Startseite Lebenswissenschaften Dynamic characteristics of the mitochondrial genome in SCNT pigs
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Dynamic characteristics of the mitochondrial genome in SCNT pigs

  • Tao Yin , Jikun Wang , Hai Xiang , Carl A. Pinkert EMAIL logo , Qiuyan Li EMAIL logo und Xingbo Zhao EMAIL logo
Veröffentlicht/Copyright: 13. November 2018

Abstract

Most animals generated by somatic cell nuclear transfer (SCNT) are heteroplasmic; inheriting mitochondrial genetics from both donor cells and recipient oocytes. However, the mitochondrial genome and functional mitochondrial gene expression in SCNT animals are rarely studied. Here, we report the production of SCNT pigs to study introduction, segregation, persistence and heritability of mitochondrial DNA transfer during the SCNT process. Porcine embryonic fibroblast cells from male and female Xiang pigs were transferred into enucleated oocytes from Yorkshire or Landrace pigs. Ear biopsies and blood samples from SCNT-derived pigs were analyzed to characterize the mitochondrial genome haplotypes and the degree of mtDNA heteroplasmy. Presence of nuclear donor mtDNA was less than 5% or undetectable in ear biopsies and blood samples in the majority of SCNT-derived pigs. Yet, nuclear donor mtDNA abundance in 14 tissues in F0 boars was as high as 95%. Additionally, mtDNA haplotypes influenced mitochondrial respiration capacity in F0 fibroblast cells. Our results indicate that the haplotypes of recipient oocyte mtDNA can influence mitochondrial function. This leads us to hypothesize that subtle developmental influences from SCNT-derived heteroplasmy can be targeted when using donor and recipient mitochondrial populations from breeds of swine with limited evolutionary divergence.

Acknowledgment

This work was supported by the National Key Basic Research Program of China (Grant number: 2014CB138500).

References

Brophy, B., Smolenski, G., Wheeler, T., Wells, D., L’Huillier, P., and Laible, G. (2003). Cloned transgenic cattle produce milk with higher levels of β-casein and κ-casein. Nat. Biotechnol. 21, 157–162.10.1038/nbt783Suche in Google Scholar PubMed

Brown, J.R., Beckenbach, A.T., and Smith, M.J. (1993). Intraspecific DNA sequence variation of the mitochondrial control region of white sturgeon (Acipenser transmontanus). Mol. Biol. Evol. 10, 326–341.Suche in Google Scholar

Burgstaller, J.P., Schinogl, P., Dinnyes, A., Muller, M., and Steinborn, R. (2007). Mitochondrial DNA heteroplasmy in ovine fetuses and sheep cloned by somatic cell nuclear transfer. BMC Dev. Biol. 7, 141.10.1186/1471-213X-7-141Suche in Google Scholar PubMed PubMed Central

Chan, D.C. (2006). Mitochondria: Dynamic organelles in disease, aging, and development. Cell 125, 1241–1252.10.1016/j.cell.2006.06.010Suche in Google Scholar PubMed

Edgar, R.C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797.10.1093/nar/gkh340Suche in Google Scholar PubMed PubMed Central

Floyd, B.J., Wilkerson, E.M., Veling, M.T., Minogue, C.E., Xia, C., Beebe, E.T., Wrobel, R.L., Cho, H., Kremer, L.S., Alston, C.L., et al. (2016). Mitochondrial protein interaction mapping identifies regulators of respiratory chain function. Mol. Cell 63, 621–632.10.1016/j.molcel.2016.06.033Suche in Google Scholar PubMed PubMed Central

Galli, C., Lagutina, I., Duchi, R., Colleoni, S., and Lazzari, G. (2008). Somatic cell nuclear transfer in horses. Reprod. Domes. Anim. 43, 331–337.10.1111/j.1439-0531.2008.01181.xSuche in Google Scholar PubMed

Hammond, E.R., Green, M.P., Shelling, A.N., Berg, M.C., Peek, J.C., and Cree, L.M. (2016). Oocyte mitochondrial deletions and heteroplasmy in a bovine model of ageing and ovarian stimulation. Mol. Hum. Reprod. 22, 261–271.10.1093/molehr/gaw003Suche in Google Scholar PubMed

Hiendleder, S., Zakhartchenko, V., Wenigerkind, H., Reichenbach, H.D., Bruggerhoff, K., Prelle, K., Brem, G., Stojkovic, M., and Wolf, E. (2003). Heteroplasmy in bovine fetuses produced by intra- and inter-subspecific somatic cell nuclear transfer: neutral segregation of nuclear donor mitochondrial DNA in various tissues and evidence for recipient cow mitochondria in fetal blood. Biol. Reprod. 68, 159–166.10.1095/biolreprod.102.008201Suche in Google Scholar PubMed

