Home Eremophilane-type sesquiterpenes from fungi and their medicinal potential
Article
Licensed
Unlicensed Requires Authentication

Eremophilane-type sesquiterpenes from fungi and their medicinal potential

  • Kamila Tomoko Yuyama , Diana Fortkamp and Wolf-Rainer Abraham EMAIL logo
Published/Copyright: August 19, 2017

Abstract

Eremophilanes are sesquiterpenes with a rearranged carbon skeleton formed both by plants and fungi, however, almost no plant eremophilanes are found in fungi. These eremophilanes possess mainly phytotoxic, antimicrobial, anticancer and immunomodulatory properties and in this review fungal eremophilanes with bioactivities of potential medicinal applications are reviewed and discussed. A special focus is set on natural products bearing highly functionalized fatty acids at C-1 or C-3 position of the eremophilane backbone. Many of these fatty acids seem to contribute to the bioactivity of the metabolites enhancing the activity of the sesquiterpene moieties. Several approaches for optimization of these natural products for clinical needs and testing of the resulting derivatives are presented and discussed. The combination of identification of bioactive natural products with their subsequent improvement using a variety of genetical or chemical tools and the pharmacokinetic assessment of the products is presented here as a promising approach to new drugs.

Acknowledgments

K.T.Y. acknowledges the support by a stipend of the ‘Science without border (Ciências sem Fronteiras)’ program of Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) from Brazil and the German Academic Exchange Service (DAAD). D.F. is thankful for a stipend of CAPES.

  1. Conflict of interest statement: The authors declare that there is no conflict of interest.

References

Ajikumar, P.K., Stephanopoulos, G., and Too, H.P. (2016). Microbial engineering for the production of chemical and pharmaceutical products from the isoprenoid pathway. U.S. Patent No. 9,359,624.Search in Google Scholar

Angeles, A.R., Dorn, D.C., Kou, C.A., Moore, M.A., and Danishefsky, S.J. (2007). Total synthesis of peribysin E necessitates revision of the assignment of its absolute configuration. Angew. Chem. Int. Ed. 46, 1451–1454.10.1002/anie.200604308Search in Google Scholar

Back, K. and Chappell, J. (1996). Identifying functional domains within terpene cyclases using a domain-swapping strategy. Proc. Natl. Acad. Sci. USA 93, 6841–6845.10.1073/pnas.93.13.6841Search in Google Scholar

Bohlmann, F., Knoll, K.H., Zdero, C., Mahanta, P.K., Grenz, M., Suwita, A., Ehlers, D., LeVan, N., Abraham, W.-R., and Natu, A.A. (1977). Terpen-derivate aus Senecio arten. Phytochemistry 16, 965–985.10.1016/S0031-9422(00)86705-9Search in Google Scholar

Boisvert-Adamo, K., Longmate, W., Abel, E.V., and Aplin, A.E. (2009). Mcl-1 is required for melanoma cell resistance to anoikis. Mol. Cancer Res. 7, 549–556.10.1158/1541-7786.MCR-08-0358Search in Google Scholar PubMed PubMed Central

Bradfield, A.E., Penfold, A.R., and Simonsen, J.L. (1932). The constitution of eremophilone and of two related hydroxy-ketones from the wood oil of Eremophila mitchelli. J. Chem. Soc. (Resumed), 2744–2759.10.1039/jr9320002744Search in Google Scholar

Britton, J., Dyer, R.P., Majumdar, S., Raston, C.L., and Weiss, G.A. (2017). Ten-minute protein purification and surface tethering for continuous-flow biocatalysis. Angew. Chem. Int. Ed. 56, 2296–2301.10.1002/anie.201610821Search in Google Scholar PubMed PubMed Central

Burke, M.D. and Schreiber, S.L. (2004). A planning strategy for diversity-oriented synthesis. Angew. Chem. Int. Ed. 43, 46–58.10.1002/anie.200300626Search in Google Scholar PubMed

Burkhardt, I., Siemon, T., Henrot, M., Studt, L., Rösler, S., Tudzynski, B., Christmann, M., and Dickschat, J.S. (2016). Mechanistic characterisation of two sesquiterpene cyclases from the plant pathogenic fungus Fusarium fujikuroi. Angew. Chem. Int. Ed. 55, 8748–8751.10.1002/anie.201603782Search in Google Scholar PubMed

Chang, J.C., Hsiao, G., Lin, R.K., Kuo, Y.H., Ju, Y.M., and Lee, T.H. (2017). Bioactive constituents from the termite nest-derived medicinal fungus Xylaria nigripes. J. Nat. Prod. 80, 38–44.10.1021/acs.jnatprod.6b00249Search in Google Scholar PubMed

