Abstract
Most animals generated by somatic cell nuclear transfer (SCNT) are heteroplasmic; inheriting mitochondrial genetics from both donor cells and recipient oocytes. However, the mitochondrial genome and functional mitochondrial gene expression in SCNT animals are rarely studied. Here, we report the production of SCNT pigs to study introduction, segregation, persistence and heritability of mitochondrial DNA transfer during the SCNT process. Porcine embryonic fibroblast cells from male and female Xiang pigs were transferred into enucleated oocytes from Yorkshire or Landrace pigs. Ear biopsies and blood samples from SCNT-derived pigs were analyzed to characterize the mitochondrial genome haplotypes and the degree of mtDNA heteroplasmy. Presence of nuclear donor mtDNA was less than 5% or undetectable in ear biopsies and blood samples in the majority of SCNT-derived pigs. Yet, nuclear donor mtDNA abundance in 14 tissues in F0 boars was as high as 95%. Additionally, mtDNA haplotypes influenced mitochondrial respiration capacity in F0 fibroblast cells. Our results indicate that the haplotypes of recipient oocyte mtDNA can influence mitochondrial function. This leads us to hypothesize that subtle developmental influences from SCNT-derived heteroplasmy can be targeted when using donor and recipient mitochondrial populations from breeds of swine with limited evolutionary divergence.
Acknowledgment
This work was supported by the National Key Basic Research Program of China (Grant number: 2014CB138500).
References
Brophy, B., Smolenski, G., Wheeler, T., Wells, D., L’Huillier, P., and Laible, G. (2003). Cloned transgenic cattle produce milk with higher levels of β-casein and κ-casein. Nat. Biotechnol. 21, 157–162.10.1038/nbt783Search in Google Scholar PubMed
Brown, J.R., Beckenbach, A.T., and Smith, M.J. (1993). Intraspecific DNA sequence variation of the mitochondrial control region of white sturgeon (Acipenser transmontanus). Mol. Biol. Evol. 10, 326–341.Search in Google Scholar
Burgstaller, J.P., Schinogl, P., Dinnyes, A., Muller, M., and Steinborn, R. (2007). Mitochondrial DNA heteroplasmy in ovine fetuses and sheep cloned by somatic cell nuclear transfer. BMC Dev. Biol. 7, 141.10.1186/1471-213X-7-141Search in Google Scholar PubMed PubMed Central
Chan, D.C. (2006). Mitochondria: Dynamic organelles in disease, aging, and development. Cell 125, 1241–1252.10.1016/j.cell.2006.06.010Search in Google Scholar PubMed
Edgar, R.C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797.10.1093/nar/gkh340Search in Google Scholar PubMed PubMed Central
Floyd, B.J., Wilkerson, E.M., Veling, M.T., Minogue, C.E., Xia, C., Beebe, E.T., Wrobel, R.L., Cho, H., Kremer, L.S., Alston, C.L., et al. (2016). Mitochondrial protein interaction mapping identifies regulators of respiratory chain function. Mol. Cell 63, 621–632.10.1016/j.molcel.2016.06.033Search in Google Scholar PubMed PubMed Central
Galli, C., Lagutina, I., Duchi, R., Colleoni, S., and Lazzari, G. (2008). Somatic cell nuclear transfer in horses. Reprod. Domes. Anim. 43, 331–337.10.1111/j.1439-0531.2008.01181.xSearch in Google Scholar PubMed
Hammond, E.R., Green, M.P., Shelling, A.N., Berg, M.C., Peek, J.C., and Cree, L.M. (2016). Oocyte mitochondrial deletions and heteroplasmy in a bovine model of ageing and ovarian stimulation. Mol. Hum. Reprod. 22, 261–271.10.1093/molehr/gaw003Search in Google Scholar PubMed
