Startseite Brain plasticity, cognitive functions and neural stem cells: a pivotal role for the brain-specific neural master gene |-SRGAP2–FAM72-|
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Brain plasticity, cognitive functions and neural stem cells: a pivotal role for the brain-specific neural master gene |-SRGAP2–FAM72-|

  • Nguyen Thi Thanh Ho , Arne Kutzner und Klaus Heese ORCID logo EMAIL logo
Veröffentlicht/Copyright: 1. Dezember 2017

Abstract

Due to an aging society with an increased dementia-induced threat to higher cognitive functions, it has become imperative to understand the molecular and cellular events controlling the memory and learning processes in the brain. Here, we suggest that the novel master gene pair |-SRGAP2–FAM72-| (SLIT-ROBO Rho GTPase activating the protein 2, family with sequence similarity to 72) reveals a new dogma for the regulation of neural stem cell (NSC) gene expression and is a distinctive player in the control of human brain plasticity. Insight into the specific regulation of the brain-specific neural master gene |-SRGAP2–FAM72-| may essentially contribute to novel therapeutic approaches to restore or improve higher cognitive functions.

Acknowledgments

This study was supported by Hanyang University, which provided a scholarship to Ms. Nguyen Thi Thanh Ho, and by the Basic Science Research Program through the National Research Foundation of Korea (NRF), which was funded by the Ministry of Education (2015R1D1A1A01057243).

  1. Conflict of interest statement: The authors declare that they have no conflicts of interest.

References

Anand, S.K. and Mondal, A.C. (2017). Cellular and molecular attributes of neural stem cell niches in adult zebrafish brain. Dev. Neurobiol. 77, 1188–1205.10.1002/dneu.22508Suche in Google Scholar PubMed

Batista, P.J. and Chang, H.Y. (2013). Long noncoding RNAs: cellular address codes in development and disease. Cell 152, 1298–1307.10.1016/j.cell.2013.02.012Suche in Google Scholar PubMed PubMed Central

Beckervordersandforth, R., Zhang, C.L., and Lie, D.C. (2015). Transcription-factor-dependent control of adult hippocampal neurogenesis. Cold Spring Harb. Perspect. Biol. 7, a018879.10.1101/cshperspect.a018879Suche in Google Scholar PubMed PubMed Central

Benayoun, B.A., Pollina, E.A., Ucar, D., Mahmoudi, S., Karra, K., Wong, E.D., Devarajan, K., Daugherty, A.C., Kundaje, A.B., Mancini, E., et al. (2014). H3K4me3 breadth is linked to cell identity and transcriptional consistency. Cell 158, 673–688.10.1016/j.cell.2014.06.027Suche in Google Scholar PubMed PubMed Central

Bergmann, O., Spalding, K.L., and Frisen, J. (2015). Adult neurogenesis in humans. Cold Spring Harb. Perspect. Biol. 7, a018994.10.1101/cshperspect.a018994Suche in Google Scholar PubMed PubMed Central

Bottai, D., Fiocco, R., Gelain, F., Defilippis, L., Galli, R., Gritti, A., and Vescovi, L.A. (2003). Neural stem cells in the adult nervous system. J. Hematother. Stem Cell Res. 12, 655–670.10.1089/15258160360732687Suche in Google Scholar PubMed

Boulanger, J.J. and Messier, C. (2014). From precursors to myelinating oligodendrocytes: contribution of intrinsic and extrinsic factors to white matter plasticity in the adult brain. Neuroscience 269, 343–366.10.1016/j.neuroscience.2014.03.063Suche in Google Scholar PubMed

Brann, J.H. and Firestein, S.J. (2014). A lifetime of neurogenesis in the olfactory system. Front. Neurosci. 8, 182.10.3389/fnins.2014.00182Suche in Google Scholar PubMed PubMed Central

Braun, S.M. and Jessberger, S. (2014a). Adult neurogenesis and its role in neuropsychiatric disease, brain repair and normal brain function. Neuropathol. Appl. Neurobiol. 40, 3–12.10.1111/nan.12107Suche in Google Scholar PubMed