Che, Y., Gloer, J.B., and Wicklow, D.T. (2002). Phomadecalins A−D and phomapentenone A: new bioactive metabolites from Phoma sp. NRRL 25697, a fungal colonist of Hypoxylon stromata. J. Nat. Prod. 65, 399–402.10.1021/np010519oSearch in Google Scholar PubMed

Chen, M., Chou, W.K., Al-Lami, N., Faraldos, J.A., Allemann, R.K., Cane, D.E., and Christianson, D.W. (2016). Probing the role of active site water in the sesquiterpene cyclization reaction catalyzed by aristolochene synthase. Biochemistry 55, 2864–2874.10.1021/acs.biochem.6b00343Search in Google Scholar PubMed PubMed Central

Cheng, Z., Zhao, J., Liu, D., Proksch, P., Zhao, Z., and Lin, W. (2016). Eremophilane-type sesquiterpenoids from an Acremonium sp. fungus isolated from deep-sea sediments. J. Nat. Prod. 79, 1035–1047.10.1021/acs.jnatprod.5b01103Search in Google Scholar PubMed

Christianson, D.W. (2006). Structural biology and chemistry of the terpenoid cyclases. Chem. Rev. 106, 3412–3442.10.1021/cr050286wSearch in Google Scholar PubMed

Daengrot, C., Rukachaisirikul, V., Tansakul, C., Thongpanchang, T., Phongpaichit, S., Bowornwiriyapan, K., and Sakayaroj, J. (2015). Eremophilane sesquiterpenes and diphenyl thioethers from the soil fungus Penicillium copticola PSU-RSPG138. J. Nat. Prod. 78, 615–622.10.1021/np5005328Search in Google Scholar PubMed

DiMasi, J.A., Grabowski, H.G., and Hansen, R.W. (2016). Innovation in the pharmaceutical industry: new estimates of R&D costs. J. Health Econ. 47, 20–33.10.1016/j.jhealeco.2016.01.012Search in Google Scholar PubMed

Ebel, R. (2010). Terpenes from marine-derived fungi. Mar. Drugs 8, 2340–2368.10.3390/md8082340Search in Google Scholar PubMed PubMed Central

Efremenkova, O.V., Vasiljeva, B.F., Zenkova, V.A., Korolev, A.M., Lusikov, Y.N., Efimenko, T.A., Malanicheva, I.A., Mirchink, E.P., Isakova, E.B., and Bilanenko, E.N. (2015). Antimicrobial properties of eremoxylarin A produced by ascomycete of Sordariomycetes in submerged culture. Antibiot. Khimioter. 60, 23–28.Search in Google Scholar

Eley, K.L., Halo, L.M., Song, Z., Powles, H., Cox, R.J., Bailey, A.M., Lazarus, C.M., and Simpson, T.J. (2007). Biosynthesis of the 2-pyridone tenellin in the insect pathogenic fungus Beauveria bassiana. ChemBioChem 8, 289–297.10.1002/chin.200725198Search in Google Scholar

Ferretti, J.J., Gilmore, K.S., and Courvalin, P. (1986). Nucleotide sequence analysis of the gene specifying the bifunctional 6′-aminoglycoside acetyltransferase 2″-aminoglycoside phosphotransferase enzyme in Streptococcus faecalis and identification and cloning of gene regions specifying the two activities. J. Bacteriol. 167, 631–638.10.1128/jb.167.2.631-638.1986Search in Google Scholar PubMed PubMed Central

Fukuchi, Y., Kizaki, M., Yamato, K., Kawamura, C., Umezawa, A., Hata, J., Nishihara, T., and Ikeda, Y. (2001). Mcl-1, an early-induction molecule, modulates activin A-induced apoptosis and differentiation of CML cells. Oncogene 20, 704–713.10.1038/sj.onc.1204142Search in Google Scholar PubMed

Gandhi, Y.A. and Morris, M.E. (2009). Structure–activity relationships and quantitative structure–activity relationships for breast cancer resistance protein (ABCG2). AAPS J. 11, 541.10.1208/s12248-009-9132-1Search in Google Scholar PubMed PubMed Central

García-Estrada, C., and Martín, J.F. (2016). Biosynthetic gene clusters for relevant secondary metabolites produced by Penicillium roqueforti in blue cheeses. Appl. Microbiol. Biotechnol. 100, 8303–8313.10.1007/s00253-016-7788-xSearch in Google Scholar

