Abstract
Glucokinase (GCK) is crucial to regulating glucose metabolism in the liver and in pancreatic β-cells. There are two major GCK isoforms, hepatic and pancreatic GCKs, which differ only in exon 1. However, the functional differences between the two GCK isoforms remain poorly understood. Here, we used a β-cell-targeted gene transfer vector to determine the impact of isoform-specific GCK overexpression on β-cells in vitro and in vivo. We showed that pancreatic GCK had a nuclear localization signal unique to the pancreatic isoform, facilitating its nuclear distribution in β-cells. Despite the difference in subcellular distribution, overexpression of GCK isoforms similarly enhanced glucose uptake and β-cell proliferation in vitro. Overexpression of hepatic or pancreatic GCK also similarly enhanced β-cell proliferation in normal diet mice without affecting fasting glucose and intraperitoneal glucose tolerance tests (IPGTT). Our further study on human GCK sequences identified disproportional GCK amino acid variants in exon 1, while mutations linked to maturity onset diabetes of the young type 2 (MODY2) were disproportionally found in exons 2 through 10. Our results therefore indicate functional conservation between the two major GCK isoforms despite their distinct subcellular distribution.
Acknowledgments
The authors would like to thank the Mayo Clinic Graduate School of Biomedical Sciences Initiative for Maximizing Student Development for supporting our Ph.D. trainees.
Funding: This work was supported by NIH GM (R43 GM112316), Vann Family Fund in Diabetes Research, Kieckhefers Foundation, Paul A. and Ruth M. Schilling Medical Research Endowment Fund, and Mayo Clinic Center for Regenerative Medicine (to Y.I.), and Mayo Clinic Graduate School of Biomedical Sciences (to B.L.), and Initiative for Maximizing Student Development (IMSD, to B.L.).
Conflict of interest statement: No potential conflicts of interest relevant to this article are reported.
References
Ashkenazy, H., Abadi, S., Martz, E., Chay, O., Mayrose, I., Pupko, T., and Ben-Tal, N. (2016). ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 44, W344–W350.10.1093/nar/gkw408Suche in Google Scholar PubMed PubMed Central
Aukrust, I., Bjørkhaug, L., Negahdar, M., Molnes, J., Johansson, B.B., Müller, Y., Haas, W., Gygi, S.P., Søvik, O., Flatmark, T., et al. (2013). SUMOylation of pancreatic glucokinase regulates its cellular stability and activity. J. Biol. Chem. 288, 5951–5962.10.1074/jbc.M112.393769Suche in Google Scholar PubMed PubMed Central
Baltrusch, S. and Tiedge, M. (2006). Glucokinase regulatory network in pancreatic β-cells and liver. Diabetes 55, S55–S64.10.2337/db06-S008Suche in Google Scholar
Baltrusch, S., Lenzen, S., Okar, D.A., Lange, A.J., and Tiedge, M. (2001). Characterization of glucokinase-binding protein epitopes by a phage-displayed peptide library: identification of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase as a novel interaction partner. J. Biol. Chem. 276, 43915–43923.10.1074/jbc.M105470200Suche in Google Scholar PubMed
Beck, T. and Miller, B.G. (2013). Structural basis for regulation of human glucokinase by glucokinase regulatory protein. Biochemistry 52, 6232–6239.10.1021/bi400838tSuche in Google Scholar PubMed PubMed Central
Becker, T.C., Noel, R.J., Johnson, J.H., Lynch, R.M., Hirose, H., Tokuyama, Y., Bell, G.I., and Newgard, C.B. (1996). Differential effects of overexpressed glucokinase and hexokinase I in isolated islets: evidence for functional segregation of the high and low Km enzymes. J. Biol. Chem. 271, 390–394.10.1074/jbc.271.1.390Suche in Google Scholar PubMed