Hiendleder, S., Zakhartchenko, V., Wenigerkind, H., Reichenbach, H.D., Bruggerhoff, K., Prelle, K., Brem, G., Stojkovic, M., and Wolf, E. (2003). Heteroplasmy in bovine fetuses produced by intra- and inter-subspecific somatic cell nuclear transfer: neutral segregation of nuclear donor mitochondrial DNA in various tissues and evidence for recipient cow mitochondria in fetal blood. Biol. Reprod. 68, 159–166.10.1095/biolreprod.102.008201Search in Google Scholar PubMed
Jiao, F., Yan, J.B., Yang, X.Y., Li, H., Wang, Q., Huang, S.Z., Zeng, F., and Zeng, Y.T. (2007). Effect of oocyte mitochondrial DNA haplotype on bovine somatic cell nuclear transfer efficiency. Mol. Reprod. Dev. 74, 1278–1286.10.1002/mrd.20698Search in Google Scholar PubMed
Kannim, S., Thongnoppakhun, W., and Auewarakul, C.U. (2009). Two-round allele specific-polymerase chain reaction: a simple and highly sensitive method for JAK2V617F mutation detection. Clin. Chim. Acta 401, 148–151.10.1016/j.cca.2008.12.010Search in Google Scholar PubMed
Kim, K.I., Lee, J.H., Li, K., Zhang, Y.P., Lee, S.S., Gongora, J., and Moran, C. (2002). Phylogenetic relationships of Asian and European pig breeds determined by mitochondrial DNA D-loop sequence polymorphism. Anim. Genet. 33, 19–25.10.1046/j.1365-2052.2002.00784.xSearch in Google Scholar PubMed
Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874.10.1093/molbev/msw054Search in Google Scholar PubMed PubMed Central
Li, W.H., Wu, C.I., and Luo, C.C. (1984). Nonrandomness of point mutation as reflected in nucleotide substitutions in pseudogenes and its evolutionary implications. J. Mol. Evol. 21, 58–71.10.1007/BF02100628Search in Google Scholar PubMed
Ma, L.B., Yang, L., Hua, S., Cao, J.W., Li, J.X., and Zhang, Y. (2008a). Development in vitro and mitochondrial fate of interspecies cloned embryos. Reprod. Domest. Anim. 43, 279–285.10.1111/j.1439-0531.2007.00891.xSearch in Google Scholar PubMed
Ma, L.B., Yang, L., Zhang, Y., Cao, J.W., Hua, S., and Li, J.X. (2008b). Quantitative analysis of mitochondrial RNA in goat-sheep cloned embryos. Mol. Reprod. Dev. 75, 33–39.10.1002/mrd.20736Search in Google Scholar PubMed
McBride, H.M., Neuspiel, M., and Wasiak, S. (2006). Mitochondria: more than just a powerhouse. Curr. Biol. 16, R551–R560.10.1016/j.cub.2006.06.054Search in Google Scholar PubMed
Park, J., Lai, L., Samuel, M.S., Wax, D., Prather, R.S., and Tian, X. (2015). Disruption of mitochondrion-to-nucleus interaction in deceased cloned piglets. PLoS One 10, e0129378.10.1371/journal.pone.0129378Search in Google Scholar PubMed PubMed Central
Pinkert, C.A., Irwin, M.H., Takeda, K., and Trounce, I.A. (2014). 23 – Modifying Mitochondrial Genetics, Transgenic Animal Technology (3rd Edition). (London: Elsevier), pp. 639–656.10.1016/B978-0-12-410490-7.00023-2Search in Google Scholar
Polejaeva, I.A., Chen, S.H., Vaught, T.D., Page, R.L., Mullins, J., Ball, S., Dai, Y., Boone, J., Walker, S., Ayares, D.L., et al. (2000). Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 407, 86–90.10.1038/35024082Search in Google Scholar PubMed
Qian, L.L., Tang, M.X., Yang, J.Z., Wang, Q.Q., Cai, C.B., Jiang, S.W., Li, H.G., Jiang, K., Gao, P.F., Ma, D.Z., et al. (2015). Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs. Sci. Rep. 5, 13.10.1038/srep14435Search in Google Scholar PubMed PubMed Central
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M.A., and Huelsenbeck, J.P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542.10.1093/sysbio/sys029Search in Google Scholar PubMed PubMed Central
Russell, O. and Turnbull, D. (2014). Mitochondrial DNA disease-molecular insights and potential routes to a cure. Exp. Cell Res. 325, 38–43.10.1016/j.yexcr.2014.03.012Search in Google Scholar PubMed PubMed Central
