Abstract
Collagens form complex networks in the extracellular space that provide structural support and signaling cues to cells. Network-forming type IV collagens are the key structural components of basement membranes. In this review, we discuss how the complexity of type IV collagen networks is established, focusing on collagen α chain selection in type IV collagen protomer and network formation; covalent crosslinking in type IV collagen network stabilization; and the differences between solid-state type IV collagen in the extracellular matrix and soluble type IV collagen fragments. We further discuss how complex type IV collagen networks exert their physiological and pathological functions through cell surface integrin and nonintegrin receptors.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 81430067
Funding statement: The work was supported by the National Natural Science Foundation of China (Funder Id: 10.13039/501100001809, 81430067) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA12010100). G.G. is a scholar of the SA-SIBS Scholarship Program.
References
Anazco, C., Lopez-Jimenez, A.J., Rafi, M., Vega-Montoto, L., Zhang, M.Z., Hudson, B.G., and Vanacore, R.M. (2016). Lysyl oxidase-like-2 cross-links collagen IV of glomerular basement membrane. J. Biol. Chem. 291, 25999–26012.10.1074/jbc.M116.738856Suche in Google Scholar PubMed PubMed Central
Basak, T., Vega-Montoto, L., Zimmerman, L.J., Tabb, D.L., Hudson, B.G., and Vanacore, R.M. (2016). Comprehensive characterization of glycosylation and hydroxylation of basement membrane collagen IV by high-resolution mass spectrometry. J. Proteome. Res. 15, 245–258.10.1021/acs.jproteome.5b00767Suche in Google Scholar PubMed PubMed Central
Bhave, G., Colon, S., and Ferrell, N. (2017). The sulfilimine cross-link of collagen IV contributes to kidney tubular basement membrane stiffness. Am. J. Physiol. Renal. Physiol. 313, F596–F602.10.1152/ajprenal.00096.2017Suche in Google Scholar PubMed PubMed Central
Bhave, G., Cummings, C.F., Vanacore, R.M., Kumagai-Cresse, C., Ero-Tolliver, I.A., Rafi, M., Kang, J.S., Pedchenko, V., Fessler, L.I., Fessler, J.H., et al. (2012). Peroxidasin forms sulfilimine chemical bonds using hypohalous acids in tissue genesis. Nat. Chem. Biol. 8, 784–790.10.1038/nchembio.1038Suche in Google Scholar PubMed PubMed Central
Bignon, M., Pichol-Thievend, C., Hardouin, J., Malbouyres, M., Brechot, N., Nasciutti, L., Barret, A., Teillon, J., Guillon, E., Etienne, E., et al. (2011). Lysyl oxidase-like protein-2 regulates sprouting angiogenesis and type IV collagen assembly in the endothelial basement membrane. Blood 118, 3979–3989.10.1182/blood-2010-10-313296Suche in Google Scholar PubMed
Borza, D.B., Bondar, O., Ninomiya, Y., Sado, Y., Naito, I., Todd, P., and Hudson, B.G. (2001). The NC1 domain of collagen IV encodes a novel network composed of the a1, a2, a5, and a6 chains in smooth muscle basement membranes. J. Biol. Chem. 276, 28532–28540.10.1074/jbc.M103690200Suche in Google Scholar PubMed
Boutaud, A., Borza, D.B., Bondar, O., Gunwar, S., Netzer, K.O., Singh, N., Ninomiya, Y., Sado, Y., Noelken, M.E., and Hudson, B.G. (2000). Type IV collagen of the glomerular basement membrane. Evidence that the chain specificity of network assembly is encoded by the noncollagenous NC1 domains. J. Biol. Chem. 275, 30716–30724.10.1074/jbc.M004569200Suche in Google Scholar PubMed