Bedoya, F.J., Wilson, J.M., Ghosh, A.K., Finegold, D., and Matschinsky, F.M. (1986). The glucokinase glucose sensor in human pancreatic islet tissue. Diabetes 35, 61–67.10.2337/diab.35.1.61Suche in Google Scholar PubMed
Berezin, C., Glaser, F., Rosenberg, J., Paz, I., Pupko, T., Fariselli, P., Casadio, R., and Ben-Tal, N. (2004). ConSeq: the identification of functionally and structurally important residues in protein sequences. Bioinformatics 20, 1322–1324.10.1093/bioinformatics/bth070Suche in Google Scholar PubMed
Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne, P.E. (2000). The protein data bank. Nucleic Acids Res. 28, 235–242.10.1093/nar/28.1.235Suche in Google Scholar PubMed PubMed Central
Cataliotti, A., Tonne, J.M., Bellavia, D., Martin, F.L., Oehler, E.A., Harders, G.E., Campbell, J.M., Peng, K.-W., Russell, S.J., Malatino, L.S., et al. (2011). Long-term cardiac pro-b-type natriuretic peptide gene delivery prevents the development of hypertensive heart disease in spontaneously hypertensive rats. Circulation 123, 1297–1305.10.1161/CIRCULATIONAHA.110.981720Suche in Google Scholar PubMed PubMed Central
Choi, J.M., Seo, M.-H., Kyeong, H.-H., Kim, E., and Kim, H.-S. (2013). Molecular basis for the role of glucokinase regulatory protein as the allosteric switch for glucokinase. Proc. Natl. Acad. Sci. USA 110, 10171–10176.10.1073/pnas.1300457110Suche in Google Scholar
Cullen, K.S., Al-Oanzi, Z.H., O’Harte, F.P.M., Agius, L., and Arden, C. (2014). Glucagon induces translocation of glucokinase from the cytoplasm to the nucleus of hepatocytes by transfer between 6-phosphofructo 2-kinase/fructose 2,6-bisphosphatase-2 and the glucokinase regulatory protein. Biochem. Biophys. Acta 1843, 1123–1134.10.1016/j.bbamcr.2014.02.006Suche in Google Scholar
Detheux, M., Vandercammen, A., and Van Schaftingen, E. (1991). Effectors of the regulatory protein acting on liver glucokinase: a kinetic investigation. Eur. J. Biochem. 200, 553–561.10.1111/j.1432-1033.1991.tb16218.xSuche in Google Scholar
Haeusler, R.A., Camastra, S., Astiarraga, B., Nannipieri, M., Anselmino, M., and Ferrannini, E. (2015). Decreased expression of hepatic glucokinase in type 2 diabetes. Mol. Metab. 4, 222–226.10.1016/j.molmet.2014.12.007Suche in Google Scholar
Hofmeister-Brix, A., Kollmann, K., Langer, S., Schultz, J., Lenzen, S., and Baltrusch, S. (2013). Identification of the ubiquitin-like domain of midnolin as a new glucokinase interaction partner. J. Biol. Chem. 288, 35824–35839.10.1074/jbc.M113.526632Suche in Google Scholar
Iynedjian, P.B. (1993). Mammalian glucokinase and its gene. Biochem. J. 293, 1–13.10.1042/bj2930001Suche in Google Scholar
Iynedjian, P.B. (2009). Molecular physiology of mammalian glucokinase. Cell. Mol. Life Sci. 66, 27–42.10.1007/s00018-008-8322-9Suche in Google Scholar
Iynedjian, P.B., Mőbius, G., Seitz, H.J., Wollheim, C.B., and Renold, A.E. (1986). Tissue-specific expression of glucokinase: identification of the gene product in liver and pancreatic islets. Proc. Natl. Acad. Sci. USA 83, 1998–2001.10.1073/pnas.83.7.1998Suche in Google Scholar
Iynedjian, P.B., Gjinovci, A., and Renold, A.E. (1988). Stimulation by insulin of glucokinase gene transcription in liver of diabetic rats. J. Biol. Chem. 263, 740–744.10.1016/S0021-9258(19)35415-8Suche in Google Scholar
Iynedjian, P.B., Marie, S., Gjinovci, A., Genin, B., Deng, S.P., Buhler, L., Morel, P., and Mentha, G. (1995). Glucokinase and cytosolic phosphoenolpyruvate carboxykinase (GTP) in the human liver. Regulation of gene expression in cultured hepatocytes. J. Clin. Invest. 95, 1966–1973.10.1172/JCI117880Suche in Google Scholar PubMed PubMed Central