Gorst-Allman, C.P., and Steyn, P.S. (1982). Biosynthesis of PR toxin by Penicillium roqueforti, part 2 evidence for a hydride shift from 2H NMR spectroscopy. Tetrahedron Lett. 23, 5359–5362.10.1016/S0040-4039(00)85838-4Search in Google Scholar

Gubiani, J.R., Zeraik, M.L., Oliveira, C.M., Ximenes, V.F., Nogueira, C.R., Fonseca, L.M., Silva, D.H.S., Bolzani, V.S., and Araujo, A.R. (2014). Biologically active eremophilane-type sesquiterpenes from Camarops sp., an endophytic fungus isolated from Alibertia macrophylla. J. Nat. Prod. 77, 668–672.10.1021/np400825sSearch in Google Scholar PubMed

Gubiani, J.R., Nogueira, C.R., Pereira, M.D.P., Young, M.C.M., Ferreira, P.M.P., Moraes, M.O., Pessoa, C., Bolzani, V.S., and Araujo, A.R. (2016). Rearranged sesquiterpenes and branched polyketides produced by the endophyte Camarops sp. Phytochem. Lett. 17, 251–257.10.1016/j.phytol.2016.08.007Search in Google Scholar

Guerriero, A., D’Ambrosio, M., Pietra, F., Cuomo, V., and Vanzanella, F. (1988), Dendryphiellin A, the first fungal trinor-eremophilane. Isolation from the marine deuteromycete Dendryphiella salina (Sutherland) Pugh et Nicot. Helv. Chim. Acta 71, 57–61.10.1002/chin.198816331Search in Google Scholar

Hammer, S.C., Syrén, P.O., and Hauer, B. (2016). Substrate pre-folding and water molecule organization matters for terpene cyclase catalyzed conversion of unnatural substrates. Chemistry Select 1, 3589–3593.10.1002/slct.201600572Search in Google Scholar

Hatakeyama, T., Koseki, T., Murayama, T., and Shiono, Y. (2010). Eremophilane sesquiterpenes from the endophyte Microdiplodia sp. KS 75-1 and revision of the stereochemistries of phomadecalins C and D. Phytochem. Lett. 3, 148–151.10.1016/j.phytol.2010.06.002Search in Google Scholar

Höller, U., König, G.M., and Wright, A.D. (1999). Three new metabolites from marine-derived fungi of the genera Coniothyrium and Microsphaeropsis. J. Nat. Prod. 62, 114–118.10.1021/np980341eSearch in Google Scholar PubMed

Hou, C., Kulka, M., Zhang, J., Li, Y., and Guo, F. (2014). Occurrence and biological activities of eremophilane-type sesquiterpenes. Mini Rev. Med. Chem. 14, 664–677.10.2174/1389557514666140820105422Search in Google Scholar PubMed

Hu, Z.Y., Li, Y.Y., Huang, Y.J., Su, W.J., and Shen, Y.M. (2008). Three new sesquiterpenoids from Xylaria sp. NCY2. Helv. Chim. Acta 91, 46–52.10.1002/hlca.200890011Search in Google Scholar

Hu, Z.Y., Li, Y.Y., Lu, C.H., Lin, T., Hu, P., and Shen, Y.M. (2010). Seven novel linear polyketides from Xylaria sp. NCY2. Helv. Chim. Acta 93, 925–933.10.1002/hlca.200900323Search in Google Scholar

Isaka, M., Srisanoh, U., Veeranondha, S., Choowong, W., and Lumyong, S. (2009). Cytotoxic eremophilane sesquiterpenoids from the saprobic fungus Berkleasmium nigroapicale BCC 8220. Tetrahedron 65, 8808–8815.10.1016/j.tet.2009.08.077Search in Google Scholar

Isaka, M., Chinthanom, P., Boonruangprapa, T., Rungjindamai, N., and Pinruan, U. (2010). Eremophilane-type sesquiterpenes from the fungus Xylaria sp. BCC 21097. J. Nat. Prod. 73, 683–687.10.1021/np100030xSearch in Google Scholar PubMed

Jayasuriya, H., Zink, D.L., Polishook, J.D., Bills, G.F., Dombrowski, A.W., Genilloud, O., Pelaez, F.F., Herranz, L., Quamina, D., Lingham, R.B., et al. (2005). Identification of diverse microbial metabolites as potent inhibitors of HIV-1 Tat transactivation. Chem. Biodiv. 2, 112–122.10.1002/cbdv.200490162Search in Google Scholar PubMed