Burnier, J.V., Wang, N., Michel, R.P., Hassanain, M., Li, S., Lu, Y., Metrakos, P., Antecka, E., Burnier, M.N., Ponton, A., et al. (2011). Type IV collagen-initiated signals provide survival and growth cues required for liver metastasis. Oncogene 30, 3766–3783.10.1038/onc.2011.89Suche in Google Scholar PubMed
Butkowski, R.J., Wieslander, J., Kleppel, M., Michael, A.F., and Fish, A.J. (1989). Basement membrane collagen in the kidney: regional localization of novel chains related to collagen IV. Kidney Int. 35, 1195–1202.10.1038/ki.1989.110Suche in Google Scholar PubMed
Chioran, A., Duncan, S., Catalano, A., Brown, T.J., and Ringuette, M.J. (2017). Collagen IV trafficking: The inside-out and beyond story. Dev. Biol. 431, 124–133.10.1016/j.ydbio.2017.09.037Suche in Google Scholar PubMed
Colorado, P.C., Torre, A., Kamphaus, G., Maeshima, Y., Hopfer, H., Takahashi, K., Volk, R., Zamborsky, E.D., Herman, S., Sarkar, P.K., et al. (2000). Anti-angiogenic cues from vascular basement membrane collagen. Cancer Res. 60, 2520–2526.Suche in Google Scholar
Cosgrove, D., Meehan, D.T., Grunkemeyer, J.A., Kornak, J.M., Sayers, R., Hunter, W.J., and Samuelson, G.C. (1996). Collagen COL4A3 knockout: a mouse model for autosomal Alport syndrome. Genes. Dev. 10, 2981–2992.10.1101/gad.10.23.2981Suche in Google Scholar PubMed
Crockett, D.K., Pont-Kingdon, G., Gedge, F., Sumner, K., Seamons, R., and Lyon, E. (2010). The Alport syndrome COL4A5 variant database. Hum. Mutat. 31, E1652–1657.10.1002/humu.21312Suche in Google Scholar PubMed
Cummings, C.F., Pedchenko, V., Brown, K.L., Colon, S., Rafi, M., Jones-Paris, C., Pokydeshava, E., Liu, M., Pastor-Pareja, J.C., Stothers, C., et al. (2016). Extracellular chloride signals collagen IV network assembly during basement membrane formation. J. Cell Biol. 213, 479–494.10.1083/jcb.201510065Suche in Google Scholar PubMed PubMed Central
Dolz, R., Engel, J., and Kuhn, K. (1988). Folding of collagen IV. Eur. J. Biochem. 178, 357–366.10.1111/j.1432-1033.1988.tb14458.xSuche in Google Scholar PubMed
Fidler, A.L., Vanacore, R.M., Chetyrkin, S.V., Pedchenko, V.K., Bhave, G., Yin, V.P., Stothers, C.L., Rose, K.L., McDonald, W.H., Clark, T.A., et al. (2014). A unique covalent bond in basement membrane is a primordial innovation for tissue evolution. Proc. Natl. Acad. Sci. USA 111, 331–336.10.1073/pnas.1318499111Suche in Google Scholar PubMed PubMed Central
Fu, H.L., Valiathan, R.R., Arkwright, R., Sohail, A., Mihai, C., Kumarasiri, M., Mahasenan, K.V., Mobashery, S., Huang, P., Agarwal, G., et al. (2013). Discoidin domain receptors: unique receptor tyrosine kinases in collagen-mediated signaling. J. Biol. Chem. 288, 7430–7437.10.1074/jbc.R112.444158Suche in Google Scholar PubMed PubMed Central
Glanville, R.W., Qian, R.Q., Siebold, B., Risteli, J., and Kuhn, K. (1985). Amino acid sequence of the N-terminal aggregation and cross-linking region (7S domain) of the a1 (IV) chain of human basement membrane collagen. Eur. J. Biochem. 152, 213–219.10.1111/j.1432-1033.1985.tb09186.xSuche in Google Scholar PubMed
Gould, D.B., Phalan, F.C., Breedveld, G.J., van Mil, S.E., Smith, R.S., Schimenti, J.C., Aguglia, U., van der Knaap, M.S., Heutink, P., and John, S.W. (2005). Mutations in Col4a1 cause perinatal cerebral hemorrhage and porencephaly. Science 308, 1167–1171.10.1126/science.1109418Suche in Google Scholar PubMed