Johansen, A., Ek, J., Mortensen, H.B., Pedersen, O., and Hansen, T. (2005). Half of clinically defined maturity-onset diabetes of the young patients in Denmark do not have mutations in HNF4A, GCK, and TCF1. J. Clin. Endocrinol. Metab. 90, 4607–4614.10.1210/jc.2005-0196Suche in Google Scholar
Johansson, B.B., Fjeld, K., Solheim, M.H., Shirakawa, J., Zhang, E., Keindl, M., Hu, J., Lindqvist, A., Døskeland, A., Mellgren, G., et al. (2017). Nuclear import of glucokinase in pancreatic β-cells is mediated by a nuclear localization signal and modulated by SUMOylation. Mol. Cell. Endocrinol. 454, 146–157.10.1016/j.mce.2017.06.020Suche in Google Scholar
Kamata, K., Mitsuya, M., Nishimura, T., Eiki, J.-I., and Nagata, Y. (2004). Structural basis for allosteric regulation of the monomeric allosteric enzyme human glucokinase. Structure 12, 429–438.10.1016/j.str.2004.02.005Suche in Google Scholar
Kaminski, M.T., Schultz, J., RicaWaterstradt, Tiedge, M., Lenzen, S., and Baltrusch, S. (2014). Glucose-induced dissociation of glucokinase from its regulatory protein in the nucleus of hepatocytes prior to nuclear export. Biochem. Biophys. Acta 1843, 554–564.10.1016/j.bbamcr.2013.12.002Suche in Google Scholar
Kosugi, S., Hasebe, M., Tomita, M., and Yanagawa, H. (2009). Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc. Natl. Acad. Sci. USA 106, 10171–10176.10.1073/pnas.0900604106Suche in Google Scholar
Lek, M., Karczewski, K.J., Minikel, E.V., Samocha, K.E., Banks, E., Fennell, T., O’Donnell-Luria, A.H., Ware, J.S., Hill, A.J., Cummings, B.B., et al. (2016). Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291.10.1038/nature19057Suche in Google Scholar
Lenzen, S. (2014). A fresh view of glycolysis and glucokinase regulation: history and current status. J. Biol. Chem. 289, 12189–12194.10.1074/jbc.R114.557314Suche in Google Scholar
Liang, Y., Jetton, T.L., Zimmerman, E.C., Najafi, H., Matschinsky, F.M., and Magnuson, M.A. (1991). Effects of alternate RNA splicing on glucokinase isoform activities in the pancreatic islet, liver, and pituitary. J. Biol. Chem. 266, 6999–7007.10.1016/S0021-9258(20)89601-XSuche in Google Scholar
Magnuson, M.A. (1990). Glucokinase gene structure: functional implications of molecular genetic studies. Diabetes 39, 523–527.10.2337/diab.39.5.523Suche in Google Scholar
Magnuson, M.A. and Shelton, K.D. (1989). An alternate promoter in the glucokinase gene is active in the pancreatic β cell. J. Biol. Chem. 264, 15936–15942.10.1016/S0021-9258(18)71569-XSuche in Google Scholar
Massa, L., Baltrusch, S., Okar, D.A., Lange, A.J., Lenzen, S., and Tiedge, M. (2004). Interaction of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2) with glucokinase activates glucose phosphorylation and glucose metabolism in insulin-producing cells. Diabetes 53, 1020–1029.10.2337/diabetes.53.4.1020Suche in Google Scholar
Massa, M.L., Gagliardino, J.J., and Francini, F. (2011). Liver glucokinase: an overview on the regulatory mechanisms of its activity. IUBMB Life 63, 1–6.10.1002/iub.411Suche in Google Scholar
Matschinsky, F., Liang, Y., Kesavan, P., Wang, L., Froguel, P., Velho, G., Cohen, D., Permutt, M.A., Tanizawa, Y., Jetton, T.L., et al. (1993). Glucokinase as pancreatic β cell glucose sensor and diabetes gene. J. Clin. Invest. 92, 2092–2098.10.1172/JCI116809Suche in Google Scholar
Murata, T., Katagiri, H., Ishihara, H., Shibasaki, Y., Asano, T., Toyoda, Y., Pekiner, B., Pekiner, C., Miwa, I., and Oka, Y. (1997). Co-localization of glucokinase with actin filaments. FEBS J. 406, 109–113.10.1016/S0014-5793(97)00253-6Suche in Google Scholar
