Structural changes at the myrtenol backbone reverse its positive allosteric potential into inhibitory GABAA receptor modulation
-
Sinem Milanos
Abstract
GABAA receptors are ligand-gated anion channels that form pentameric arrangements of various subunits. Positive allosteric modulators of GABAA receptors have been reported as being isolated either from plants or synthesized analogs of known GABAA receptor targeting drugs. Recently, we identified monoterpenes, e.g. myrtenol as a positive allosteric modulator at α1β2 GABAA receptors. Here, along with pharmacophore-based virtual screening studies, we demonstrate that scaffold modifications of myrtenol resulted in the loss of modulatory activity. Two independent approaches, fluorescence-based compound analysis and electrophysiological recordings in whole-cell configurations were used for analysis of transfected cells. C-atoms 1 and 2 of the myrtenol backbone were identified as crucial to preserve positive allosteric potential. A modification at C-atom 2 and lack of the hydroxyl group at C-atom 1 exhibited significantly reduced GABAergic currents at α1β2, α1β2γ, α2β3, α2β3γ and α4β3δ receptors. This effect was independent of the γ2 subunit. A sub-screen with side chain length and volume differences at the C-atom 1 identified two compounds that inhibited GABAergic responses but without receptor subtype specificity. Our combined approach of pharmacophore-based virtual screening and functional readouts reveals that side chain modifications of the bridged six-membered ring structure of myrtenol are crucial for its modulatory potential at GABAA receptors.
Acknowledgments
We would like to thank Dr. Lampros Milanos for critical reading of the manuscript and his helpful comments. Gudrun Schell and Nadine Vornberger are highly acknowledged for their excellent technical assistance. This work was supported by DFG VI586 (C.V.), (Funder Id: 10.13039/501100001659) and the Staedtler Stiftung (D.F.G.). The Novo Nordisk Foundation Center for Basic Metabolic Research and the Novo Nordisk Foundation Center for Protein Research (NNF14CC0001) are supported by an unconditional grant from the Novo Nordisk Foundation to the University of Copenhagen.
Conflict of interest statement: The authors state that there is no conflict of interest.
References
Babateen, O., Jin, Z., Bhandage, A., Korol, S.V., Westermark, B., Forsberg Nilsson, K., Uhrbom, L., Smits, A., and Birnir, B. (2015). Etomidate, propofol and diazepam potentiate GABA-evoked GABAA currents in a cell line derived from human glioblastoma. Eur. J. Pharmacol. 748, 101–107.10.1016/j.ejphar.2014.12.001Search in Google Scholar
Baumann, S.W., Baur, R., and Sigel, E. (2001). Subunit arrangement of γ-aminobutyric acid type A receptors. J. Biol. Chem. 276, 36275–36280.10.1074/jbc.M105240200Search in Google Scholar
Benke, D., Barberis, A., Kopp, S., Altmann, K.H., Schubiger, M., Vogt, K.E., Rudolph, U., and Mohler, H. (2009). GABA A receptors as in vivo substrate for the anxiolytic action of valerenic acid, a major constituent of valerian root extracts. Neuropharmacology 56, 174–181.10.1016/j.neuropharm.2008.06.013Search in Google Scholar
Boileau, A.J., Pearce, R.A., and Czajkowski, C. (2005). Tandem subunits effectively constrain GABAA receptor stoichiometry and recapitulate receptor kinetics but are insensitive to GABAA receptor-associated protein. J. Neurosci. 25, 11219–11230.10.1523/JNEUROSCI.3751-05.2005Search in Google Scholar
Botzolakis, E.J., Gurba, K.N., Lagrange, A.H., Feng, H.J., Stanic, A.K., Hu, N., and Macdonald, R.L. (2016). Comparison of γ-aminobutyric acid, type A (GABAA), receptor αβγ and αβδ expression using flow cytometry and electrophysiology: evidence for alternative subunit stoichiometries and arrangements. J. Biol. Chem. 291, 20440–20461.10.1074/jbc.M115.698860Search in Google Scholar