St John, J.C., Lloyd, R.E.I., Bowles, E.J., Thomas, E.C., and El Shourbagy, S. (2004). The consequences of nuclear transfer for mammalian foetal development and offspring survival. A mitochondrial DNA perspective. Reproduction 127, 631–641.10.1530/rep.1.00138Search in Google Scholar PubMed
St John, J.C., Facucho-Oliveira, J., Jiang, Y., Kelly, R., and Salah, R. (2010). Mitochondrial DNA transmission, replication and inheritance: a journey from the gamete through the embryo and into offspring and embryonic stem cells. Hum. Reprod. Update 16, 488–509.10.1093/humupd/dmq002Search in Google Scholar PubMed
Sutovsky, P., Moreno, R.D., Ramalho-Santos, J., Dominko, T., Simerly, C., and Schatten, G. (1999). Development – Ubiquitin tag for sperm mitochondria. Nature 402, 371–372.10.1038/46466Search in Google Scholar PubMed
Tachibana, M., Sparman, M., Sritanaudomchai, H., Ma, H., Clepper, L., Woodward, J., Li, Y., Ramsey, C., Kolotushkina, O., and Mitalipov, S. (2009). Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature 461, 367–372.10.1038/nature08368Search in Google Scholar PubMed PubMed Central
Takeda, K., Akagi, S., Kaneyama, K., Kojima, T., Takahashi, S., Imai, H., Yamanaka, M., Onishi, A., and Hanada, H. (2003). Proliferation of donor mitochondrial DNA in nuclear transfer calves (Bos taurus) derived from cumulus cells. Mol. Reprod. Dev. 64, 429–437.10.1002/mrd.10279Search in Google Scholar PubMed
Takeda, K., Tasai, M., Iwamoto, M., Akita, T., Tagami, T., Nirasawa, K., Hanada, H., and Onishi, A. (2006). Transmission of mitochondrial DNA in pigs and progeny derived from nuclear transfer of Meishan pig fibroblast cells. Mol. Reprod. Dev. 73, 306–312.10.1002/mrd.20403Search in Google Scholar PubMed
Takeda, K., Kaneyama, K., Tasai, M., Akagi, S., Takahashi, S., Yonai, M., Kojima, T., Onishi, A., Tagami, T., Nirasawa, K., et al. (2008). Characterization of a donor mitochondrial DNA transmission bottleneck in nuclear transfer derived cow lineages. Mol. Reprod. Dev. 75, 759–765.10.1002/mrd.20837Search in Google Scholar PubMed
Takeda, K., Tasai, M., Akagi, S., Matsukawa, K., Takahashi, S., Iwamoto, M., Srirattana, K., Onishi, A., Tagami, T., Nirasawa, K., et al. (2010). Microinjection of serum-starved mitochondria derived from somatic cells affects parthenogenetic development of bovine and murine oocytes. Mito 10, 137–142.10.1016/j.mito.2009.12.144Search in Google Scholar PubMed
Taylor, R.W. and Turnbull, D.M. (2005). Mitochondrial DNA mutations in human disease. Nat. Rev. Genet. 6, 389–402.10.1038/nrg1606Search in Google Scholar PubMed PubMed Central
Theoret, C.L., Dore, M., Mulon, P.Y., Desrochers, A., Viramontes, F., Filion, F., and Smith, L.C. (2006). Short- and long-term skin graft survival in cattle clones with different mitochondrial haplotypes. Theriog. 65, 1465–1479.10.1016/j.theriogenology.2005.08.019Search in Google Scholar PubMed
Thongphakdee, A., Kobayashi, S., Imai, K., Inaba, Y., Tasai, M., Tagami, T., Nirasawa, K., Nagai, T., Saito, N., Techakumphu, M., et al. (2008). Interspecies nuclear transfer embryos reconstructed from cat somatic cells and bovine ooplasm. J. Reprod. Dev. 54, 142–147.10.1262/jrd.19159Search in Google Scholar PubMed
Vajta, G., Zhang, Y., and Macháty, Z. (2007). Somatic cell nuclear transfer in pigs: recent achievements and future possibilities. Reprod. Fert. Dev. 19, 403–423.10.1071/RD06089Search in Google Scholar
Wai, T., Teoli, D., and Shoubridge, E.A. (2008). The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes. Nat. Genet. 40, 1484–1488.10.1038/ng.258Search in Google Scholar PubMed