Braun, S.M. and Jessberger, S. (2014b). Adult neurogenesis: mechanisms and functional significance. Development 141, 1983–1986.10.1242/dev.104596Suche in Google Scholar PubMed

Bruel-Jungerman, E., Davis, S., and Laroche, S. (2007a). Brain plasticity mechanisms and memory: a party of four. Neuroscientist 13, 492–505.10.1177/1073858407302725Suche in Google Scholar PubMed

Bruel-Jungerman, E., Rampon, C., and Laroche, S. (2007b). Adult hippocampal neurogenesis, synaptic plasticity and memory: facts and hypotheses. Rev. Neurosci. 18, 93–114.10.1515/REVNEURO.2007.18.2.93Suche in Google Scholar

Campos, L.S. (2004). Neurospheres: insights into neural stem cell biology. J. Neurosci. Res. 78, 761–769.10.1002/jnr.20333Suche in Google Scholar PubMed

Charrier, C., Joshi, K., Coutinho-Budd, J., Kim, J.E., Lambert, N., de Marchena, J., Jin, W.L., Vanderhaeghen, P., Ghosh, A., Sassa, T., et al. (2012). Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation. Cell 149, 923–935.10.1016/j.cell.2012.03.034Suche in Google Scholar PubMed PubMed Central

Cheetham, C.E., Park, U., and Belluscio, L. (2016). Rapid and continuous activity-dependent plasticity of olfactory sensory input. Nat. Commun. 7, 10729.10.1038/ncomms10729Suche in Google Scholar PubMed PubMed Central

Colbran, R.J. (2015). Thematic minireview series: molecular mechanisms of synaptic plasticity. J. Biol. Chem. 290, 28594–28595.10.1074/jbc.R115.696468Suche in Google Scholar PubMed PubMed Central

Conover, J.C. and Todd, K.L. (2017). Development and aging of a brain neural stem cell niche. Exp. Gerontol. 94, 9–13.10.1016/j.exger.2016.11.007Suche in Google Scholar PubMed PubMed Central

Conti, L., Pollard, S.M., Gorba, T., Reitano, E., Toselli, M., Biella, G., Sun, Y., Sanzone, S., Ying, Q.L., Cattaneo, E., et al. (2005). Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biol. 3, e283.10.1371/journal.pbio.0030283Suche in Google Scholar PubMed PubMed Central

Costa, V., Lugert, S., and Jagasia, R. (2015). Role of adult hippocampal neurogenesis in cognition in physiology and disease: pharmacological targets and biomarkers. Handb. Exp. Pharmacol. 228, 99–155.10.1007/978-3-319-16522-6_4Suche in Google Scholar PubMed

Delcuve, G.P., Rastegar, M., and Davie, J.R. (2009). Epigenetic control. J. Cell. Physiol. 219, 243–250.10.1002/jcp.21678Suche in Google Scholar PubMed

Delgado-Morales, R., Agis-Balboa, R.C., Esteller, M., and Berdasco, M. (2017). Epigenetic mechanisms during ageing and neurogenesis as novel therapeutic avenues in human brain disorders. Clin. Epigenet. 9, 67.10.1186/s13148-017-0365-zSuche in Google Scholar PubMed PubMed Central

Dennis, M.Y., Nuttle, X., Sudmant, P.H., Antonacci, F., Graves, T.A., Nefedov, M., Rosenfeld, J.A., Sajjadian, S., Malig, M., Kotkiewicz, H., et al. (2012). Evolution of human-specific neural SRGAP2 genes by incomplete segmental duplication. Cell 149, 912–922.10.1016/j.cell.2012.03.033Suche in Google Scholar PubMed PubMed Central

Dery, N., Goldstein, A., and Becker, S. (2015). A role for adult hippocampal neurogenesis at multiple time scales: a study of recent and remote memory in humans. Behav. Neurosci. 129, 435–449.10.1037/bne0000073Suche in Google Scholar PubMed

Dorszewska, J. (2013). Cell biology of normal brain aging: synaptic plasticity-cell death. Aging Clin. Exp. Res. 25, 25–34.10.1007/s40520-013-0004-2Suche in Google Scholar PubMed

