Biophys. Chem. 183, 42–56.10.1016/j.bpc.2013.06.020Search in Google Scholar PubMed

Ohlow, M.J., Granold, M., Schreckenberger, M., and Moosmann, B. (2012). Is the chromanol head group of vitamin E nature’s final truth on chain-breaking antioxidants? FEBS Lett. 586, 711–716.10.1016/j.febslet.2012.01.022Search in Google Scholar PubMed

Orino, K., Lehman, L., Tsuji, Y., Ayaki, H., Torti, S.V., and Torti, F.M. (2001). Ferritin and the response to oxidative stress. Biochem. J. 357, 241–247.10.1042/bj3570241Search in Google Scholar

Pandelia, M.E., Nitschke, W., Infossi, P., Giudici-Orticoni, M.T., Bill, E., and Lubitz, W. (2011). Characterization of a unique [FeS] cluster in the electron transfer chain of the oxygen tolerant [NiFe] hydrogenase from Aquifex aeolicus. Proc. Natl. Acad. Sci. U.S.A. 108, 6097–6102.10.1073/pnas.1100610108Search in Google Scholar PubMed PubMed Central

Polan, C.E., McNeill, J.J., and Tove, S.B. (1964). Biohydrogenation of unsaturated fatty acids by rumen bacteria. J. Bacteriol. 88, 1056–1064.10.1128/jb.88.4.1056-1064.1964Search in Google Scholar PubMed PubMed Central

Qi, W., Li, J., Chain, C.Y., Pasquevich, G.A., Pasquevich, A.F., and Cowan, J.A. (2012). Glutathione complexed Fe-S centers. J. Am. Chem. Soc. 134, 10745–10748.10.1021/ja302186jSearch in Google Scholar PubMed PubMed Central

Ren, M., Feng, X., Huang, Y., Wang, H., Hu, Z., Clingenpeel, S., Swan, B.K., Fonseca, M.M., Posada, D., Stepanauskas, R., et al. (2019). Phylogenomics suggests oxygen availability as a driving force in Thaumarchaeota evolution. ISME J. in press. DOI: 10.1038/s41396-019-0418-8.10.1038/s41396-019-0418-8Search in Google Scholar

Rich, P.R. and Maréchal, A. (2010). The mitochondrial respiratory chain. Essays Biochem. 47, 1–23.10.1042/bse0470001Search in Google Scholar

Richardson, L.L. and Castenholz, R.W. (1987). Enhanced survival of the cyanobacterium Oscillatoria terebriformis in darkness under anaerobic conditions. Appl. Environ. Microbiol. 53, 2151–2158.10.1128/aem.53.9.2151-2158.1987Search in Google Scholar

Rolfe, R.D., Hentges, D.J., Campbell, B.J., and Barrett, J.T. (1978). Factors related to the oxygen tolerance of anaerobic bacteria. Appl. Environ. Microbiol. 36, 306–313.10.1128/aem.36.2.306-313.1978Search in Google Scholar

Rother, M. and Krzycki, J.A. (2010). Selenocysteine, pyrrolysine, and the unique energy metabolism of methanogenic archaea. Archaea 2010, 453642.10.1155/2010/453642Search in Google Scholar

Rouhier, N., Lemaire, S.D., and Jacquot, J.P. (2008). The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation. Annu. Rev. Plant Biol. 59, 143–166.10.1146/annurev.arplant.59.032607.092811Search in Google Scholar

Rushdi, A.I. and Simoneit, B.R. (2001). Lipid formation by aqueous Fischer-Tropsch-type synthesis over a temperature range of 100 to 400 degrees C. Orig. Life Evol. Biosph. 31, 103–118.10.1023/A:1006702503954Search in Google Scholar

Russell, N.J. (1984). Mechanisms of thermal adaptation in bacteria: blueprints for survival. Trends Biochem. Sci. 9, 108–112.10.1016/0968-0004(84)90106-3Search in Google Scholar