Wallace, D.C. (2012). Mitochondria and cancer. Nat. Rev. Cancer 12, 685–698.10.1038/nrc3365Search in Google Scholar PubMed PubMed Central
Wallace, D.C. and Chalkia, D. (2013). Mitochondrial DNA Genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harb. Persp. Biol. 5, a021220.10.1101/cshperspect.a021220Search in Google Scholar PubMed PubMed Central
Wilmut, I., Schnieke, A.E., McWhir, J., Kind, A.J., and Campbell, K.H.S. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813.10.1038/385810a0Search in Google Scholar PubMed
Yan, Z.H., Zhou, Y.Y., Fu, J., Jiao, F., Zhao, L.W., Guan, P.F., Huang, S.Z., Zeng, Y.T., and Zeng, F. (2010). Donor-host mitochondrial compatibility improves efficiency of bovine somatic cell nuclear transfer. BMC Dev. Biol. 10, 31.10.1186/1471-213X-10-31Search in Google Scholar PubMed PubMed Central
Yu, G., Xiang, H., Tian, J., Yin, J., Pinkert, C.A., Li, Q., and Zhao, X. (2015). Mitochondrial haplotypes influence metabolic traits in porcine transmitochondrial cybrids. Sci. Rep. 5, 13118.10.1038/srep13118Search in Google Scholar PubMed PubMed Central
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2018-0273).
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Reviews
- Complexity of type IV collagens: from network assembly to function
- Structural and mechanistic aspects of S-S bonds in the thioredoxin-like family of proteins
- Oxidative stress and antioxidants in the pathophysiology of malignant melanoma
- Research Articles/Short Communications
- Genes and Nucleic Acids
- Dynamic characteristics of the mitochondrial genome in SCNT pigs
- Protein Structure and Function
- Conversion of chenodeoxycholic acid to cholic acid by human CYP8B1
- Molecular Medicine
- The comparative biochemistry of viruses and humans: an evolutionary path towards autoimmunity
- MiR-23a-3p-regulated abnormal acetylation of FOXP3 induces regulatory T cell function defect in Graves’ disease
- Cell Biology and Signaling
- Evidence for a protective role of the CX3CL1/CX3CR1 axis in a model of amyotrophic lateral sclerosis
- LncRNA TINCR/microRNA-107/CD36 regulates cell proliferation and apoptosis in colorectal cancer via PPAR signaling pathway based on bioinformatics analysis
- Regulatory effect of hsa-miR-5590-3P on TGFβ signaling through targeting of TGFβ-R1, TGFβ-R2, SMAD3 and SMAD4 transcripts
Articles in the same Issue
- Frontmatter
- Reviews
- Complexity of type IV collagens: from network assembly to function
- Structural and mechanistic aspects of S-S bonds in the thioredoxin-like family of proteins
- Oxidative stress and antioxidants in the pathophysiology of malignant melanoma
- Research Articles/Short Communications
- Genes and Nucleic Acids
- Dynamic characteristics of the mitochondrial genome in SCNT pigs
- Protein Structure and Function
- Conversion of chenodeoxycholic acid to cholic acid by human CYP8B1
- Molecular Medicine
- The comparative biochemistry of viruses and humans: an evolutionary path towards autoimmunity
- MiR-23a-3p-regulated abnormal acetylation of FOXP3 induces regulatory T cell function defect in Graves’ disease
- Cell Biology and Signaling
- Evidence for a protective role of the CX3CL1/CX3CR1 axis in a model of amyotrophic lateral sclerosis
- LncRNA TINCR/microRNA-107/CD36 regulates cell proliferation and apoptosis in colorectal cancer via PPAR signaling pathway based on bioinformatics analysis
- Regulatory effect of hsa-miR-5590-3P on TGFβ signaling through targeting of TGFβ-R1, TGFβ-R2, SMAD3 and SMAD4 transcripts