Ernst, A. and Frisen, J. (2015). Adult neurogenesis in humans- common and unique traits in mammals. PLoS Biol. 13, e1002045.10.1371/journal.pbio.1002045Suche in Google Scholar PubMed PubMed Central

Ernst, A., Alkass, K., Bernard, S., Salehpour, M., Perl, S., Tisdale, J., Possnert, G., Druid, H., and Frisen, J. (2014). Neurogenesis in the striatum of the adult human brain. Cell 156, 1072–1083.10.1016/j.cell.2014.01.044Suche in Google Scholar PubMed

Faigle, R. and Song, H. (2013). Signaling mechanisms regulating adult neural stem cells and neurogenesis. Biochim. Biophys. Acta 1830, 2435–2448.10.1016/j.bbagen.2012.09.002Suche in Google Scholar PubMed PubMed Central

Filippenkov, I.B., Kalinichenko, E.O., Limborska, S.A., and Dergunova, L.V. (2017). Circular RNAs-one of the enigmas of the brain. Neurogenetics 18, 1–6.10.1007/s10048-016-0490-4Suche in Google Scholar PubMed

Fossati, M., Pizzarelli, R., Schmidt, E.R., Kupferman, J.V., Stroebel, D., Polleux, F., and Charrier, C. (2016). SRGAP2 and its human-specific paralog co-regulate the development of excitatory and inhibitory synapses. Neuron 91, 356–369.10.1016/j.neuron.2016.06.013Suche in Google Scholar PubMed PubMed Central

Gage, F.H. (2000). Mammalian neural stem cells. Science 287, 1433–1438.10.1126/science.287.5457.1433Suche in Google Scholar PubMed

Geschwind, D.H. and Konopka, G. (2012). Neuroscience: genes and human brain evolution. Nature 486, 481–482.10.1038/nature11380Suche in Google Scholar

Geschwind, D.H. and Rakic, P. (2013). Cortical evolution: judge the brain by its cover. Neuron 80, 633–647.10.1016/j.neuron.2013.10.045Suche in Google Scholar

Ghirardi, M., Montarolo, P.G., and Kandel, E.R. (1995). A novel intermediate stage in the transition between short- and long-term facilitation in the sensory to motor neuron synapse of aplysia. Neuron 14, 413–420.10.1016/0896-6273(95)90297-XSuche in Google Scholar

Grimes, M.T., Harley, C.W., Darby-King, A., and McLean, J.H. (2012). PKA increases in the olfactory bulb act as unconditioned stimuli and provide evidence for parallel memory systems: pairing odor with increased PKA creates intermediate- and long-term, but not short-term, memories. Learn. Mem. 19, 107–115.10.1101/lm.024489.111Suche in Google Scholar PubMed

Guo, C., Zhang, X., Fink, S.P., Platzer, P., Wilson, K., Willson, J.K., Wang, Z., and Markowitz, S.D. (2008). Ugene, a newly identified protein that is commonly overexpressed in cancer and binds uracil DNA glycosylase. Cancer Res. 68, 6118–6126.10.1158/0008-5472.CAN-08-1259Suche in Google Scholar PubMed PubMed Central

Hayashi, Y., Okamoto, K., Bosch, M., and Futai, K. (2012). Roles of neuronal activity-induced gene products in Hebbian and homeostatic synaptic plasticity, tagging, and capture. Adv. Exp. Med. Biol. 970, 335–354.10.1007/978-3-7091-0932-8_15Suche in Google Scholar PubMed

Heese, K. (2013). The protein p17 signaling pathways in cancer. Tumour Biol. 34, 4081–4087.10.1007/s13277-013-0999-1Suche in Google Scholar PubMed

Heese, K. (2015). Ageing, dementia and society – an epistemological perspective. Springerplus 4, 135.10.1186/s40064-015-0910-1Suche in Google Scholar PubMed PubMed Central

Heese, K., Low, J.W., and Inoue, N. (2006). Nerve growth factor, neural stem cells and Alzheimer’s disease. Neurosignals 15, 1–12.10.1159/000094383Suche in Google Scholar PubMed