Kawahara, T., Itoh, M., Izumikawa, M., Sakata, N., Tsuchida, T., and Shin-ya, K. (2013). Three eremophilane derivatives, MBJ-0011, MBJ-0012 and MBJ-0013, from an endophytic fungus Apiognomonia sp. f24023. J. Antibiot. 66, 299–302.10.1038/ja.2013.13Search in Google Scholar PubMed

Kawamura, H., Pulici, M., Koshino, H., Esumi Y., Uzawa, J., Kumagai, H., and Sugawara, F. (2000). New potent immunosuppressive eremophilane isolated from Trichothecium roseum. Nat. Prod. Lett. 14, 299–304.10.1080/10575630008041246Search in Google Scholar

Khosla, C. and Keasling, J.D. (2003). Metabolic engineering for drug discovery and development. Nat. Rev. Drug Discov. 2, 1019–1025.10.1038/nrd1256Search in Google Scholar PubMed

Konopleva, M., Contractor, R., Tsao, T., Samudio, I., Ruvolo, P.P., Kitada, S., Deng, X., Zhai, D., Shi, Y.X., Sneed, T., et al. (2006). Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell 10, 375–388.10.1016/j.ccr.2006.10.006Search in Google Scholar PubMed

Koshino, H., Satoh, H., Yamada, T., and Esumi, Y. (2006). Structural revision of peribysins C and D. Tetrahedron Lett. 47, 4623–4626.10.1016/j.tetlet.2006.04.139Search in Google Scholar

Kurihara, K.I., Tanabe, K., Shinei, R., Okonogi, T., Ohtsuka, Y., Omoto, S., Yasuda, S., and Tatsuta, K. (1997). Synthesis of (±)-PF1092A, B, and C; new nonsteroidal progesterone receptor ligands. J. Antibiot. 50, 360–362.10.7164/antibiotics.50.360Search in Google Scholar PubMed

Kwon, S.J., Mora-Pale, M., Lee, M.Y., and Dordick, J.S. (2012). Expanding nature’s small molecule diversity via in vitro biosynthetic pathway engineering. Curr. Opin. Chem. Biol. 16, 186–195.10.1016/j.cbpa.2012.02.001Search in Google Scholar PubMed

Leavell, M.D., McPhee, D.J., and Paddon, C.J. (2016). Developing fermentative terpenoid production for commercial usage. Curr. Opin. Biotechnol. 37, 114–119.10.1016/j.copbio.2015.10.007Search in Google Scholar PubMed

Lee, M.Y., Kumar, R.A., Sukumaran, S.M., Hogg, M.G., Clark, D.S., and Dordick, J.S. (2008). Three-dimensional cellular microarray for high-throughput toxicology assays. Proc. Natl. Acad. Sci. USA 105, 59–63.10.1073/pnas.0708756105Search in Google Scholar PubMed PubMed Central

Li, C.-S., Ding, Y., Yang, B.-J., Hoffman, N., Yin, H.-Q., Mahmud, T., Turkson, J., and Cao, S. (2016). Eremophilane sesquiterpenes from Hawaiian endophytic fungus Chaetoconis sp. FT087. Phytochemistry 126, 41–46.10.1016/j.phytochem.2016.03.005Search in Google Scholar PubMed

Lin, A., Wu, G., Gu, Q., Zhu, T., and Li, D. (2014). New eremophilane-type sesquiterpenes from an Antarctic deep-sea derived fungus, Penicillium sp. PR19 N-1. Arch. Pharm. Res. 37, 839–844.10.1007/s12272-013-0246-8Search in Google Scholar PubMed

Liu, Y., Li, Y., Qu, J., Ma, S., Zang, C., Zhang, Y., and Yu, S. (2015). Eremophilane sesquiterpenes and polyketones produced by an endophytic Guignardia fungus from the toxic plant Gelsemium elegans. J. Nat. Prod. 78, 2149–2154.10.1021/np5009027Search in Google Scholar PubMed

Liu, J., Zhang, D., Zhang, M., Zhao, J., Chen, R., Wang, N., Zhang, D., and Dai, J. (2016). Eremophilane sesquiterpenes from an endophytic fungus Periconia species. J. Nat. Prod. 79, 2229–2235.10.1021/acs.jnatprod.6b00299Search in Google Scholar PubMed

McDonald, L.A., Barbieri, L.R., Bernan, V.S., Janso, J., Lassota, P., and Carter, G.T. (2004). 07H239-A, a new cytotoxic eremophilane sesquiterpene from the marine-derived Xylariaceous fungus LL-07H239. J. Nat. Prod. 67, 1565–1567.10.1021/np049924gSearch in Google Scholar PubMed