Guilak, F., Cohen, D.M., Estes, B.T., Gimble, J.M., Liedtke, W., and Chen, C.S. (2009). Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5, 17–26.10.1016/j.stem.2009.06.016Suche in Google Scholar PubMed PubMed Central
Gunwar, S., Ballester, F., Noelken, M.E., Sado, Y., Ninomiya, Y., and Hudson, B.G. (1998). Glomerular basement membrane. Identification of a novel disulfide-cross-linked network of a3, a4, and a5 chains of type IV collagen and its implications for the pathogenesis of Alport syndrome. J. Biol. Chem. 273, 8767–8775.10.1074/jbc.273.15.8767Suche in Google Scholar PubMed
Hamano, Y., Zeisberg, M., Sugimoto, H., Lively, J.C., Maeshima, Y., Yang, C., Hynes, R.O., Werb, Z., Sudhakar, A., and Kalluri, R. (2003). Physiological levels of tumstatin, a fragment of collagen IV a3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via aVb3 integrin. Cancer Cell 3, 589–601.10.1016/S1535-6108(03)00133-8Suche in Google Scholar
Herbst, T.J., McCarthy, J.B., Tsilibary, E.C., and Furcht, L.T. (1988). Differential effects of laminin, intact type IV collagen, and specific domains of type IV collagen on endothelial cell adhesion and migration. J. Cell Biol. 106, 1365–1373.10.1083/jcb.106.4.1365Suche in Google Scholar PubMed PubMed Central
Horejs, C.M. (2016). Basement membrane fragments in the context of the epithelial-to-mesenchymal transition. Eur. J. Cell Biol. 95, 427–440.10.1016/j.ejcb.2016.06.002Suche in Google Scholar PubMed
Hudson, B.G., Tryggvason, K., Sundaramoorthy, M., and Neilson, E.G. (2003). Alport’s syndrome, Goodpasture’s syndrome, and type IV collagen. N. Engl. J. Med. 348, 2543–2556.10.1056/NEJMra022296Suche in Google Scholar PubMed
Hynes, R.O. and Naba, A. (2012). Overview of the matrisome - an inventory of extracellular matrix constituents and functions. Cold Spring Harb. Perspect Biol. 4, a004903.10.1101/cshperspect.a004903Suche in Google Scholar PubMed PubMed Central
Ingber, D. and Folkman, J. (1988). Inhibition of angiogenesis through modulation of collagen metabolism. Lab. Invest. 59, 44–51.Suche in Google Scholar
Insua-Rodriguez, J. and Oskarsson, T. (2016). The extracellular matrix in breast cancer. Adv. Drug. Deliv. Rev. 97, 41–55.10.1016/j.addr.2015.12.017Suche in Google Scholar PubMed
Kalluri, R. (2003). Basement membranes: structure, assembly and role in tumour angiogenesis. Nat. Rev. Cancer 3, 422–433.10.1038/nrc1094Suche in Google Scholar PubMed
Kalluri, R., Shield, C.F., Todd, P., Hudson, B.G., and Neilson, E.G. (1997). Isoform switching of type IV collagen is developmentally arrested in X-linked Alport syndrome leading to increased susceptibility of renal basement membranes to endoproteolysis. J. Clin. Invest. 99, 2470–2478.10.1172/JCI119431Suche in Google Scholar PubMed PubMed Central
Kamphaus, G.D., Colorado, P.C., Panka, D.J., Hopfer, H., Ramchandran, R., Torre, A., Maeshima, Y., Mier, J.W., Sukhatme, V.P., and Kalluri, R. (2000). Canstatin, a novel matrix-derived inhibitor of angiogenesis and tumor growth. J. Biol. Chem. 275, 1209–1215.10.1074/jbc.275.2.1209Suche in Google Scholar PubMed
Kang, J.S., Colon, S., Hellmark, T., Sado, Y., Hudson, B.G., and Borza, D.B. (2008). Identification of noncollagenous sites encoding specific interactions and quaternary assembly of a3 a4 a5(IV) collagen: implications for Alport gene therapy. J. Biol. Chem. 283, 35070–35077.10.1074/jbc.M806396200Suche in Google Scholar PubMed PubMed Central