Ho, V.M., Lee, J.A., and Martin, K.C. (2011). The cell biology of synaptic plasticity. Science 334, 623–628.10.1126/science.1209236Suche in Google Scholar PubMed PubMed Central

Ho, T.T., Kim, P.S., Kutzner, A., and Heese, K. (2017). Cognitive functions: human vs. animal – 4:1 advantage |-FAM72–SRGAP2-|. J. Mol. Neurosci. 61, 603–606.10.1007/s12031-017-0901-5Suche in Google Scholar PubMed

Horgusluoglu, E., Nudelman, K., Nho, K., and Saykin, A.J. (2017). Adult neurogenesis and neurodegenerative diseases: a systems biology perspective. Am. J. Med. Genet. B Neuropsychiatr. Genet. 174, 93–112.10.1002/ajmg.b.32429Suche in Google Scholar PubMed PubMed Central

Inta, D., Lang, U.E., Borgwardt, S., Meyer-Lindenberg, A., and Gass, P. (2016). Adult neurogenesis in the human striatum: possible implications for psychiatric disorders. Mol. Psychiatry 21, 446–447.10.1038/mp.2016.8Suche in Google Scholar PubMed

Islam, M.M. and Zhang, C.L. (2015). TLX: a master regulator for neural stem cell maintenance and neurogenesis. Biochim. Biophys. Acta 1849, 210–216.10.1016/j.bbagrm.2014.06.001Suche in Google Scholar PubMed PubMed Central

Jagasia, R., Song, H., Gage, F.H., and Lie, D.C. (2006). New regulators in adult neurogenesis and their potential role for repair. Trends Mol. Med. 12, 400–405.10.1016/j.molmed.2006.07.006Suche in Google Scholar PubMed

Jessberger, S. and Gage, F.H. (2014). Adult neurogenesis: bridging the gap between mice and humans. Trends Cell Biol. 24, 558–563.10.1016/j.tcb.2014.07.003Suche in Google Scholar PubMed

Kandel, E.R. (2001). The molecular biology of memory storage: a dialogue between genes and synapses. Science 294, 1030–1038.10.1126/science.1067020Suche in Google Scholar PubMed

Kandel, E.R., Schwartz, J.H., Jessel, T.M., Siegelbaum, S.A., and Hudspeth, A.J. (2012). Learning and Memory: Principles of Neural Science (New York, NY: McGraw-Hill Education).Suche in Google Scholar

Kang, J.M., Yeon, B.K., Cho, S.J., and Suh, Y.H. (2016). Stem cell therapy for Alzheimer’s disease: a review of recent clinical trials. J. Alzheimers Dis. 54, 879–889.10.3233/JAD-160406Suche in Google Scholar PubMed

Kelsch, W., Sim, S., and Lois, C. (2010). Watching synaptogenesis in the adult brain. Annu. Rev. Neurosci. 33, 131–149.10.1146/annurev-neuro-060909-153252Suche in Google Scholar PubMed

Kempermann, G. (2014). Off the beaten track: new neurons in the adult human striatum. Cell 156, 870–871.10.1016/j.cell.2014.02.027Suche in Google Scholar PubMed

Kim, S., Kim, M.K., Oh, D., Lee, S.H., and Kim, B. (2016). Induced pluripotent stem cells as a novel tool in psychiatric research. Psychiatry Investig. 13, 8–17.10.4306/pi.2016.13.1.8Suche in Google Scholar PubMed PubMed Central

Klein, C. and Fishell, G. (2004). Neural stem cells: progenitors or panacea? Dev. Neurosci. 26, 82–92.10.1159/000082129Suche in Google Scholar PubMed

Kumari, U. and Heese, K. (2010). Cardiovascular dementia – a different perspective. Open Biochem. J. 4, 29–52.10.2174/1874091X01004010029Suche in Google Scholar PubMed PubMed Central

Kutzner, A., Pramanik, S., Kim, P.S., and Heese, K. (2015). All-or-(N)One – an epistemological characterization of the human tumorigenic neuronal paralogous FAM72 gene loci. Genomics 106, 278–285.10.1016/j.ygeno.2015.07.003Suche in Google Scholar PubMed