Chiara, D.C., Jayakar, S.S., Zhou, X., Zhang, X., Savechenkov, P.Y., Bruzik, K.S., Miller, K.W., and Cohen, J.B. (2013). Specificity of intersubunit general anesthetic-binding sites in the transmembrane domain of the human α1β3γ2γ-aminobutyric acid type A (GABAA) receptor. J. Biol. Chem. 288, 19343–19357.10.1074/jbc.M113.479725Search in Google Scholar
Connolly, C.N. and Wafford, K.A. (2004). The Cys-loop superfamily of ligand-gated ion channels: the impact of receptor structure on function. Biochem. Soc. Trans. 32, 529–534.10.1042/bst0320529Search in Google Scholar
Desai, R., Savechenkov, P.Y., Zolkowska, D., Ge, R.L., Rogawski, M.A., Bruzik, K.S., Forman, S.A., Raines, D.E., and Miller, K.W. (2015). Contrasting actions of a convulsant barbiturate and its anticonvulsant enantiomer on the α1 β3 γ2L GABAA receptor account for their in vivo effects. J. Physiol. 593, 4943–4961.10.1113/JP270971Search in Google Scholar
Fedurco, M., Gregorova, J., Sebrlova, K., Kantorova, J., Pes, O., Baur, R., Sigel, E., and Taborska, E. (2015). Modulatory effects of Eschscholzia californica alkaloids on recombinant GABAA receptors. Biochem. Res. Int. 2015, 617620.10.1155/2015/617620Search in Google Scholar
Galietta, L.J., Haggie, P.M., and Verkman, A.S. (2001). Green fluorescent protein-based halide indicators with improved chloride and iodide affinities. FEBS Lett. 499, 220–224.10.1016/S0014-5793(01)02561-3Search in Google Scholar
Gilbert, D., Esmaeili, A., and Lynch, J.W. (2009a). Optimizing the expression of recombinant αβγ GABAA receptors in HEK293 cells for high-throughput screening. J. Biomol. Screen. 14, 86–91.10.1177/1087057108328017Search in Google Scholar
Gilbert, D.F., Islam, R., Lynagh, T., Lynch, J.W., and Webb, T.I. (2009b). High throughput techniques for discovering new glycine receptor modulators and their binding sites. Front. Mol. Neurosci. 2, 17.10.3389/neuro.02.017.2009Search in Google Scholar
Giustetto, M., Kirsch, J., Fritschy, J.M., Cantino, D., and Sassoe-Pognetto, M. (1998). Localization of the clustering protein gephyrin at GABAergic synapses in the main olfactory bulb of the rat. J. Comp. Neurol. 395, 231–244.10.1002/(SICI)1096-9861(19980601)395:2<231::AID-CNE7>3.0.CO;2-3Search in Google Scholar
Haut, S.R., Seinfeld, S., and Pellock, J. (2016). Benzodiazepine use in seizure emergencies: a systematic review. Epilepsy Behav. 63, 109–117.10.1016/j.yebeh.2016.07.018Search in Google Scholar
Hosie, A.M., Dunne, E.L., Harvey, R.J., and Smart, T.G. (2003). Zinc-mediated inhibition of GABA(A) receptors: discrete binding sites underlie subtype specificity. Nat. Neurosci. 6, 362–369.10.1038/nn1030Search in Google Scholar
Hosie, A.M., Wilkins, M.E., da Silva, H.M., and Smart, T.G. (2006). Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites. Nature 444, 486–489.10.1038/nature05324Search in Google Scholar
Hossain, S.J., Hamamoto, K., Aoshima, H., and Hara, Y. (2002). Effects of tea components on the response of GABAA receptors expressed in Xenopus oocytes. J. Agric. Food Chem. 50, 3954–3960.10.1021/jf011607hSearch in Google Scholar
Irwin, J.J., Sterling, T., Mysinger, M.M., Bolstad, E.S., and Coleman, R.G. (2012). ZINC: a free tool to discover chemistry for biology. J. Chem. Inf. Model. 52, 1757–1768.10.1021/ci3001277Search in Google Scholar
Jayakar, S.S., Zhou, X., Savechenkov, P.Y., Chiara, D.C., Desai, R., Bruzik, K.S., Miller, K.W., and Cohen, J.B. (2015). Positive and negative allosteric modulation of an α1β3γ2 γ-aminobutyric acid type A (GABAA) receptor by binding to a site in the transmembrane domain at the γ +-β− interface. J. Biol. Chem. 290, 23432–23446.10.1074/jbc.M115.672006Search in Google Scholar
Kessler, A., Sahin-Nadeem, H., Lummis, S.C., Weigel, I., Pischetsrieder, M., Buettner, A., and Villmann, C. (2014). GABAA receptor modulation by terpenoids from Sideritis extracts. Mol. Nutr. Food Res. 58, 851–862.10.1002/mnfr.201300420Search in Google Scholar
