Startseite Lebenswissenschaften Evidence for a protective role of the CX3CL1/CX3CR1 axis in a model of amyotrophic lateral sclerosis
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Evidence for a protective role of the CX3CL1/CX3CR1 axis in a model of amyotrophic lateral sclerosis

  • Chang Liu , Kun Hong , Huifang Chen , Yanping Niu , Weisong Duan , Yakun Liu , Yingxiao Ji , Binbin Deng , Yuanyuan Li , Zhongyao Li , Di Wen und Chunyan Li EMAIL logo
Veröffentlicht/Copyright: 22. März 2019

Abstract

Aberrant microglial activation and neuroinflammation is a pathological hallmark of amyotrophic lateral sclerosis (ALS). Fractalkine (CX3CL1) is mostly expressed on neuronal cells. The fractalkine receptor (CX3CR1) is predominantly expressed on microglia. Many progressive neuroinflammatory disorders show disruption of the CX3CL1/CX3CR1 communication system. But the exact role of the CX3CL1/CX3CR1 in ALS pathology remains unknown. F1 nontransgenic/CX3CR1+/− females were bred with SOD1G93A/CX3CR1+/− males to produce F2 SOD1G93A/CX3CR1−/−, SOD1G93A/CX3CR1+/+. We analyzed end-stage (ES) SOD1G93A/CX3CR1−/− mice and progression-matched SOD1G93A/CX3CR1+/+ mice. Our study showed that the male SOD1G93A/CX3CR1−/− mice died sooner than male SOD1G93A/CX3CR1+/+ mice. In SOD1G93A/CX3CR1−/− mice demonstrated more neuronal cell loss, more microglial activation and exacerbated SOD1 aggregation at the end-stage of ALS. The NF-κB pathway was activated; the autophagy-lysosome degradation pathway and the autophagosome maturation were impaired. Our results indicated that the absence of CX3CR1/CX3CL1 signaling in the central nervous system (CNS) may worsen neurodegeneration. The CX3CL1/CX3CR1 communication system has anti-inflammatory and neuroprotective effects and plays an important role in maintaining autophagy activity. This effort may lead to new therapeutic strategies for neuroprotection and provide a therapeutic target for ALS patients.

Acknowledgments

This study was supported by grants from the Natural Science Foundation of China (C090301-30870882); and Hebei Science and Technology Department (0647007D).

References

Bazan, J.F., Bacon, K.B., Hardiman, G., Wang, W., Soo, K., Rossi, D., Greaves, D.R., Zlotnik, A., and Schall, T.J. (1997). A new class of membrane-bound chemokine with a CX3C motif. Nature 385, 640–644.10.1038/385640a0Suche in Google Scholar PubMed

Bellingham, M.C. (2011). A review of the neural mechanisms of action and clinical efficiency of riluzole in treating amyotrophic lateral sclerosis: what have we learned in the last decade? CNS Neurosci. Ther. 17, 4–31.10.1111/j.1755-5949.2009.00116.xSuche in Google Scholar PubMed PubMed Central

Boillee, S., Yamanaka, K., Lobsiger, C.S., Copeland, N.G., Jenkins, N.A., Kassiotis, G., Kollias, G., and Cleveland, D.W. (2006). Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312, 1389–1392.10.1126/science.1123511Suche in Google Scholar PubMed

Cardona, A.E., Pioro, E.P., Sasse, M.E., Kostenko, V., Cardona, S.M., Dijkstra, I.M., Huang, D., Kidd, G., Dombrowski, S., Dutta, R., et al. (2006). Control of microglial neurotoxicity by the fractalkine receptor. Nat. Neurosci. 9, 917–924.10.1038/nn1715Suche in Google Scholar PubMed

Cirulli, E.T., Lasseigne, B.N., Petrovski, S., Sapp, P.C., Dion, P.A., Leblond, C.S., Couthouis, J., Lu, Y.F., Wang, Q., Krueger, B.J., et al. (2015). Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science 347, 1436–1441.10.1126/science.aaa3650Suche in Google Scholar PubMed PubMed Central