Lennington, J.B., Yang, Z., and Conover, J.C. (2003). Neural stem cells and the regulation of adult neurogenesis. Reprod. Biol. Endocrinol. 1, 99.10.1186/1477-7827-1-99Suche in Google Scholar PubMed PubMed Central

Lieberwirth, C., Pan, Y., Liu, Y., Zhang, Z., and Wang, Z. (2016). Hippocampal adult neurogenesis: its regulation and potential role in spatial learning and memory. Brain Res. 1644, 127–140.10.1016/j.brainres.2016.05.015Suche in Google Scholar PubMed PubMed Central

Llorens-Bobadilla, E. and Martin-Villalba, A. (2016). Adult NSC diversity and plasticity: the role of the niche. Curr. Opin. Neurobiol. 42, 68–74.10.1016/j.conb.2016.11.008Suche in Google Scholar PubMed

Mattick, J.S. (2009). Deconstructing the dogma: a new view of the evolution and genetic programming of complex organisms. Ann. N.Y. Acad. Sci. 1178, 29–46.10.1111/j.1749-6632.2009.04991.xSuche in Google Scholar PubMed

Miller, C.A. and Sweatt, J.D. (2007). Covalent modification of DNA regulates memory formation. Neuron 53, 857–869.10.1016/j.neuron.2007.02.022Suche in Google Scholar PubMed

Ming, G.L. and Song, H. (2005). Adult neurogenesis in the mammalian central nervous system. Annu. Rev. Neurosci. 28, 223–250.10.1146/annurev.neuro.28.051804.101459Suche in Google Scholar PubMed

Mongiat, L.A. and Schinder, A.F. (2011). Adult neurogenesis and the plasticity of the dentate gyrus network. Eur. J. Neurosci. 33, 1055–1061.10.1111/j.1460-9568.2011.07603.xSuche in Google Scholar

Muller, D. and Nikonenko, I. (2003). Dynamic presynaptic varicosities: a role in activity-dependent synaptogenesis. Trends Neurosci. 26, 573–575.10.1016/j.tins.2003.08.010Suche in Google Scholar

Nagata, K., Yamazaki, T., Takano, D., Maeda, T., Fujimaki, Y., Nakase, T., and Sato, Y. (2016). Cerebral circulation in aging. Ageing Res. Rev. 30, 49–60.10.1016/j.arr.2016.06.001Suche in Google Scholar

Nehar, S., Mishra, M., and Heese, K. (2009). Identification and characterisation of the novel amyloid-beta peptide-induced protein p17. FEBS Lett. 583, 3247–3253.10.1016/j.febslet.2009.09.018Suche in Google Scholar

Neves, G., Cooke, S.F., and Bliss, T.V. (2008). Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat. Rev. Neurosci. 9, 65–75.10.1038/nrn2303Suche in Google Scholar

Oomen, C.A., Bekinschtein, P., Kent, B.A., Saksida, L.M., and Bussey, T.J. (2014). Adult hippocampal neurogenesis and its role in cognition. Wiley Interdiscip. Rev. Cogn. Sci. 5, 573–587.10.1002/wcs.1304Suche in Google Scholar

Pallas, S.L. (2001). Intrinsic and extrinsic factors that shape neocortical specification. Trends Neurosci. 24, 417–423.10.1016/S0166-2236(00)01853-1Suche in Google Scholar

Papassotiropoulos, A., Wollmer, M.A., Aguzzi, A., Hock, C., Nitsch, R.M., and de Quervain, D.J. (2005). The prion gene is associated with human long-term memory. Hum. Mol. Genet. 14, 2241–2246.10.1093/hmg/ddi228Suche in Google Scholar PubMed

Pardal, R. and Lopez Barneo, J. (2016). Mature neurons modulate neurogenesis through chemical signals acting on neural stem cells. Dev. Growth Differ. 58, 456–462.10.1111/dgd.12283Suche in Google Scholar PubMed

Pini, L., Pievani, M., Bocchetta, M., Altomare, D., Bosco, P., Cavedo, E., Galluzzi, S., Marizzoni, M., and Frisoni, G.B. (2016). Brain atrophy in Alzheimer’s disease and aging. Ageing Res. Rev. 30, 25–48.10.1016/j.arr.2016.01.002Suche in Google Scholar PubMed