Mierau, V., Anke, T., and Sterner, O. (2003). Dacrymenone and VM 3298-2–new antibiotics with antibacterial and antifungal activity. Z. Naturforsch C 58, 541–546.10.1515/znc-2003-7-816Search in Google Scholar PubMed

Miller, D.J., Gao, J., Truhlar, D.G., Young, N.J., Gonzalez, V., and Allemann, R.K. (2008). Stereochemistry of eudesmane cation formation during catalysis by aristolochene synthase from Penicillium roqueforti. Org. Biomol. Chem. 6, 2346–2354.10.1039/b804198aSearch in Google Scholar PubMed

Moulé, Y., Jemmali, M., and Rousseau, N. (1976). Mechanism of the inhibition of transcription by PR toxin, a mycotoxin from Penicillium roqueforti. Chem. Biol. Interact. 14, 207–216.10.1016/0009-2797(76)90101-0Search in Google Scholar

Moreau, S., Lablache-Combier, A., and Biguet, J. (1980). Production of eremofortins A, B, and C relative to formation of PR toxin by Penicillium roqueforti. Appl. Environ. Microbiol. 39, 770–776.10.1128/aem.39.4.770-776.1980Search in Google Scholar

Moreau, S., Lablache-Combier, A., and Biguet, J. (1981). Biosynthesis of PR toxin from [1, 2-13C] acetate: occurrence of induced 13C-13C coupling. Phytochemistry 20, 2339–2342.10.1016/S0031-9422(00)82660-6Search in Google Scholar

Motohashi, K., Hashimoto, J., Inaba, S., Khan, S.T., Komaki, H., Nagai, A., Takagi, M., and Shin-ya, K. (2009). New sesquiterpenes, JBIR-27 and-28, isolated from a tunicate-derived fungus, Penicillium sp. SS080624SCf1. J. Antibiot. 62, 247–250.10.1038/ja.2009.21Search in Google Scholar

Neuenschwander, M., Neuenschwander, A., Steinegger, E., and Engel, P. (1979). Struktur der Sesquiterpene von Petasites hybridus (L.) GM et SCH.: Petasol- und Isopetasol-Abkömmlinge. Helv. Chim. Acta 62, 609–626.10.1002/hlca.19790620228Search in Google Scholar

Nicoletti, R. and Trincone, A. (2016). Bioactive compounds produced by strains of Penicillium and Talaromyces of marine origin. Mar. Drugs 14, 37.10.3390/md14020037Search in Google Scholar

Nosengo, N. (2016). New tricks for old drugs. Nature 534, 314–316.10.1038/534314aSearch in Google Scholar

Ogasawara, Y., Yoshida, J., Shiono, Y., Miyakawa, T., and Kimura, K.-I. (2008). New eremophilane sesquiterpenoid compounds, eremoxylarins A and B directly inhibit calcineurin in a manner independent of immunophilin. J. Antibiot. 61, 496–502.10.1038/ja.2008.66Search in Google Scholar

Oh, H., Jensen, P.R., Murphy, B.T., Fiorilla, C., Sullivan, J.F., Ramsey, T., and Fenical, W. (2010). Cryptosphaerolide, a cytotoxic Mcl-1 inhibitor from a marine-derived ascomycete related to the genus Cryptosphaeria. J. Nat. Prod. 73, 998–1001.10.1021/np1000889Search in Google Scholar

Okabe, M., Kawamura, K., Miyagishima, T., Itaya, T., Goodwyn, D., Shoji, M., Vogler, R.W., Sakurada, K., Uehara, M., and Miyazaki, T. (1994). Effect of herbimycin A, an inhibitor of tyrosine kinase, on protein tyrosine kinase activity and phosphotyrosyl proteins of Ph1-positive leukemia cells. Leukemia Res. 18, 213–220.10.1016/0145-2126(94)90117-1Search in Google Scholar

Oliveira, C.M.D., Silva, G.H., Regasini, L.O., Flausino Jr, O., López, S.N., Abissi, B.M., Gomes de Zouza-Berlinck, B.M.G., Sette, L.D., Bonugli-Santos, R.C., Rodrigues, A., et al. (2011). Xylarenones C-E from an endophytic fungus isolated from Alibertia macrophylla. J. Nat. Prod. 74, 1353–1357.10.1021/np1005983Search in Google Scholar

Penfold, A.R. and Simonsen, J.L. (1939). The constitutions of eremophilone, hydroxyeremophilone, and hydroxydihydroeremophilone. Part III. J Chem. Soc. (Resumed), 87–89.10.1039/jr9390000087Search in Google Scholar