Jiao, F., Yan, J.B., Yang, X.Y., Li, H., Wang, Q., Huang, S.Z., Zeng, F., and Zeng, Y.T. (2007). Effect of oocyte mitochondrial DNA haplotype on bovine somatic cell nuclear transfer efficiency. Mol. Reprod. Dev. 74, 1278–1286.10.1002/mrd.20698Suche in Google Scholar PubMed

Kannim, S., Thongnoppakhun, W., and Auewarakul, C.U. (2009). Two-round allele specific-polymerase chain reaction: a simple and highly sensitive method for JAK2V617F mutation detection. Clin. Chim. Acta 401, 148–151.10.1016/j.cca.2008.12.010Suche in Google Scholar PubMed

Kim, K.I., Lee, J.H., Li, K., Zhang, Y.P., Lee, S.S., Gongora, J., and Moran, C. (2002). Phylogenetic relationships of Asian and European pig breeds determined by mitochondrial DNA D-loop sequence polymorphism. Anim. Genet. 33, 19–25.10.1046/j.1365-2052.2002.00784.xSuche in Google Scholar PubMed

Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874.10.1093/molbev/msw054Suche in Google Scholar PubMed PubMed Central

Li, W.H., Wu, C.I., and Luo, C.C. (1984). Nonrandomness of point mutation as reflected in nucleotide substitutions in pseudogenes and its evolutionary implications. J. Mol. Evol. 21, 58–71.10.1007/BF02100628Suche in Google Scholar PubMed

Ma, L.B., Yang, L., Hua, S., Cao, J.W., Li, J.X., and Zhang, Y. (2008a). Development in vitro and mitochondrial fate of interspecies cloned embryos. Reprod. Domest. Anim. 43, 279–285.10.1111/j.1439-0531.2007.00891.xSuche in Google Scholar PubMed

Ma, L.B., Yang, L., Zhang, Y., Cao, J.W., Hua, S., and Li, J.X. (2008b). Quantitative analysis of mitochondrial RNA in goat-sheep cloned embryos. Mol. Reprod. Dev. 75, 33–39.10.1002/mrd.20736Suche in Google Scholar PubMed

McBride, H.M., Neuspiel, M., and Wasiak, S. (2006). Mitochondria: more than just a powerhouse. Curr. Biol. 16, R551–R560.10.1016/j.cub.2006.06.054Suche in Google Scholar PubMed

Park, J., Lai, L., Samuel, M.S., Wax, D., Prather, R.S., and Tian, X. (2015). Disruption of mitochondrion-to-nucleus interaction in deceased cloned piglets. PLoS One 10, e0129378.10.1371/journal.pone.0129378Suche in Google Scholar PubMed PubMed Central

Pinkert, C.A., Irwin, M.H., Takeda, K., and Trounce, I.A. (2014). 23 – Modifying Mitochondrial Genetics, Transgenic Animal Technology (3rd Edition). (London: Elsevier), pp. 639–656.10.1016/B978-0-12-410490-7.00023-2Suche in Google Scholar

Polejaeva, I.A., Chen, S.H., Vaught, T.D., Page, R.L., Mullins, J., Ball, S., Dai, Y., Boone, J., Walker, S., Ayares, D.L., et al. (2000). Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 407, 86–90.10.1038/35024082Suche in Google Scholar PubMed

Qian, L.L., Tang, M.X., Yang, J.Z., Wang, Q.Q., Cai, C.B., Jiang, S.W., Li, H.G., Jiang, K., Gao, P.F., Ma, D.Z., et al. (2015). Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs. Sci. Rep. 5, 13.10.1038/srep14435Suche in Google Scholar PubMed PubMed Central

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M.A., and Huelsenbeck, J.P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542.10.1093/sysbio/sys029Suche in Google Scholar PubMed PubMed Central

Russell, O. and Turnbull, D. (2014). Mitochondrial DNA disease-molecular insights and potential routes to a cure. Exp. Cell Res. 325, 38–43.10.1016/j.yexcr.2014.03.012Suche in Google Scholar PubMed PubMed Central

St John, J.C., Lloyd, R.E.I., Bowles, E.J., Thomas, E.C., and El Shourbagy, S. (2004). The consequences of nuclear transfer for mammalian foetal development and offspring survival. A mitochondrial DNA perspective. Reproduction 127, 631–641.10.1530/rep.1.00138Suche in Google Scholar PubMed

St John, J.C., Facucho-Oliveira, J., Jiang, Y., Kelly, R., and Salah, R. (2010). Mitochondrial DNA transmission, replication and inheritance: a journey from the gamete through the embryo and into offspring and embryonic stem cells. Hum. Reprod. Update 16, 488–509.10.1093/humupd/dmq002Suche in Google Scholar PubMed

Sutovsky, P., Moreno, R.D., Ramalho-Santos, J., Dominko, T., Simerly, C., and Schatten, G. (1999). Development – Ubiquitin tag for sperm mitochondria. Nature 402, 371–372.10.1038/46466Suche in Google Scholar PubMed