Khom, S., Baburin, I., Timin, E., Hohaus, A., Trauner, G., Kopp, B., and Hering S. (2007). Valerenic acid potentiates and inhibits GABAA receptors: molecular mechanism and subunit specificity. Neuropharmacology 53, 178–187.10.1016/j.neuropharm.2007.04.018Search in Google Scholar PubMed
Klausberger, T., Sarto, I., Ehya, N., Fuchs, K., Furtmuller, R., Mayer, B., Huck, S., and Sieghart, W. (2001). Alternate use of distinct intersubunit contacts controls GABAA receptor assembly and stoichiometry. J. Neurosci. 21, 9124–9133.10.1523/JNEUROSCI.21-23-09124.2001Search in Google Scholar
Knight, A.R., Stephenson, F.A., Tallman, J.F., and Ramabahdran, T.V. (2000). Monospecific antibodies as probes for the stoichiometry of recombinant GABAA receptors. Receptors Channels 7, 213–226.Search in Google Scholar
Kopp, S., Baur, R., Sigel, E., Mohler, H., and Altmann, K.H. (2010). Highly potent modulation of GABAA receptors by valerenic acid derivatives. ChemMedChem 5, 678–681.10.1002/cmdc.201000062Search in Google Scholar PubMed
Kuenzel, K., Friedrich, O., and Gilbert, D.F. (2016). A recombinant human pluripotent stem cell line stably expressing halide-sensitive YFP-I152L for GABAAR and GlyR-targeted high-throughput drug screening and toxicity testing. Front. Mol. Neurosci. 9, 51.10.3389/fnmol.2016.00051Search in Google Scholar PubMed PubMed Central
Laverty, D., Thomas, P., Field, M., Andersen, O.J., Gold, M.G., Biggin, P.C., Gielen, M., and Smart, T.G. (2017). Crystal structures of a GABAA-receptor chimera reveal new endogenous neurosteroid-binding sites. Nat. Struct. Mol. Biol. 24, 977–985.10.1038/nsmb.3477Search in Google Scholar PubMed PubMed Central
Low, K., Crestani, F., Keist, R., Benke, D., Brunig, I., Benson, J.A., Fritschy, J. M., Rulicke, T., Bluethmann, H., Mohler, H., et al. (2000). Molecular and neuronal substrate for the selective attenuation of anxiety. Science 290, 131–134.10.1126/science.290.5489.131Search in Google Scholar PubMed
Manayi, A., Nabavi, S.M., Daglia, M., and Jafari, S. (2016). Natural terpenoids as a promising source for modulation of GABAergic system and treatment of neurological diseases. Pharmacol. Rep. 68, 671–679.10.1016/j.pharep.2016.03.014Search in Google Scholar PubMed
McKernan, R.M., Rosahl, T.W., Reynolds, D.S., Sur, C., Wafford, K.A., Atack, J.R., Farrar, S., Myers, J., Cook, G., Ferris, P., et al. (2000). Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABAA receptor α1 subtype. Nat. Neurosci. 3, 587–592.10.1038/75761Search in Google Scholar PubMed
Menini, A., Lagostena, L., and Boccaccio, A. (2004). Olfaction: from odorant molecules to the olfactory cortex. News Physiol. Sci. 19, 101–104.10.1152/nips.1507.2003Search in Google Scholar PubMed
Middendorp, S.J., Hurni, E., Schonberger, M., Stein, M., Pangerl, M., Trauner, D., and Sigel E. (2014). Relative positioning of classical benzodiazepines to the γ2-subunit of GABAA receptors. ACS Chem. Biol. 9, 1846–1853.10.1021/cb500186aSearch in Google Scholar PubMed
Miller, P.S., Scott, S., Masiulis, S., De Colibus, L., Pardon, E., Steyaert, J., and Aricescu, A.R. (2017). Structural basis for GABAA receptor potentiation by neurosteroids. Nat. Struct. Mol. Biol. 24, 986–992.10.1038/nsmb.3484Search in Google Scholar PubMed PubMed Central
Möhler, H. (2007). Molecular regulation of cognitive functions and developmental plasticity: impact of GABAA receptors. J. Neurochem. 102, 1–12.10.1111/j.1471-4159.2007.04454.xSearch in Google Scholar PubMed
Möhler, H., Benke, D., Rudolph, U., and Fritschy, J.M. (2010). GABAA receptors. In: Ion Channels: From Structure to Function, J. Kew and C. Davies, eds. (Canada: Oxford Univerity Press), pp. 263–276.Search in Google Scholar
Mortensen, M., Ebert, B., Wafford, K., and Smart, T.G. (2010). Distinct activities of GABA agonists at synaptic- and extrasynaptic-type GABAA receptors. J. Physiol. 588, 1251–1268.10.1113/jphysiol.2009.182444Search in Google Scholar PubMed PubMed Central