Pérez-Castorena, A.L., Arciniegas, A., Guzmán, S.L., Villaseñor, J.L., and Romo de Vivar, A. (2006). Eremophilanes from Senecio mairetianus and some reaction products. J. Nat. Prod. 69, 1471–1475.10.1021/np060307xSearch in Google Scholar

Pinder, A.R. (1977). The chemistry of the eremophilane and related sesquiterpenes. Prog. Chem. Org. Nat. Prod. 34, 81–186.10.1007/978-3-7091-8476-9_2Search in Google Scholar

Riche, C., Pascard-Billy, C., Devys, M., Gaudemer, A., Barbier, M., and Bousquet, J.F. (1974) Structure cristalline et moleculaire de la phomenone, phytotoxine produite par le champignon Phoma exigua var. non oxydabilis. Tetrahedron Lett. 32, 2765–2766.10.1016/S0040-4039(01)91735-6Search in Google Scholar

Riclea, R. and Dickschat, J.S. (2015). Identification of intermediates in the biosynthesis of PR toxin by Penicillium roqueforti. Angew. Chem. Int. Ed. 54, 12167–12170.10.1002/anie.201506128Search in Google Scholar PubMed

Schifrin, A., Ly, T.T., Günnewich, N., Zapp, J., Thiel, V., Schulz, S., Hannemann, F., Khatri, Y., and Bernhardt, R. (2015). Characterization of the gene cluster CYP264B1-geoA from Sorangium cellulosum So ce56: biosynthesis of (+)-eremophilene and its hydroxylation. ChemBioChem 16, 337–344.10.1002/cbic.201402443Search in Google Scholar PubMed

Schneider, G., Anke, H., and Sterner, O. (1997). New secondary metabolites from a mycophilic Hansfordia species. Nat. Prod. Lett. 10, 133–138.10.1080/10575639708043728Search in Google Scholar

Shiono, Y. and Murayama, T. (2005). New eremophilane-type sesquiterpenoids, eremoxylarins A and B from xylariaceous endophytic fungus YUA-026. Z. Naturforsch. B 60, 885–890.10.1515/znb-2005-0812Search in Google Scholar

Shishova, E.Y., Di Costanzo, L., Cane, D.E., and Christianson, D.W. (2007). X-ray crystal structure of aristolochene synthase from Aspergillus terreus and the evolution of templates for the cyclization of farnesyl diphosphate. Biochemistry 46, 1941–1951.10.1021/bi0622524Search in Google Scholar PubMed PubMed Central

Silva, G.H., Oliveira, C.M.D., Teles, H.L., Pauletti, P.M., Castro-Gamboa, I., Silva, D.H.S., Bolzani, V.S., Young, M.C.M., Costa-Neto, C.M., Pfenning, L.H., et al. (2010). Sesquiterpenes from Xylaria sp., an endophytic fungus associated with Piper aduncum (Piperaceae). Phytochem. Lett. 3, 164–167.10.1016/j.phytol.2010.07.001Search in Google Scholar

Singh, S.B., Zink, D., Polishook, J., Valentino, D., Shafiee, A., Silverman, K., Felock, P., Teran, A., Vilella, D., Hazuda, D.J., et al. (1999). Structure and absolute stereochemistry of HIV-1 integrase inhibitor integric acid. A novel eremophilane sesquiterpenoid produced by a Xylaria sp. Tetrahedron Lett. 40, 8775–8779.10.1016/S0040-4039(99)01878-XSearch in Google Scholar

Singh, S.B., Felock, P., and Hazuda, D.J. (2000). Chemical and enzymatic modifications of integric acid and HIV-1 integrase inhibitory activity. Bioorg. Med. Chem. Lett. 10, 235–238.10.1016/S0960-894X(99)00666-6Search in Google Scholar

Smith, C.J., Morin, N.R., Bills, G.F., Dombrowski, A.W., Salituro, G.M., Smith, S.K., Zhao, A., and MacNeil, D.J. (2002). Novel sesquiterpenoids from the fermentation of Xylaria persicaria are selective ligands for the NPY Y5 receptor. J. Org. Chem. 67, 5001–5004.10.1021/jo011054+Search in Google Scholar PubMed

Song, Z., Cox, R.J., Lazarus, C.M., and Simpson, T.J. (2004). Fusarin C biosynthesis in Fusarium moniliforme and Fusarium venenatum. ChemBioChem 5, 1196–1203.10.1002/cbic.200400138Search in Google Scholar PubMed