Khoshnoodi, J., Pedchenko, V., and Hudson, B.G. (2008). Mammalian collagen IV. Microsc. Res. Tech. 71, 357–370.10.1002/jemt.20564Suche in Google Scholar
Khoshnoodi, J., Sigmundsson, K., Cartailler, J.P., Bondar, O., Sundaramoorthy, M., and Hudson, B.G. (2006). Mechanism of chain selection in the assembly of collagen IV: a prominent role for the a2 chain. J. Biol. Chem. 281, 6058–6069.10.1074/jbc.M506555200Suche in Google Scholar
Langeveld, J.P., Wieslander, J., Timoneda, J., McKinney, P., Butkowski, R.J., Wisdom, B.J., Jr., and Hudson, B.G. (1988). Structural heterogeneity of the noncollagenous domain of basement membrane collagen. J. Biol. Chem. 263, 10481–10488.10.1016/S0021-9258(19)81541-7Suche in Google Scholar
Maeshima, Y., Sudhakar, A., Lively, J.C., Ueki, K., Kharbanda, S., Kahn, C.R., Sonenberg, N., Hynes, R.O., and Kalluri, R. (2002). Tumstatin, an endothelial cell-specific inhibitor of protein synthesis. Science 295, 140–143.10.1126/science.1065298Suche in Google Scholar PubMed
Makareeva, E., Han, S., Vera, J.C., Sackett, D.L., Holmbeck, K., Phillips, C.L., Visse, R., Nagase, H., and Leikin, S. (2010). Carcinomas contain a matrix metalloproteinase-resistant isoform of type I collagen exerting selective support to invasion. Cancer Res. 70, 4366–4374.10.1158/0008-5472.CAN-09-4057Suche in Google Scholar PubMed PubMed Central
Marutani, T., Yamamoto, A., Nagai, N., Kubota, H., and Nagata, K. (2004). Accumulation of type IV collagen in dilated ER leads to apoptosis in Hsp47-knockout mouse embryos via induction of CHOP. J. Cell Sci. 117, 5913–5922.10.1242/jcs.01514Suche in Google Scholar PubMed
Mayorca-Guiliani, A.E., Madsen, C.D., Cox, T.R., Horton, E.R., Venning, F.A., and Erler, J.T. (2017). ISDoT: in situ decellularization of tissues for high-resolution imaging and proteomic analysis of native extracellular matrix. Nat. Med. 23, 890–898.10.1038/nm.4352Suche in Google Scholar PubMed
McCall, A.S., Cummings, C.F., Bhave, G., Vanacore, R., Page-McCaw, A., and Hudson, B.G. (2014). Bromine is an essential trace element for assembly of collagen IV scaffolds in tissue development and architecture. Cell 157, 1380–1392.10.1016/j.cell.2014.05.009Suche in Google Scholar PubMed PubMed Central
Miner, J.H. and Sanes, J.R. (1996). Molecular and functional defects in kidneys of mice lacking collagen a3(IV): implications for Alport syndrome. J. Cell Biol. 135, 1403–1413.10.1083/jcb.135.5.1403Suche in Google Scholar PubMed PubMed Central
Naba, A., Clauser, K.R., Lamar, J.M., Carr, S.A., and Hynes, R.O. (2014). Extracellular matrix signatures of human mammary carcinoma identify novel metastasis promoters. eLife 3, e01308.10.7554/eLife.01308Suche in Google Scholar PubMed PubMed Central
Naba, A., Pearce, O.M.T., Del Rosario, A., Ma, D., Ding, H., Rajeeve, V., Cutillas, P.R., Balkwill, F.R., and Hynes, R.O. (2017). Characterization of the extracellular matrix of normal and diseased tissues using proteomics. J. Proteome. Res. 16, 3083–3091.10.1021/acs.jproteome.7b00191Suche in Google Scholar PubMed PubMed Central
Nelson, R.E., Fessler, L.I., Takagi, Y., Blumberg, B., Keene, D.R., Olson, P.F., Parker, C.G., and Fessler, J.H. (1994). Peroxidasin: a novel enzyme-matrix protein of Drosophila development. EMBO J. 13, 3438–3447.10.1002/j.1460-2075.1994.tb06649.xSuche in Google Scholar PubMed PubMed Central