Pramanik, S., Kutzner, A., and Heese, K. (2015). Lead discovery and in silico 3D structure modeling of tumorigenic FAM72A (p17). Tumour Biol. 36, 239–249.10.1007/s13277-014-2620-7Suche in Google Scholar

Pramanik, S., Sulistio, Y.A., and Heese, K. (2017). Neurotrophin signaling and stem cells—implications for neurodegenerative diseases and stem cell therapy. Mol. Neurobiol. 44, 7401–7459.10.1007/s12035-016-0214-7Suche in Google Scholar

Preza, E., Hardy, J., Warner, T., and Wray, S. (2016). Review: induced pluripotent stem cell models of frontotemporal dementia. Neuropathol. Appl. Neurobiol. 42, 497–520.10.1111/nan.12334Suche in Google Scholar

Rayman, J.B. and Kandel, E.R. (2017). Functional prions in the brain. Cold Spring Harb. Perspect. Biol. 9. Article number: a023671. doi:10.1101/cshperspect.a023671.10.1101/cshperspect.a023671Suche in Google Scholar

Rincic, M., Rados, M., Krsnik, Z., Gotovac, K., Borovecki, F., Liehr, T., and Brecevic, L. (2016). Complex intrachromosomal rearrangement in 1q leading to 1q32.2 microdeletion: a potential role of SRGAP2 in the gyrification of cerebral cortex. Mol. Cytogenet. 9, 19.10.1186/s13039-016-0221-4Suche in Google Scholar

Rinn, J.L. and Chang, H.Y. (2012). Genome regulation by long noncoding RNAs. Annu. Rev. Biochem. 81, 145–166.10.1146/annurev-biochem-051410-092902Suche in Google Scholar

Sabin, L.R., Delas, M.J., and Hannon, G.J. (2013). Dogma derailed: the many influences of RNA on the genome. Mol. Cell 49, 783–794.10.1016/j.molcel.2013.02.010Suche in Google Scholar

Sailor, K.A., Schinder, A.F., and Lledo, P.M. (2016). Adult neurogenesis beyond the niche: its potential for driving brain plasticity. Curr. Opin. Neurobiol. 42, 111–117.10.1016/j.conb.2016.12.001Suche in Google Scholar

Saitoh, Y. and Inokuchi, K. (2000). A triphasic curve characterizes the retention of lever-pressing behavior rewarded by lateral hypothalamic stimulation during the immediate-post-trial period in rats: implications for a transient-intermediate stage between short- and long-term memory. Neurosci. Res. 37, 211–219.10.1016/S0168-0102(00)00119-XSuche in Google Scholar

Seri, B. and Alvarez-Buylla, A. (2002). Neural stem cells and the regulation of neurogenesis in the adult hippocampus. Clin. Neurosci. Res. 2, 11–16.10.1016/S1566-2772(02)00004-XSuche in Google Scholar

Shah, H., Albanese, E., Duggan, C., Rudan, I., Langa, K.M., Carrillo, M.C., Chan, K.Y., Joanette, Y., Prince, M., Rossor, M., et al. (2016). Research priorities to reduce the global burden of dementia by 2025. Lancet Neurol. 15, 1285–1294.10.1016/S1474-4422(16)30235-6Suche in Google Scholar

Shapiro, J.A. (2009). Revisiting the central dogma in the 21st century. Ann. N. Y. Acad. Sci. 1178, 6–28.10.1111/j.1749-6632.2009.04990.xSuche in Google Scholar PubMed

Sobhan, P.K. and Funa, K. (2017). TLX – its emerging role for neurogenesis in health and disease. Mol. Neurobiol. 54, 272–280.10.1007/s12035-015-9608-1Suche in Google Scholar PubMed PubMed Central

Spalding, K.L., Bergmann, O., Alkass, K., Bernard, S., Salehpour, M., Huttner, H.B., Bostrom, E., Westerlund, I., Vial, C., Buchholz, B.A., et al. (2013). Dynamics of hippocampal neurogenesis in adult humans. Cell 153, 1219–1227.10.1016/j.cell.2013.05.002Suche in Google Scholar PubMed PubMed Central