Song, Y.X., Cheng, B., Zhu, X., Qiao, L.T., Wang, J.J., Gu, Y.C., Li, M.F., Liu, L., and Lin, Y.C. (2011). Synthesis and cytotoxic evaluation of eremophilane sesquiterpene 07H239-A derivatives. Chem. Pharm. Bull. 59, 1186–1189.10.1248/cpb.59.1186Search in Google Scholar PubMed

Song, Y., Wang, J., Huang, H., Ma, L., Wang, J., Gu, Y., Liu, L., and Lin, Y. (2012a). Four eremophilane sesquiterpenes from the mangrove endophytic fungus Xylaria sp. BL321. Marine Drugs 10, 340–348.10.3390/md10020340Search in Google Scholar PubMed PubMed Central

Song, Y.X., Wang, J., Li, S.W., Cheng, B., Li, L., Chen, B., Liu, L., Lin, Y.C., and Gu, Y.C. (2012b). Metabolites of the mangrove fungus Xylaria sp. BL321 from the South China Sea. Planta Medica 78, 172–176.10.1055/s-0031-1280347Search in Google Scholar PubMed

Srisapoomi, T., Ichiyanagi, T., Nakajima, H., Aimi, T., and Boonlue, S. (2015a). Biosynthesis of integric acid isolated from the wood-decay fungus Xylaria feejeensis 2FB-PPM08M. Curr. Microbiol. 70, 550–555.10.1007/s00284-014-0759-5Search in Google Scholar PubMed

Srisapoomi, T., Ichiyanagi, T., Nakajima, H., Aimi, T., and Boonlue, S. (2015b). Biological activities of integric acid isolated from the wood-decay fungus Xylaria feejeensis 2FB-PPM08M. Chiang Mai J. Sci. 42, 70–78.10.1007/s00284-014-0759-5Search in Google Scholar

Suga, T., Shiina, M., Asami, Y., Iwatsuki, M., Yamamoto, T., Nonaka, K., Masuma, R., Matsiu, H., Hanaki, H., Iwamoto, S., et al. (2016). Paraphaeosphaeride D and berkleasmin F, new circumventors of arbekacin resistance in MRSA, produced by Paraphaeosphaeria sp. TR-022. J. Antibiot. 69, 605–610.10.1038/ja.2016.70Search in Google Scholar

Tabata, Y., Hatsu, M., Kurata, Y., Miyajima, K., Tani, M., Sasaki, T., Kodama, Y., Tsuruoka, T., and Omoto, S. (1997a). PF1092A, B and C, new nonsteroidal progesterone receptor ligands produced by Penicillium oblatum. J. Antibiot. 50, 309–313.10.7164/antibiotics.50.309Search in Google Scholar

Tabata, Y., Miike, M., Hatsu, M., Kurata, Y., Yaguchi, T., Someya, A., Miyadoh, S., Hoshico, S., Tsuruoka, T., and Omoto, S. (1997b). PF1092A, B and C, new nonsteroidal progesterone receptor ligands produced by Penicillium oblatum. I. Taxonomy of producing strain, fermentation, isolation and biological activities. J. Antibiot. 50, 304–308.10.7164/antibiotics.50.304Search in Google Scholar

Tanaka, S., Wada, K., Marumo, S., and Hattori, H. (1984). Structure of sporogen-AO 1, a sporogenic substance of Aspergillus oryzae. Tetrahedron Lett. 25, 5907–5910.10.1016/S0040-4039(01)81717-2Search in Google Scholar

Tatsuta, K., Yasuda, S., Kurihara, K.I., Tanabe, K., Shinei, R., and Okonogi, T. (1997). Total synthesis of progesterone receptor ligands, (−)-PF1092A, B and C. Tetrahedron Lett. 38, 1439–1442.10.1016/S0040-4039(97)00042-7Search in Google Scholar

Vattekkatte, A., Garms, S., and Boland, W. (2017). Alternate cyclization cascade initiated by substrate isomer in multiproduct terpene synthase from Medicago truncatula. J. Org. Chem. 82, 2855–2861.10.1021/acs.joc.6b02696Search in Google Scholar PubMed

Wallach, O. (1887). Zur Kenntnis der Terpene und der ätherischen Öle. Liebig’s Ann. Chem. 239, 1–54.10.1002/jlac.18872390102Search in Google Scholar

Wang, Y.T., Xue, Y.R., and Liu, C.H. (2015). A brief review of bioactive metabolites derived from deep-sea fungi. Mar. Drugs 13, 4594–4616.10.3390/md13084594Search in Google Scholar PubMed PubMed Central