Noel, A., De Pauw-Gillet, M.C., Purnell, G., Nusgens, B., Lapiere, C.M., and Foidart, J.M. (1993). Enhancement of tumorigenicity of human breast adenocarcinoma cells in nude mice by matrigel and fibroblasts. Br. J. Cancer 68, 909–915.10.1038/bjc.1993.453Suche in Google Scholar PubMed PubMed Central
Omachi, K., Kamura, M., Teramoto, K., Kojima, H., Yokota, T., Kaseda, S., Kuwazuru, J., Fukuda, R., Koyama, K., Matsuyama, S., et al. (2018). A split-luciferase-based trimer formation assay as a high-throughput screening platform for therapeutics in Alport syndrome. Cell Chem. Biol. 25, 634–643 e634.10.1016/j.chembiol.2018.02.003Suche in Google Scholar PubMed
Paavola, K.J., Sidik, H., Zuchero, J.B., Eckart, M., and Talbot, W.S. (2014). Type IV collagen is an activating ligand for the adhesion G protein-coupled receptor GPR126. Sci. Signal. 7, ra76.10.1126/scisignal.2005347Suche in Google Scholar PubMed PubMed Central
Peterfi, Z., Donko, A., Orient, A., Sum, A., Prokai, A., Molnar, B., Vereb, Z., Rajnavolgyi, E., Kovacs, K.J., Muller, V., et al. (2009). Peroxidasin is secreted and incorporated into the extracellular matrix of myofibroblasts and fibrotic kidney. Am. J. Pathol. 175, 725–735.10.2353/ajpath.2009.080693Suche in Google Scholar PubMed PubMed Central
Pickup, M.W., Mouw, J.K., and Weaver, V.M. (2014). The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. 15, 1243–1253.10.15252/embr.201439246Suche in Google Scholar PubMed PubMed Central
Poschl, E., Schlotzer-Schrehardt, U., Brachvogel, B., Saito, K., Ninomiya, Y., and Mayer, U. (2004). Collagen IV is essential for basement membrane stability but dispensable for initiation of its assembly during early development. Development 131, 1619–1628.10.1242/dev.01037Suche in Google Scholar PubMed
Pozzi, A., Yurchenco, P.D., and Iozzo, R.V. (2017). The nature and biology of basement membranes. Matrix. Biol. 57–58, 1–11.10.1016/j.matbio.2016.12.009Suche in Google Scholar PubMed PubMed Central
Qian, R.G. and Glanville, R.W. (1984). Separation and characterization of two polypeptide chains from the 7S cross-linking domain of basement-membrane (type IV) collagen. Biochem. J. 222, 447–452.10.1042/bj2220447Suche in Google Scholar PubMed PubMed Central
Randles, M.J., Humphries, M.J., and Lennon, R. (2017). Proteomic definitions of basement membrane composition in health and disease. Matrix. Biol. 57–58, 12–28.10.1016/j.matbio.2016.08.006Suche in Google Scholar
Rheault, M.N., Kren, S.M., Thielen, B.K., Mesa, H.A., Crosson, J.T., Thomas, W., Sado, Y., Kashtan, C.E., and Segal, Y. (2004). Mouse model of X-linked Alport syndrome. J. Am. Soc. Nephrol. 15, 1466–1474.10.1097/01.ASN.0000130562.90255.8FSuche in Google Scholar
Ricard-Blum, S. (2011). The collagen family. Cold Spring Harb Perspect Biol 3, a004978.10.1101/cshperspect.a004978Suche in Google Scholar
Robertson, W.E., Rose, K.L., Hudson, B.G., and Vanacore, R.M. (2014). Supramolecular organization of the a121-a565 collagen IV network. J. Biol. Chem. 289, 25601–25610.10.1074/jbc.M114.571844Suche in Google Scholar
Rowe, R.G. and Weiss, S.J. (2008). Breaching the basement membrane: who, when and how? Trends Cell Biol. 18, 560–574.10.1016/j.tcb.2008.08.007Suche in Google Scholar
Sethi, T., Rintoul, R.C., Moore, S.M., MacKinnon, A.C., Salter, D., Choo, C., Chilvers, E.R., Dransfield, I., Donnelly, S.C., Strieter, R., et al. (1999). Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo. Nat. Med. 5, 662–668.10.1038/9511Suche in Google Scholar