Squire, L.R. (2009). Memory and brain systems: 1969–2009. J. Neurosci. 29, 12711–12716.10.1523/JNEUROSCI.3575-09.2009Suche in Google Scholar PubMed PubMed Central

Squire, L.R., Knowlton, B., and Musen, G. (1993). The structure and organization of memory. Annu. Rev. Psychol. 44, 453–495.10.1146/annurev.ps.44.020193.002321Suche in Google Scholar PubMed

Squire, L.R., Berg, D., Bloom, F.E., du Lac, S., Ghosh, A., and Spitzer, N. (2012). Learning and Memory: Fundamental Neuroscience (Cambridge, MA: Elsevier Academic Press).Suche in Google Scholar

Subramanian, J. and Nedivi, E. (2016). Filling the (SR)GAP in excitatory/inhibitory balance. Neuron 91, 205–207.10.1016/j.neuron.2016.07.008Suche in Google Scholar PubMed

Tarantini, S., Tran, C.H., Gordon, G.R., Ungvari, Z., and Csiszar, A. (2017). Impaired neurovascular coupling in aging and Alzheimer’s disease: contribution of astrocyte dysfunction and endothelial impairment to cognitive decline. Exp. Gerontol. 94, 52–58.10.1016/j.exger.2016.11.004Suche in Google Scholar PubMed PubMed Central

Taupin, P. (2006). Neurogenesis in the adult central nervous system. C. R. Biol. 329, 465–475.10.1016/j.crvi.2006.04.001Suche in Google Scholar PubMed

Tong, L.M., Fong, H., and Huang, Y. (2015). Stem cell therapy for Alzheimer’s disease and related disorders: current status and future perspectives. Exp. Mol. Med. 47, e151.10.1038/emm.2014.124Suche in Google Scholar PubMed PubMed Central

Vijayan, M. and Reddy, P.H. (2016). Stroke, vascular dementia, and Alzheimer’s disease: molecular links. J. Alzheimers Dis. 54, 427–443.10.3233/JAD-160527Suche in Google Scholar

Vitureira, N. and Goda, Y. (2013). Cell biology in neuroscience: the interplay between Hebbian and homeostatic synaptic plasticity. J. Cell Biol. 203, 175–186.10.1083/jcb.201306030Suche in Google Scholar

Wolfe, K. (2000). Robustness — it’s not where you think it is. Nat. Genet. 25, 3–4.10.1038/75560Suche in Google Scholar

Wyss-Coray, T. (2016). Ageing, neurodegeneration and brain rejuvenation. Nature 539, 180–186.10.1038/nature20411Suche in Google Scholar

Yamaguchi, M., Seki, T., Imayoshi, I., Tamamaki, N., Hayashi, Y., Tatebayashi, Y., and Hitoshi, S. (2016). Neural stem cells and neuro/gliogenesis in the central nervous system: understanding the structural and functional plasticity of the developing, mature, and diseased brain. J. Physiol. Sci. 66, 197–206.10.1007/s12576-015-0421-4Suche in Google Scholar

Yang, T., Sun, Y., Lu, Z., Leak, R.K., and Zhang, F. (2017). The impact of cerebrovascular aging on vascular cognitive impairment and dementia. Ageing Res. Rev. 34, 15–29.10.1016/j.arr.2016.09.007Suche in Google Scholar

Yu, D.X., Marchetto, M.C., and Gage, F.H. (2014). How to make a hippocampal dentate gyrus granule neuron. Development 141, 2366–2375.10.1242/dev.096776Suche in Google Scholar

Zito, K. and Svoboda, K. (2002). Activity-dependent synaptogenesis in the adult mammalian cortex. Neuron 35, 1015–1017.10.1016/S0896-6273(02)00903-0Suche in Google Scholar

Received: 2017-7-7
Accepted: 2017-8-11
Published Online: 2017-12-1
Published in Print: 2017-12-20

©2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2017-0190/pdf?lang=de
Button zum nach oben scrollen