Tachibana, M., Sparman, M., Sritanaudomchai, H., Ma, H., Clepper, L., Woodward, J., Li, Y., Ramsey, C., Kolotushkina, O., and Mitalipov, S. (2009). Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature 461, 367–372.10.1038/nature08368Suche in Google Scholar PubMed PubMed Central

Takeda, K., Akagi, S., Kaneyama, K., Kojima, T., Takahashi, S., Imai, H., Yamanaka, M., Onishi, A., and Hanada, H. (2003). Proliferation of donor mitochondrial DNA in nuclear transfer calves (Bos taurus) derived from cumulus cells. Mol. Reprod. Dev. 64, 429–437.10.1002/mrd.10279Suche in Google Scholar PubMed

Takeda, K., Tasai, M., Iwamoto, M., Akita, T., Tagami, T., Nirasawa, K., Hanada, H., and Onishi, A. (2006). Transmission of mitochondrial DNA in pigs and progeny derived from nuclear transfer of Meishan pig fibroblast cells. Mol. Reprod. Dev. 73, 306–312.10.1002/mrd.20403Suche in Google Scholar PubMed

Takeda, K., Kaneyama, K., Tasai, M., Akagi, S., Takahashi, S., Yonai, M., Kojima, T., Onishi, A., Tagami, T., Nirasawa, K., et al. (2008). Characterization of a donor mitochondrial DNA transmission bottleneck in nuclear transfer derived cow lineages. Mol. Reprod. Dev. 75, 759–765.10.1002/mrd.20837Suche in Google Scholar PubMed

Takeda, K., Tasai, M., Akagi, S., Matsukawa, K., Takahashi, S., Iwamoto, M., Srirattana, K., Onishi, A., Tagami, T., Nirasawa, K., et al. (2010). Microinjection of serum-starved mitochondria derived from somatic cells affects parthenogenetic development of bovine and murine oocytes. Mito 10, 137–142.10.1016/j.mito.2009.12.144Suche in Google Scholar PubMed

Taylor, R.W. and Turnbull, D.M. (2005). Mitochondrial DNA mutations in human disease. Nat. Rev. Genet. 6, 389–402.10.1038/nrg1606Suche in Google Scholar PubMed PubMed Central

Theoret, C.L., Dore, M., Mulon, P.Y., Desrochers, A., Viramontes, F., Filion, F., and Smith, L.C. (2006). Short- and long-term skin graft survival in cattle clones with different mitochondrial haplotypes. Theriog. 65, 1465–1479.10.1016/j.theriogenology.2005.08.019Suche in Google Scholar PubMed

Thongphakdee, A., Kobayashi, S., Imai, K., Inaba, Y., Tasai, M., Tagami, T., Nirasawa, K., Nagai, T., Saito, N., Techakumphu, M., et al. (2008). Interspecies nuclear transfer embryos reconstructed from cat somatic cells and bovine ooplasm. J. Reprod. Dev. 54, 142–147.10.1262/jrd.19159Suche in Google Scholar PubMed

Vajta, G., Zhang, Y., and Macháty, Z. (2007). Somatic cell nuclear transfer in pigs: recent achievements and future possibilities. Reprod. Fert. Dev. 19, 403–423.10.1071/RD06089Suche in Google Scholar

Wai, T., Teoli, D., and Shoubridge, E.A. (2008). The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes. Nat. Genet. 40, 1484–1488.10.1038/ng.258Suche in Google Scholar PubMed

Wallace, D.C. (2012). Mitochondria and cancer. Nat. Rev. Cancer 12, 685–698.10.1038/nrc3365Suche in Google Scholar PubMed PubMed Central

Wallace, D.C. and Chalkia, D. (2013). Mitochondrial DNA Genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harb. Persp. Biol. 5, a021220.10.1101/cshperspect.a021220Suche in Google Scholar PubMed PubMed Central

Wilmut, I., Schnieke, A.E., McWhir, J., Kind, A.J., and Campbell, K.H.S. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813.10.1038/385810a0Suche in Google Scholar PubMed

Yan, Z.H., Zhou, Y.Y., Fu, J., Jiao, F., Zhao, L.W., Guan, P.F., Huang, S.Z., Zeng, Y.T., and Zeng, F. (2010). Donor-host mitochondrial compatibility improves efficiency of bovine somatic cell nuclear transfer. BMC Dev. Biol. 10, 31.10.1186/1471-213X-10-31Suche in Google Scholar PubMed PubMed Central

Yu, G., Xiang, H., Tian, J., Yin, J., Pinkert, C.A., Li, Q., and Zhao, X. (2015). Mitochondrial haplotypes influence metabolic traits in porcine transmitochondrial cybrids. Sci. Rep. 5, 13118.10.1038/srep13118Suche in Google Scholar PubMed PubMed Central


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2018-0273).


Received: 2018-06-04
Accepted: 2018-10-07
Published Online: 2018-11-13
Published in Print: 2019-05-27

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 29.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2018-0273/html
Button zum nach oben scrollen