Shrivastava, A., Radziejewski, C., Campbell, E., Kovac, L., McGlynn, M., Ryan, T.E., Davis, S., Goldfarb, M.P., Glass, D.J., Lemke, G., et al. (1997). An orphan receptor tyrosine kinase family whose members serve as nonintegrin collagen receptors. Mol. Cell 1, 25–34.10.1016/S1097-2765(00)80004-0Suche in Google Scholar
Sudhakar, A., Nyberg, P., Keshamouni, V.G., Mannam, A.P., Li, J., Sugimoto, H., Cosgrove, D., and Kalluri, R. (2005). Human a1 type IV collagen NC1 domain exhibits distinct antiangiogenic activity mediated by a1b1 integrin. J. Clin. Invest. 115, 2801–2810.10.1172/JCI24813Suche in Google Scholar PubMed PubMed Central
Suleiman, H., Zhang, L., Roth, R., Heuser, J.E., Miner, J.H., Shaw, A.S., and Dani, A. (2013). Nanoscale protein architecture of the kidney glomerular basement membrane. eLife 2, e01149.10.7554/eLife.01149Suche in Google Scholar PubMed PubMed Central
Sund, M., Xie, L., and Kalluri, R. (2004). The contribution of vascular basement membranes and extracellular matrix to the mechanics of tumor angiogenesis. APMIS 112, 450–462.10.1111/j.1600-0463.2004.t01-1-apm11207-0806.xSuche in Google Scholar PubMed
Sundaramoorthy, M., Meiyappan, M., Todd, P., and Hudson, B.G. (2002). Crystal structure of NC1 domains. Structural basis for type IV collagen assembly in basement membranes. J. Biol. Chem. 277, 31142–31153.10.1074/jbc.M201740200Suche in Google Scholar
Than, M.E., Henrich, S., Huber, R., Ries, A., Mann, K., Kuhn, K., Timpl, R., Bourenkov, G.P., Bartunik, H.D., and Bode, W. (2002). The 1.9-Å crystal structure of the noncollagenous (NC1) domain of human placenta collagen IV shows stabilization via a novel type of covalent Met-Lys cross-link. Proc. Natl. Acad. Sci. USA 99, 6607–6612.10.1073/pnas.062183499Suche in Google Scholar
Timpl, R., Wiedemann, H., van Delden, V., Furthmayr, H., and Kuhn, K. (1981). A network model for the organization of type IV collagen molecules in basement membranes. Eur. J. Biochem. 120, 203–211.10.1111/j.1432-1033.1981.tb05690.xSuche in Google Scholar
Vanacore, R., Ham, A.J., Voehler, M., Sanders, C.R., Conrads, T.P., Veenstra, T.D., Sharpless, K.B., Dawson, P.E., and Hudson, B.G. (2009). A sulfilimine bond identified in collagen IV. Science 325, 1230–1234.10.1126/science.1176811Suche in Google Scholar
Vanacore, R.M., Ham, A.J., Cartailler, J.P., Sundaramoorthy, M., Todd, P., Pedchenko, V., Sado, Y., Borza, D.B., and Hudson, B.G. (2008). A role for collagen IV cross-links in conferring immune privilege to the Goodpasture autoantigen: structural basis for the crypticity of B cell epitopes. J. Biol. Chem. 283, 22737–22748.10.1074/jbc.M803451200Suche in Google Scholar
Vandenberg, P., Kern, A., Ries, A., Luckenbill-Edds, L., Mann, K., and Kuhn, K. (1991). Characterization of a type IV collagen major cell binding site with affinity to the a1b1 and the a2b1 integrins. J. Cell Biol. 113, 1475–1483.10.1083/jcb.113.6.1475Suche in Google Scholar
Vogel, W., Gish, G.D., Alves, F., and Pawson, T. (1997). The discoidin domain receptor tyrosine kinases are activated by collagen. Mol. Cell 1, 13–23.10.1016/S1097-2765(00)80003-9Suche in Google Scholar
Wang, X., Harris, R.E., Bayston, L.J., and Ashe, H.L. (2008). Type IV collagens regulate BMP signalling in Drosophila. Nature 455, 72–77.10.1038/nature07214Suche in Google Scholar PubMed