Russell, M.J. and Hall, A.J. (1997). The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J. Geol. Soc. London 154, 377–402.10.1144/gsjgs.154.3.0377Search in Google Scholar PubMed

Russell, M.J. and Arndt, N.T. (2005). Geodynamic and metabolic cycles in the Hadean. Biogeosciences 2, 97–111.10.5194/bg-2-97-2005Search in Google Scholar

Sakamoto, T. and Murata, N. (2002). Regulation of the desaturation of fatty acids and its role in tolerance to cold and salt stress. Curr. Opin. Microbiol. 5, 208–210.10.1016/S1369-5274(02)00306-5Search in Google Scholar

Sarcinelli, C., Fiorentino, G., Pizzo, E., Bartolucci, S., and Limauro, D. (2016). Discovering antioxidant molecules in the archaea domain: peroxiredoxin Bcp1 from Sulfolobus solfataricus protects H9c2 cardiomyoblasts from oxidative stress. Archaea 2016, 7424870.10.1155/2016/7424870Search in Google Scholar PubMed PubMed Central

Sattler, S.E., Cahoon, E.B., Coughlan, S.J., and DellaPenna, D. (2003). Characterization of tocopherol cyclases from higher plants and cyanobacteria. Evolutionary implications for tocopherol synthesis and function. Plant Physiol. 132, 2184–2195.10.1104/pp.103.024257Search in Google Scholar PubMed PubMed Central

Schäfer, G., Engelhard, M., and Müller, V. (1999). Bioenergetics of the archaea. Microbiol. Mol. Biol. Rev. 63, 570–620.10.1128/MMBR.63.3.570-620.1999Search in Google Scholar PubMed PubMed Central

Schindeldecker, M. and Moosmann, B. (2015). Protein-borne methionine residues as structural antioxidants in mitochondria. Amino Acids 47, 1421–1432.10.1007/s00726-015-1955-8Search in Google Scholar PubMed

Schindeldecker, M., Stark, M., Behl, C., and Moosmann, B. (2011). Differential cysteine depletion in respiratory chain complexes enables the distinction of longevity from aerobicity. Mech. Ageing Dev. 132, 171–179.10.1016/j.mad.2011.03.002Search in Google Scholar PubMed

Schöneich, C. (2005). Methionine oxidation by reactive oxygen species: reaction mechanisms and relevance to Alzheimer’s disease. Biochim. Biophys. Acta 1703, 111–119.10.1016/j.bbapap.2004.09.009Search in Google Scholar PubMed

Schreiber, U., Locker-Grütjen, O., and Mayer, C. (2012). Hypothesis: origin of life in deep-reaching tectonic faults. Orig. Life Evol. Biosph. 42, 47–54.10.1007/s11084-012-9267-4Search in Google Scholar PubMed

Scintilla, S., Bonfio, C., Belmonte, L., Forlin, M., Rossetto, D., Li, J., Cowan, J.A., Galliani, A., Arnesano, F., Assfalg, M., et al. (2016). Duplications of an iron-sulphur tripeptide leads to the formation of a protoferredoxin. Chem. Commun. 52, 13456–13459.10.1039/C6CC07912ASearch in Google Scholar

Sevier, C.S. and Kaiser, C.A. (2002). Formation and transfer of disulphide bonds in living cells. Nat. Rev. Mol. Cell Biol. 3, 836–847.10.1038/nrm954Search in Google Scholar PubMed

Shen, L.R., Lai, C.Q., Feng, X., Parnell, L.D., Wan, J.B., Wang, J.D., Li, D., Ordovas, J.M., and Kang, J.X. (2010). Drosophila lacks C20 and C22 PUFAs. J. Lipid Res. 51, 2985–2992.10.1194/jlr.M008524Search in Google Scholar

Sies, H. (1993). Strategies of antioxidant defense. Eur. J. Biochem. 215, 213–219.10.1007/978-3-642-78757-7_9Search in Google Scholar