Wang, L., Li, M., Tang, J., and Li, X. (2016). Eremophilane sesquiterpenes from a deep marine-derived fungus, Aspergillus sp. SCSIOW2, cultivated in the presence of epigenetic modifying agents. Molecules 21, 473.10.3390/molecules21040473Search in Google Scholar PubMed PubMed Central

Weber, C., Negrescu, E., Erl, W., Piersch, A., Frankenberger, M., Ziegler-Heitbrock, H.W.L., Siess, W., and Weber, P.C. (1995). Inhibitors of protein tyrosine kinase suppress TNF-stimulated induction of endothelial cell adhesion molecules. J. Immunol. 155, 445–451.10.4049/jimmunol.155.1.445Search in Google Scholar

Wu, G., Lin, A., Gu, Q., Zhu, T., and Li, D. (2013). Four new chloro-eremophilane sesquiterpenes from an Antarctic deep-sea derived fungus, Penicillium sp. PR19N-1. Marine Drugs 11, 1399–1408.10.3390/md11041399Search in Google Scholar PubMed PubMed Central

Wu, W., Tran, W., Taatjes, C.A., Alonso-Gutierrez, J., Lee, T.S., and Gladden, J.M. (2016). Rapid discovery and functional characterization of terpene synthases from four endophytic xylariaceae. PLoS One 11, e0146983.10.1371/journal.pone.0146983Search in Google Scholar PubMed PubMed Central

Yamada, T., Iritani, M., Minoura, K., Kawai, K., and Numata, A. (2004). Peribysins A–D, potent cell-adhesion inhibitors from a sea hare-derived culture of Periconia species. Org. Biomol. Chem. 2, 2131–2135.10.1039/B404459BSearch in Google Scholar

Yamada, T., Doi, M., Miura, A., Harada, W., Hiramura, M., Minoura, K., Tanaka, R., and Numata, A. (2005). Absolute stereostructures of cell-adhesion inhibitors, peribysins A, E, F and G, produced by a sea hare-derived Periconia sp. J. Antibiotics 58, 185–191.10.1038/ja.2005.21Search in Google Scholar PubMed

Yamada, T., Minoura, K., Tanaka, R., and Numata, A. (2006). Cell-adhesion inhibitors produced by a sea hare-derived Periconia sp. II Absolute stereostructures of peribysins H and I. J. Antibiot. 59, 345–350.10.1002/chin.200650216Search in Google Scholar

Yang, X.L., Zhang, S., Zhu, H.J., and Luo, D.Q. (2011). Dihydroberkleasmin A: a new eremophilane sesquiterpenoid from the fermentation broth of the plant endophytic fungus Pestalotiopsis photiniae. Molecules 16, 1910–1916.10.3390/molecules16021910Search in Google Scholar PubMed PubMed Central

Yuan, W.H., Wei, Z.W., Dai, P., Wu, H., Zhao, Y.X., Zhang, M.M., Jiang, N., and Zheng, W.F. (2014). Halogenated metabolites isolated from Penicillium citreonigrum. Chem. Biodivers. 11, 1078–1087.10.1002/cbdv.201300349Search in Google Scholar PubMed

Yuan, W.H., Goto, M., Hsieh, K.Y., Yuan, B., Zhao, Y., Morris-Natschke, S.L., and Lee, K.H. (2015). Selective cytotoxic eremophilane-type sesquiterpenes from Penicillium citreonigrum. J. Asian Nat. Prod. Res. 17, 1239–1244.10.1080/10286020.2015.1115020Search in Google Scholar PubMed PubMed Central

Zebec, Z., Wilkes, J., Jervis, A.J., Scrutton, N.S., Takano, E., and Breitling, R. (2016). Towards synthesis of monoterpenes and derivatives using synthetic biology. Curr. Opin. Chem. Biol. 34, 37–43.10.1016/j.cbpa.2016.06.002Search in Google Scholar PubMed

Zhang, D., Ge, H., Zou, J.H., Tao, X., Chen, R., and Dai, J. (2014). Periconianone A, a new 6/6/6 carbocyclic sesquiterpenoid from endophytic fungus Periconia sp. with neural anti-inflammatory activity. Org. Lett. 16, 1410–1413.10.1021/ol500197xSearch in Google Scholar PubMed

Received: 2017-5-30
Accepted: 2017-8-9
Published Online: 2017-8-19
Published in Print: 2017-12-20

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 6.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2017-0171/html
Scroll to top button