Xiao, Q., Jiang, Y., Liu, Q., Yue, J., Liu, C., Zhao, X., Qiao, Y., Ji, H., Chen, J., and Ge, G. (2015). Minor type IV collagen a5 chain promotes cancer progression through discoidin domain receptor-1. PLoS Genet. 11, e1005249.10.1371/journal.pgen.1005249Suche in Google Scholar PubMed PubMed Central
Xu, H., Raynal, N., Stathopoulos, S., Myllyharju, J., Farndale, R.W., and Leitinger, B. (2011). Collagen binding specificity of the discoidin domain receptors: binding sites on collagens II and III and molecular determinants for collagen IV recognition by DDR1. Matrix. Biol. 30, 16–26.10.1016/j.matbio.2010.10.004Suche in Google Scholar PubMed PubMed Central
Zhou, J., Ding, M., Zhao, Z., and Reeders, S.T. (1994). Complete primary structure of the sixth chain of human basement membrane collagen, a6(IV). Isolation of the cDNAs for a6(IV) and comparison with five other type IV collagen chains. J. Biol. Chem. 269, 13193–13199.10.1016/S0021-9258(17)36818-7Suche in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Reviews
- Complexity of type IV collagens: from network assembly to function
- Structural and mechanistic aspects of S-S bonds in the thioredoxin-like family of proteins
- Oxidative stress and antioxidants in the pathophysiology of malignant melanoma
- Research Articles/Short Communications
- Genes and Nucleic Acids
- Dynamic characteristics of the mitochondrial genome in SCNT pigs
- Protein Structure and Function
- Conversion of chenodeoxycholic acid to cholic acid by human CYP8B1
- Molecular Medicine
- The comparative biochemistry of viruses and humans: an evolutionary path towards autoimmunity
- MiR-23a-3p-regulated abnormal acetylation of FOXP3 induces regulatory T cell function defect in Graves’ disease
- Cell Biology and Signaling
- Evidence for a protective role of the CX3CL1/CX3CR1 axis in a model of amyotrophic lateral sclerosis
- LncRNA TINCR/microRNA-107/CD36 regulates cell proliferation and apoptosis in colorectal cancer via PPAR signaling pathway based on bioinformatics analysis
- Regulatory effect of hsa-miR-5590-3P on TGFβ signaling through targeting of TGFβ-R1, TGFβ-R2, SMAD3 and SMAD4 transcripts
Artikel in diesem Heft
- Frontmatter
- Reviews
- Complexity of type IV collagens: from network assembly to function
- Structural and mechanistic aspects of S-S bonds in the thioredoxin-like family of proteins
- Oxidative stress and antioxidants in the pathophysiology of malignant melanoma
- Research Articles/Short Communications
- Genes and Nucleic Acids
- Dynamic characteristics of the mitochondrial genome in SCNT pigs
- Protein Structure and Function
- Conversion of chenodeoxycholic acid to cholic acid by human CYP8B1
- Molecular Medicine
- The comparative biochemistry of viruses and humans: an evolutionary path towards autoimmunity
- MiR-23a-3p-regulated abnormal acetylation of FOXP3 induces regulatory T cell function defect in Graves’ disease
- Cell Biology and Signaling
- Evidence for a protective role of the CX3CL1/CX3CR1 axis in a model of amyotrophic lateral sclerosis
- LncRNA TINCR/microRNA-107/CD36 regulates cell proliferation and apoptosis in colorectal cancer via PPAR signaling pathway based on bioinformatics analysis
- Regulatory effect of hsa-miR-5590-3P on TGFβ signaling through targeting of TGFβ-R1, TGFβ-R2, SMAD3 and SMAD4 transcripts