Noma, Y., Bonner-Weir, S., Latimer, J.B., Davalli, A.M., and Weir, G.C. (1996). Translocation of glucokinase in pancreatic β-cells during acute and chronic hyperglycemia. Endocrinology 137, 1485–1491.10.1210/endo.137.4.8625927Suche in Google Scholar
Osbak, K.K., Colclough, K., Saint-Martin, C., Beer, N.L., Bellanné-Chantelot, C., Ellard, S., and Gloyn, A.L. (2009). Update on mutations in glucokinase (GCK), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia. Hum. Mutat. 30, 1512–1526.10.1002/humu.21110Suche in Google Scholar
Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. (2004). UCSF chimera – a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612.10.1002/jcc.20084Suche in Google Scholar
Porat, S., Weinberg-Corem, N., Tornovsky-Babaey, S., Schyr-Ben-Haroush, R., Hija, A., Stolovich-Rain, M., Dadon, D., Granot, Z., Ben-Hur, V., White, P., et al. (2011). Control of pancreatic β cell regeneration by glucose metabolism. Cell Metab. 13, 440–449.10.1016/j.cmet.2011.02.012Suche in Google Scholar
Postic, C., Shiota, M., Niswender, K.D., Jetton, T.L., Chen, Y., Moates, J.M., Shelton, K.D., Lindner, J., Cherrington, A.D., and Magnuson, M.A. (1999). Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic β cell-specific gene knock-outs using Cre recombinase. J. Biol. Chem. 274, 305–315.10.1074/jbc.274.1.305Suche in Google Scholar
Quaade, C., Hughes, S.D., Coats, W.S., Sestak, A.L., Iynedjian, P.B., and Newgard, C.B. (1991). Analysis of the protein products encoded by variant glucokinase transcripts via expression in bacteria. FEBS J. 280, 47–52.10.1016/0014-5793(91)80201-DSuche in Google Scholar
Sakuma, T., Davila, J.I., Malcolm, J.A., Kocher, J.-P.A., Tonne, J.M., and Ikeda, Y. (2014). Murine leukemia virus uses NXF1 for nuclear export of spliced and unspliced viral transcripts. J. Virol. 88, 4069–4082.10.1128/JVI.03584-13Suche in Google Scholar PubMed PubMed Central
Salgado, M., Tarifeño-Saldivia, E., Ordenes, P., Millán, C., Yañez, M.J., Llanos, P., Villagra, M., Elizondo-Vega, R., Martínez, F., Nualart, F., et al. (2014). Dynamic localization of glucokinase and its regulatory protein in hypothalamic tanycytes. PLoS One 9, e94035.10.1371/journal.pone.0094035Suche in Google Scholar PubMed PubMed Central
Salpeter, S.J., Klein, A.M., Huangfu, D., Grimsby, J., and Dor, Y. (2010). Glucose and aging control the quiescent period that follows pancreatic beta cell replication. Development 137, 3205–3213.10.1242/dev.054304Suche in Google Scholar PubMed PubMed Central
Salpeter, S.J., Klochendler, A., Weinberg-Corem, N., Porat, S., Granot, Z., Shapiro, A.M.J., Magnuson, M.A., Eden, A., Grimsby, J., Glaser, B., et al. (2011). Glucose regulates cyclin D2 expression in quiescent and replicating pancreatic β-cells through glycolysis and calcium channels. Endocrinology 152, 2589–2598.10.1210/en.2010-1372Suche in Google Scholar PubMed PubMed Central
Shiota, C., Coffey, J., Grimsby, J., Grippo, J.F., and Magnuson, M.A. (1999). Nuclear import of hepatic glucokinase depends upon glucokinase regulatory protein, whereas export is due to a nuclear export signal sequence in glucokinase. J. Biol. Chem. 274, 37125–37130.10.1074/jbc.274.52.37125Suche in Google Scholar PubMed
Stamateris, R.E., Sharma, R.B., Kong, Y., Ebrahimpour, P., Panday, D., Ranganath, P., Zou, B., Levitt, H., Parambil, N.A., O’Donnell, C.P., et al. (2016). Glucose induces mouse β-cell proliferation via IRS2, MTOR, and cyclin D2 but not the insulin receptor. Diabetes 65, 981–995.10.2337/db15-0529Suche in Google Scholar PubMed PubMed Central