Denes, A., Ferenczi, S., Halasz, J., Kornyei, Z., and Kovacs, K.J. (2008). Role of CX3CR1 (fractalkine receptor) in brain damage and inflammation induced by focal cerebral ischemia in mouse. J. Cerebr. Blood. F Met. 28, 1707–1721.10.1038/jcbfm.2008.64Suche in Google Scholar PubMed

Ditsworth, D., Maldonado, M., McAlonis-Downes, M., Sun, S., Seelman, A., Drenner, K., Arnold, E., Ling, S.C., Pizzo, D., Ravits, J., et al. (2017). Mutant TDP-43 within motor neurons drives disease onset but not progression in amyotrophic lateral sclerosis. Acta Neuropathol. 133, 907–922.10.1007/s00401-017-1698-6Suche in Google Scholar PubMed PubMed Central

Frakes, A.E., Ferraiuolo, L., Haidet-Phillips, A.M., Schmelzer, L., Braun, L., Miranda, C.J., Ladner, K.J., Bevan, A.K., Foust, K.D., Godbout, J.P., et al. (2014). Microglia induce motor neuron death via the classical NF-κB pathway in amyotrophic lateral sclerosis. Neuron 81, 1009–1023.10.1016/j.neuron.2014.01.013Suche in Google Scholar PubMed PubMed Central

Fuhrmann, M., Bittner, T., Jung, C.K., Burgold, S., Page, R.M., Mitteregger, G., Haass, C., LaFerla, F.M., Kretzschmar, H., and Herms, J. (2010). Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer’s disease. Nat. Neurosci. 13, 411–413.10.1038/nn.2511Suche in Google Scholar PubMed PubMed Central

Gal, J., Strom, A.L., Kwinter, D.M., Kilty, R., Zhang, J., Shi, P., Fu, W., Wooten, M.W., and Zhu, H. (2009). Sequestosome 1/p62 links familial ALS mutant SOD1 to LC3 via an ubiquitin-independent mechanism. J. Neurochem. 111, 1062–1073.10.1111/j.1471-4159.2009.06388.xSuche in Google Scholar PubMed PubMed Central

Garcia, J.A., Pino, P.A., Mizutani, M., Cardona, S.M., Charo, I.F., Ransohoff, R.M., Forsthuber, T.G., and Cardona, A.E. (2013). Regulation of adaptive immunity by the fractalkine receptor during autoimmune inflammation. J. Immunol. 191, 1063–1072.10.4049/jimmunol.1300040Suche in Google Scholar PubMed PubMed Central

Harrison, J.K., Jiang, Y., Chen, S., Xia, Y., Maciejewski, D., McNamara, R.K., Streit, W.J., Salafranca, M.N., Adhikari, S., Thompson, D.A., et al. (1998). Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc. Natl. Acad. Sci. USA 95, 10896–10901.10.1073/pnas.95.18.10896Suche in Google Scholar PubMed PubMed Central

Henkel, J.S., Beers, D.R., Siklos, L., and Appel, S.H. (2006). The chemokine MCP-1 and the dendritic and myeloid cells it attracts are increased in the mSOD1 mouse model of ALS. Mol. Cell Neurosci. 31, 427–437.10.1016/j.mcn.2005.10.016Suche in Google Scholar PubMed

Henkel, J.S., Engelhardt, J.I., Siklos, L., Simpson, E.P., Kim, S.H., Pan, T., Goodman, J.C., Siddique, T., Beers, D.R., and Appel, S.H. (2004). Presence of dendritic cells, MCP-1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue. Ann. Neurol. 55, 221–235.10.1002/ana.10805Suche in Google Scholar PubMed

Ittner, L.M., Halliday, G.M., Kril, J.J., Gotz, J., Hodges, J.R., and Kiernan, M.C. (2015). OPINION FTD and ALS-translating mouse studies into clinical trials. Nat. Rev. Neurol. 11, 360–366.10.1038/nrneurol.2015.65Suche in Google Scholar PubMed