Siliakus, M.F., van der Oost, J., and Kengen, S.W. (2017). Adaptations of archaeal and bacterial membranes to variations in temperature, pH and pressure. Extremophiles 21, 651–670.10.1007/s00792-017-0939-xSearch in Google Scholar

Silvius, J.R. (1982). Thermotropic phase transitions of pure lipids in model membranes and their modifications by membrane proteins. In: Lipid-protein interactions, P.C. Jost and O.H. Griffith, eds. (New York, NY: John Wiley & Sons), pp. 239–281.Search in Google Scholar

Sipos, K., Lange, H., Fekete, Z., Ullmann, P., Lill, R., and Kispal, G. (2002). Maturation of cytosolic iron-sulfur proteins requires glutathione. J. Biol. Chem. 277, 26944–26949.10.1074/jbc.M200677200Search in Google Scholar

Sousa, F.L., Thiergart, T., Landan, G., Nelson-Sathi, S., Pereira, I.A., Allen, J.F., Lane, N., and Martin, W.F. (2013). Early bioenergetic evolution. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20130088.10.1098/rstb.2013.0088Search in Google Scholar

Sperling, P., Ternes, P., Zank, T.K., and Heinz, E. (2003). The evolution of desaturases. Prostaglandins Leukot. Essent. Fatty Acids 68, 73–95.10.1016/S0952-3278(02)00258-2Search in Google Scholar

Stal, L.J. and Moezelaar, R. (1997). Fermentation in cyanobacteria. FEMS Microbiol. Rev. 21, 179–211.10.1016/S0168-6445(97)00056-9Search in Google Scholar

Tohge, T., Watanabe, M., Hoefgen, R., and Fernie, A.R. (2013). The evolution of phenylpropanoid metabolism in the green lineage. Crit. Rev. Biochem. Mol. Biol. 48, 123–152.10.3109/10409238.2012.758083Search in Google Scholar

Traber, M.G. and Atkinson, J. (2007). Vitamin E, antioxidant and nothing more. Free Radic. Biol. Med. 43, 4–15.10.1016/j.freeradbiomed.2007.03.024Search in Google Scholar

Trifonov, E.N. (2000). Consensus temporal order of amino acids and evolution of the triplet code. Gene 261, 139–151.10.1016/S0378-1119(00)00476-5Search in Google Scholar

Trifonov, E.N. (2009). The origin of the genetic code and of the earliest oligopeptides. Res. Microbiol. 160, 481–486.10.1016/j.resmic.2009.05.004Search in Google Scholar PubMed

Uy, R. and Wold, F. (1977). Posttranslational covalent modification of proteins. Science 198, 890–896.10.1126/science.337487Search in Google Scholar PubMed

Valley, C.C., Cembran, A., Perlmutter, J.D., Lewis, A.K., Labello, N.P., Gao, J., and Sachs, J.N. (2012). The methionine-aromatic motif plays a unique role in stabilizing protein structure. J. Biol. Chem. 287, 34979–34991.10.1074/jbc.M112.374504Search in Google Scholar PubMed PubMed Central

Vieira-Silva, S. and Rocha, E.P. (2008). An assessment of the impacts of molecular oxygen on the evolution of proteomes. Mol. Biol. Evol. 25, 1931–1942.10.1093/molbev/msn142Search in Google Scholar PubMed PubMed Central

Vlassov, A. (2005). How was membrane permeability produced in an RNA world? Orig. Life Evol. Biosph. 35, 135–149.10.1007/s11084-005-8901-9Search in Google Scholar PubMed

Wächtershäuser, G. (1988). Before enzymes and templates: theory of surface metabolism. Microbiol. Rev. 52, 452–484.10.1128/mr.52.4.452-484.1988Search in Google Scholar PubMed PubMed Central