Tanizawa, Y., Matsutani, A., Chiu, K.C., and Permutt, M.A. (1992). Human glucokinase gene: isolation, structural characterization, and identification of a microsatellite repeat polymorphism. Mol. Endocrinol. 6, 1070–1081.10.1210/mend.6.7.1354840Suche in Google Scholar
Tonne, J.M., Campbell, J.M., Cataliotti, A., Ohmine, S., Thatava, T., Sakuma, T., Macheret, F., Huntley, B.K., Burnett, J.C., and Ikeda, Y. (2011). Secretion of glycosylated pro–b-type natriuretic peptide from normal cardiomyocytes. Clin. Chem. 57, 864–873.10.1373/clinchem.2010.157438Suche in Google Scholar PubMed PubMed Central
Tonne, J.M., Sakuma, T., Munoz-Gomez, M., El Khatib, M., Barry, M.A., Kudva, Y.C., and Ikeda, Y. (2015). Beta cell regeneration after single-round immunological destruction in a mouse model. Diabetologia 58, 313–323.10.1007/s00125-014-3416-4Suche in Google Scholar PubMed PubMed Central
van Schaftingen, E. (1989). A protein from rat liver confers to glucokinase the property of being antagonistically regulated by fructose 6-phosphate and fructose 1-phosphate. Eur. J. Biochem. 179, 179–184.10.1111/j.1432-1033.1989.tb14538.xSuche in Google Scholar PubMed
Veiga-da-Cunha, M. and Van Schaftingen, E. (2001). Identification of fructose 6-phosphate- and fructose 1-phosphate-binding residues in the regulatory protein of glucokinase. J. Biol. Chem. 277, 8466–8473.10.1074/jbc.M105984200Suche in Google Scholar PubMed
Supplemental Material:
The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2018-0109).
©2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Reviews
- Hodgkin lymphoma cell lines: to separate the wheat from the chaff
- The AGO proteins: an overview
- Research Articles/Short Communications
- Protein Structure and Function
- Structural changes at the myrtenol backbone reverse its positive allosteric potential into inhibitory GABAA receptor modulation
- The two major glucokinase isoforms show conserved functionality in β-cells despite different subcellular distribution
- Functional characterization of the mouse Serpina1 paralog DOM-7
- Cell Biology and Signaling
- CD45RO regulates the HIV-1 gp120-mediated apoptosis of T cells by activating Lck
- Silencing of MED27 inhibits adrenal cortical carcinogenesis by targeting the Wnt/β-catenin signaling pathway and the epithelial-mesenchymal transition process
- HDAC1 knockdown inhibits invasion and induces apoptosis in non-small cell lung cancer cells
- Hepatitis B virus X protein promotes proliferation of hepatocellular carcinoma cells by upregulating miR-181b by targeting ING5
Artikel in diesem Heft
- Frontmatter
- Reviews
- Hodgkin lymphoma cell lines: to separate the wheat from the chaff
- The AGO proteins: an overview
- Research Articles/Short Communications
- Protein Structure and Function
- Structural changes at the myrtenol backbone reverse its positive allosteric potential into inhibitory GABAA receptor modulation
- The two major glucokinase isoforms show conserved functionality in β-cells despite different subcellular distribution
- Functional characterization of the mouse Serpina1 paralog DOM-7
- Cell Biology and Signaling
- CD45RO regulates the HIV-1 gp120-mediated apoptosis of T cells by activating Lck
- Silencing of MED27 inhibits adrenal cortical carcinogenesis by targeting the Wnt/β-catenin signaling pathway and the epithelial-mesenchymal transition process
- HDAC1 knockdown inhibits invasion and induces apoptosis in non-small cell lung cancer cells
- Hepatitis B virus X protein promotes proliferation of hepatocellular carcinoma cells by upregulating miR-181b by targeting ING5