Kigerl, K.A., Gensel, J.C., Ankeny, D.P., Alexander, J.K., Donnelly, D.J., and Popovich, P.G. (2009). Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J. Neurosci. 29, 13435–13444.10.1523/JNEUROSCI.3257-09.2009Suche in Google Scholar PubMed PubMed Central

Limatola, C., Lauro, C., Catalano, M., Ciotti, M.T., Bertollini, C., Di Angelantonio, S., Ragozzino, D., and Eusebi, F. (2005). Chemokine CX(3)CL1 protects rat hippocampal neurons against glutamate-mediated excitotoxicity. J. Neuroimmunol. 166, 19–28.10.1016/j.jneuroim.2005.03.023Suche in Google Scholar PubMed

Ling, S.C., Polymenidou, M., and Cleveland, D.W. (2013). Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79, 416–438.10.1016/j.neuron.2013.07.033Suche in Google Scholar PubMed PubMed Central

Liu, Z., Condello, C., Schain, A., Harb, R., and Grutzendler, J. (2010). CX3CR1 in microglia regulates brain amyloid deposition through selective protofibrillar amyloid-β phagocytosis. J. Neurosci. 30, 17091–17101.10.1523/JNEUROSCI.4403-10.2010Suche in Google Scholar PubMed PubMed Central

Pankiv, S., Clausen, T.H., Lamark, T., Brech, A., Bruun, J.A., Outzen, H., Overvatn, A., Bjorkoy, G., and Johansen, T. (2007). p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282, 24131–24145.10.1074/jbc.M702824200Suche in Google Scholar PubMed

Pilli, M., Arko-Mensah, J., Ponpuak, M., Roberts, E., Master, S., Mandell, M.A., Dupont, N., Ornatowski, W., Jiang, S., Bradfute, S.B., et al. (2012). TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. Immunity 37, 223–234.10.1016/j.immuni.2012.04.015Suche in Google Scholar PubMed PubMed Central

Pimentel-Coelho, P.M., Michaud, J.P., and Rivest, S. (2013). Evidence for a gender-specific protective role of innate immune receptors in a model of perinatal brain injury. J. Neurosci. 33, 11556–11572.10.1523/JNEUROSCI.0535-13.2013Suche in Google Scholar PubMed PubMed Central

Ransohoff, R.M., Liu, L., and Cardona, A.E. (2007). Chemokines and chemokine receptors: multipurpose players in neuroinflammation. Int. Rev. Neurobiol. 82, 187–204.10.1016/S0074-7742(07)82010-1Suche in Google Scholar PubMed

Rosen, D.R. (1993). Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59–62.10.1038/362059a0Suche in Google Scholar PubMed

Sako, W., Ito, H., Yoshida, M., Koizumi, H., Kamada, M., Fujita, K., Hashizume, Y., Izumi, Y., and Kaji, R. (2012). Nuclear factor κB expression in patients with sporadic amyotrophic lateral sclerosis and hereditary amyotrophic lateral sclerosis with optineurin mutations. Clin. Neuropathol. 31, 418–423.10.5414/NP300493Suche in Google Scholar PubMed

Swarup, V., Phaneuf, D., Dupre, N., Petri, S., Strong, M., Kriz, J., and Julien, J.P. (2011). Deregulation of TDP–43 in amyotrophic lateral sclerosis triggers nuclear factor κB-mediated pathogenic pathways. J. Exp. Med. 208, 2429–2447.10.1084/jem.20111313Suche in Google Scholar PubMed PubMed Central

Zarei, S., Carr, K., Reiley, L., Diaz, K., Guerra, O., Altamirano, P.F., Pagani, W., Lodin, D., Orozco, G., and Chinea, A. (2015). A comprehensive review of amyotrophic lateral sclerosis. Surg. Neurol. Int. 6, 171.10.4103/2152-7806.169561Suche in Google Scholar PubMed PubMed Central


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2018-0204).


Received: 2018-04-02
Accepted: 2018-10-06
Published Online: 2019-03-22
Published in Print: 2019-05-27

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 29.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2018-0204/html?lang=de
Button zum nach oben scrollen