Weiss, M.C., Sousa, F.L., Mrnjavac, N., Neukirchen, S., Roettger, M., Nelson-Sathi, S., and Martin, W.F. (2016). The physiology and habitat of the last universal common ancestor. Nat. Microbiol. 1, 16116.10.1038/nmicrobiol.2016.116Search in Google Scholar PubMed

Weissbach, H., Resnick, L., and Brot, N. (2005). Methionine sulfoxide reductases: history and cellular role in protecting against oxidative damage. Biochim. Biophys. Acta 1703, 203–212.10.1016/j.bbapap.2004.10.004Search in Google Scholar PubMed

Welte, C. and Deppenmeier, U. (2014). Bioenergetics and anaerobic respiratory chains of aceticlastic methanogens. Biochim. Biophys. Acta 1837, 1130–1147.10.1016/j.bbabio.2013.12.002Search in Google Scholar PubMed

Winkler, J.R. and Gray, H.B. (2015). Electron flow through biological molecules: does hole hopping protect proteins from oxidative damage? Q. Rev. Biophys. 48, 411–420.10.1017/S0033583515000062Search in Google Scholar PubMed PubMed Central

Winterbourn, C.C. (1995). Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicol. Lett. 82–83, 969–974.10.1016/0378-4274(95)03532-XSearch in Google Scholar

Wong, H.S., Dighe, P.A., Mezera, V., Monternier, P.A., and Brand, M.D. (2017). Production of superoxide and hydrogen peroxide from specific mitochondrial sites under different bioenergetic conditions. J. Biol. Chem. 292, 16804–16809.10.1074/jbc.R117.789271Search in Google Scholar

Wunderlich, B., Leirer, C., Idzko, A.L., Keyser, U.F., Wixforth, A., Myles, V.M., Heimburg, T., and Schneider, M.F. (2009). Phase-state dependent current fluctuations in pure lipid membranes. Biophys. J. 96, 4592–4597.10.1016/j.bpj.2009.02.053Search in Google Scholar

Xu, X.M., Turanov, A.A., Carlson, B.A., Yoo, M.H., Everley, R.A., Nandakumar, R., Sorokina, I., Gygi, S.P., Gladyshev, V.N., and Hatfield, D.L. (2010). Targeted insertion of cysteine by decoding UGA codons with mammalian selenocysteine machinery. Proc. Natl. Acad. Sci. U.S.A. 107, 21430–21434.10.1073/pnas.1009947107Search in Google Scholar

Yang, X.L., Otero, F.J., Skene, R.J., McRee, D.E., Schimmel, P., and Ribas de Pouplana, L. (2003). Crystal structures that suggest late development of genetic code components for differentiating aromatic side chains. Proc. Natl. Acad. Sci. U.S.A. 100, 15376–15380.10.1073/pnas.2136794100Search in Google Scholar

Yant, L.J., Ran, Q., Rao, L., Van Remmen, H., Shibatani, T., Belter, J.G., Motta, L., Richardson, A., and Prolla, T.A. (2003). The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults. Free Radic. Biol. Med. 34, 496–502.10.1016/S0891-5849(02)01360-6Search in Google Scholar

Yin, H., Xu, L., and Porter, N.A. (2011). Free radical lipid peroxidation: mechanisms and analysis. Chem. Rev. 111, 5944–5972.10.1021/cr200084zSearch in Google Scholar PubMed

Yuen, G.U. and Kvenvolden, K.A. (1973). Monocarboxylic acids in Murray and Murchison carbonaceous meteorites. Nature 246, 301–303.10.1038/246301a0Search in Google Scholar

Zimniak, P. (2011). Relationship of electrophilic stress to aging. Free Radic. Biol. Med. 51, 1087–1105.10.1016/j.freeradbiomed.2011.05.039Search in Google Scholar PubMed PubMed Central

Received: 2019-04-21
Accepted: 2019-07-08
Published Online: 2019-07-18
Published in Print: 2020-02-25

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 14.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2019-0232/html
Scroll to top button