Nury, H., Van Renterghem, C., Weng, Y., Tran, A., Baaden, M., Dufresne, V., Changeux, J.P., Sonner, J.M., Delarue, M., and Corringer, P. J. (2011). X-ray structures of general anaesthetics bound to a pentameric ligand-gated ion channel. Nature 469, 428–431.10.1038/nature09647Search in Google Scholar PubMed
Nys, M., Wijckmans, E., Farinha, A., Yoluk, O., Andersson, M., Brams, M., Spurny, R., Peigneur, S., Tytgat, J., Lindahl, E., et al. (2016). Allosteric binding site in a Cys-loop receptor ligand-binding domain unveiled in the crystal structure of ELIC in complex with chlorpromazine. Proc. Natl. Acad. Sci. USA 113, E6696–E6703.10.1073/pnas.1603101113Search in Google Scholar PubMed PubMed Central
O’Boyle, N.M., Banck, M., James, C.A., Morley, C., Vandermeersch, T., and Hutchison, G.R. (2011). Open Babel: an open chemical toolbox. J. Cheminform. 3, 33.10.1186/1758-2946-3-33Search in Google Scholar PubMed PubMed Central
Olsen, R.W. and Sieghart, W. (2009). GABAA receptors: subtypes provide diversity of function and pharmacology. Neuropharmacology 56, 141–148.10.1016/j.neuropharm.2008.07.045Search in Google Scholar PubMed PubMed Central
Patel, B., Mortensen, M., and Smart, T.G. (2014). Stoichiometry of delta subunit containing GABAA receptors. Br. J. Pharmacol. 171, 985–994.10.1111/bph.12514Search in Google Scholar PubMed PubMed Central
Peng, Z., Hauer, B., Mihalek, R.M., Homanics, G.E., Sieghart, W., Olsen, R.W., and Houser, C.R. (2002). GABAA receptor changes in δ subunit-deficient mice: altered expression of α4 and γ2 subunits in the forebrain. J. Comp. Neurol. 446, 179–197.10.1002/cne.10210Search in Google Scholar PubMed
Puthenkalam, R., Hieckel, M., Simeone, X., Suwattanasophon, C., Feldbauer, R.V., Ecker, G.F., and Ernst M. (2016). Structural studies of GABAA receptor binding sites: which experimental structure tells us what? Front. Mol. Neurosci. 9, 44.10.3389/fnmol.2016.00044Search in Google Scholar PubMed PubMed Central
Sieghart, W., Ramerstorfer, J., Sarto-Jackson, I., Varagic, Z., and Ernst, M. (2012). A novel GABAA receptor pharmacology: drugs interacting with the α(+) β(-) interface. Br. J. Pharmacol. 166, 476–485.10.1111/j.1476-5381.2011.01779.xSearch in Google Scholar PubMed PubMed Central
Simon, J., Wakimoto, H., Fujita, N., Lalande, M., and Barnard, E.A. (2004). Analysis of the set of GABA(A) receptor genes in the human genome. J. Biol. Chem. 279, 41422–41435.10.1074/jbc.M401354200Search in Google Scholar PubMed
Soto, P.L., Ator, N.A., Rallapalli, S.K., Biawat, P., Clayton, T., Cook, J.M., and Weed, M.R. (2013). Allosteric modulation of GABAA receptor subtypes:effects on visual recognition and visuospatial working memory in rhesus monkeys. Neuropsychopharmacology 38, 2315–2325.10.1038/npp.2013.137Search in Google Scholar PubMed PubMed Central
Totrov, M. (2008). Atomic property fields: generalized 3D pharmacophoric potential for automated ligand superposition, pharmacophore elucidation and 3D QSAR. Chem. Biol. Drug Des. 71, 15–27.10.1111/j.1747-0285.2007.00605.xSearch in Google Scholar PubMed
Tracy, M.E., Banks, M.L., and Shelton, K.L. (2016). Negative allosteric modulation of GABAA receptors inhibits facilitation of brain stimulation reward by drugs of abuse in C57BL6/J mice. Psychopharmacology (Berl.) 233, 715–725.10.1007/s00213-015-4155-zSearch in Google Scholar PubMed PubMed Central
van Brederode, J., Atak, S., Kessler, A., Pischetsrieder, M., Villmann, C., and Alzheimer, C. (2016). The terpenoids Myrtenol and Verbenol act on δ subunit-containing GABAA receptors and enhance tonic inhibition in dentate gyrus granule cells. Neurosci. Lett. 628, 91–97.10.1016/j.neulet.2016.06.027Search in Google Scholar PubMed
Vasilopoulou, C.G., Kontogianni, V.G., Linardaki, Z.I., Iatrou, G., Lamari, F.N., Nerantzaki, A.A., Gerothanassis, I.P., Tzakos, A.G., and Margarity, M. (2013). Phytochemical composition of “mountain tea” from Sideritis clandestina subsp. clandestina and evaluation of its behavioral and oxidant/antioxidant effects on adult mice. Eur. J. Nutr. 52, 107–116.10.1007/s00394-011-0292-2Search in Google Scholar PubMed
Walzik, M.P., Vollmar, V., Lachnit, T., Dietz, H., Haug, S., Bachmann, H., Fath, M., Aschenbrenner, D., Mofrad, S.A., Friedrich, O., et al. (2015). A portable low-cost long-term live-cell imaging platform for biomedical research and education. Biosens. Bioelectron. 64, 639–649.10.1016/j.bios.2014.09.061Search in Google Scholar PubMed
Wisden, W. and Moss, S.J. (1997). γ-Aminobutyric acid type A receptor subunit assembly and sorting: gene targeting and cell biology approaches. Biochem. Soc. Trans. 25, 820–824.10.1042/bst0250820Search in Google Scholar PubMed
Wongsamitkul, N., Baur, R., and Sigel, E. (2016). Toward understanding functional properties and subunit arrangement of α4β2δ γ-aminobutyric acid, type A (GABAA) receptors. J. Biol. Chem. 291, 18474–18483.10.1074/jbc.M116.738906Search in Google Scholar PubMed PubMed Central
Yamaura, K., Kiyonaka, S., Numata, T., Inoue, R., and Hamachi, I. (2016). Discovery of allosteric modulators for GABAA receptors by ligand-directed chemistry. Nat. Chem. Biol. 12, 822–830.10.1038/nchembio.2150Search in Google Scholar PubMed
Yang, H., Woo, J., Pae, A.N., Um, M.Y., Cho, N.C., Park, K.D., Yoon, M., Kim, J., Lee, C.J., and Cho, S. (2016). α-Pinene, a major constituent of pine tree oils, enhances non-rapid eye movement sleep in mice through GABAA-benzodiazepine receptors. Mol. Pharmacol. 90, 530–539.10.1124/mol.116.105080Search in Google Scholar PubMed
Supplemental Material:
The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2017-0262).
©2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Reviews
- Hodgkin lymphoma cell lines: to separate the wheat from the chaff
- The AGO proteins: an overview
- Research Articles/Short Communications
- Protein Structure and Function
- Structural changes at the myrtenol backbone reverse its positive allosteric potential into inhibitory GABAA receptor modulation
- The two major glucokinase isoforms show conserved functionality in β-cells despite different subcellular distribution
- Functional characterization of the mouse Serpina1 paralog DOM-7
- Cell Biology and Signaling
- CD45RO regulates the HIV-1 gp120-mediated apoptosis of T cells by activating Lck
- Silencing of MED27 inhibits adrenal cortical carcinogenesis by targeting the Wnt/β-catenin signaling pathway and the epithelial-mesenchymal transition process
- HDAC1 knockdown inhibits invasion and induces apoptosis in non-small cell lung cancer cells
- Hepatitis B virus X protein promotes proliferation of hepatocellular carcinoma cells by upregulating miR-181b by targeting ING5
Articles in the same Issue
- Frontmatter
- Reviews
- Hodgkin lymphoma cell lines: to separate the wheat from the chaff
- The AGO proteins: an overview
- Research Articles/Short Communications
- Protein Structure and Function
- Structural changes at the myrtenol backbone reverse its positive allosteric potential into inhibitory GABAA receptor modulation
- The two major glucokinase isoforms show conserved functionality in β-cells despite different subcellular distribution
- Functional characterization of the mouse Serpina1 paralog DOM-7
- Cell Biology and Signaling
- CD45RO regulates the HIV-1 gp120-mediated apoptosis of T cells by activating Lck
- Silencing of MED27 inhibits adrenal cortical carcinogenesis by targeting the Wnt/β-catenin signaling pathway and the epithelial-mesenchymal transition process
- HDAC1 knockdown inhibits invasion and induces apoptosis in non-small cell lung cancer cells
- Hepatitis B virus X protein promotes proliferation of hepatocellular carcinoma cells by upregulating miR-181b by targeting ING5