Startseite Mechanisms of mitophagy: putting the powerhouse into the doghouse
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Mechanisms of mitophagy: putting the powerhouse into the doghouse

  • Joel S. Riley ORCID logo und Stephen W.G. Tait ORCID logo EMAIL logo
Veröffentlicht/Copyright: 12. April 2016

Abstract

Since entering our cells in an endosymbiotic event one billion years ago, mitochondria have shaped roles for themselves in metabolism, inflammation, calcium storage, migration, and cell death. Given this critical role in cellular homeostasis it is essential that they function correctly. Equally critical is the ability of a cell to remove damaged or superfluous mitochondria to avoid potential deleterious effects. In this review we will discuss the various mechanisms of mitochondrial clearance, with a particular focus on Parkin/PINK1-mediated mitophagy, discuss the impact of altered mitophagy in ageing and disease, and finally consider potential therapeutic benefits of targeting mitophagy.

Acknowledgements

The Tait laboratory is supported by funding from Cancer Research UK, BBSRC, EU, Breast Cancer Now, Royal Society and Tenovus Scotland. S.W.G.T is a Royal Society University Research Fellow. The figures were generated, in part, using images provided by Servier Medical Art (http://www.servier.co.uk/content/servier-medical-art).

References

Abou-Sleiman, P.M., Muqit, M.M.K., and Wood, N.W. (2006). Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat. Rev. Neurosci. 7, 207–219.10.1038/nrn1868Suche in Google Scholar PubMed

Aerbajinai, W., Giattina, M., Lee, Y.T., Raffeld, M., and Miller, J.L. (2003). The proapoptotic factor Nix is coexpressed with Bcl-xL during terminal erythroid differentiation. Blood 102, 712–717.10.1182/blood-2002-11-3324Suche in Google Scholar PubMed

Allen, G.F.G., Toth, R., James, J., and Ganley, I.G. (2013). Loss of iron triggers PINK1/Parkin-independent mitophagy. EMBO Rep. 14, 1127–1135.10.1038/embor.2013.168Suche in Google Scholar PubMed PubMed Central

Aouacheria, A., Brunet, F., and Gouy, M. (2005). Phylogenomics of life-or-death switches in multicellular animals: Bcl-2, BH3-Only, and BNip families of apoptotic regulators. Mol. Biol. Evol. 22, 2395–2416.10.1093/molbev/msi234Suche in Google Scholar PubMed

Arduíno, D.M., Esteves, A.R., and Cardoso, S.M. (2011). Mitochondrial fusion/fission, transport and autophagy in Parkinson’s disease: when mitochondria get nasty. Parkinsons Dis. 2011, 767230.10.4061/2011/767230Suche in Google Scholar PubMed PubMed Central

Ashrafian, H., Frenneaux, M.P., and Opie, L.H. (2007). Metabolic mechanisms in heart failure. Circulation 116, 434–448.10.1161/CIRCULATIONAHA.107.702795Suche in Google Scholar PubMed

Axe, E.L., Walker, S.A., Manifava, M., Chandra, P., Roderick, H.L., Habermann, A., Griffiths, G., and Ktistakis, N.T. (2008). Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell. Biol. 182, 685–701.10.1083/jcb.200803137Suche in Google Scholar PubMed PubMed Central

Balasubramanian, K., Maeda, A., Lee, J.S., Mohammadyani, D., Dar, H.H., Jiang, J.F., St Croix, C.M., Watkins, S., Tyurin, V.A., Tyurina, Y.Y., et al. (2015). Dichotomous roles for externalized cardiolipin in extracellular signaling: Promotion of phagocytosis and attenuation of innate immunity. Sci. Signal. 8, ra95.10.1126/scisignal.aaa6179Suche in Google Scholar PubMed PubMed Central

Billia, F., Hauck, L., Konecny, F., Rao, V., Shen, J., and Mak, T.W. (2011). PTEN-inducible kinase 1 (PINK1)/Park6 is indispensable for normal heart function. Proc. Natl. Acad. Sci. USA 108, 9572–9577.10.1073/pnas.1106291108Suche in Google Scholar PubMed PubMed Central

Bingol, B., Tea, J.S., Phu, L., Reichelt, M., Bakalarski, C.E., Song, Q., Foreman, O., Kirkpatrick, D.S., and Sheng, M. (2014). The mitochondrial deubiquitinase USP30 opposes Parkin-mediated mitophagy. Nature 509, 370–375.10.1038/nature13418Suche in Google Scholar PubMed

Bjedov, I., Toivonen, J.M., Kerr, F., Slack, C., Jacobson, J., Foley, A., and Partridge, L. (2010). Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab. 11, 35–46.10.1016/j.cmet.2009.11.010Suche in Google Scholar PubMed PubMed Central

Boland, B., Kumar, A., Lee, S., Platt, F.M., Wegiel, J., Yu, W.H., and Nixon, R.A. (2008). Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer’s disease. J. Neurosci. 28, 6926–6937.10.1523/JNEUROSCI.0800-08.2008Suche in Google Scholar PubMed PubMed Central

Bossy-Wetzel, E., Petrilli, A., and Knott, A.B. (2008). Mutant huntingtin and mitochondrial dysfunction. Trends Neurosci. 31, 609–616.10.1016/j.tins.2008.09.004Suche in Google Scholar PubMed PubMed Central

Braschi, E., Goyon, V., Zunino, R., Mohanty, A., Xu, L., and McBride, H.M. (2010). Vps35 mediates vesicle transport between the mitochondria and peroxisomes. Curr. Biol. 20, 1310–1315.10.1016/j.cub.2010.05.066Suche in Google Scholar PubMed

Burchell, L., Chaugule, V.K., and Walden, H. (2012). Small, N-terminal tags activate Parkin E3 ubiquitin ligase activity by disrupting its autoinhibited conformation. PLoS ONE 7, e34748.10.1371/journal.pone.0034748Suche in Google Scholar PubMed PubMed Central

Burman, J.L., Yu, S., Poole, A.C., Decal, R.B., and Pallanck, L. (2012). Analysis of neural subtypes reveals selective mitochondrial dysfunction in dopaminergic neurons from parkin mutants. Proc. Natl. Acad. Sci. USA 109, 10438–10443.10.1073/pnas.1120688109Suche in Google Scholar PubMed PubMed Central

Byun, S., Lee, S.-Y., Lee, J., Jeong, C.-H., Farrand, L., Lim, S., Reddy, K., Kim, J.-Y., Lee, M.-H., Lee, H.J., et al. (2013). USP8 is a novel target for overcoming gefitinib resistance in lung cancer. Clin. Cancer Res. 19, 3894–3904.10.1158/1078-0432.CCR-12-3696Suche in Google Scholar PubMed PubMed Central

Carroll, R.G., Hollville, E., and Martin, S.J. (2014). Parkin sensitizes toward apoptosis induced by mitochondrial depolarization through promoting degradation of Mcl-1. Cell Rep. 9, 1538–1553.10.1016/j.celrep.2014.10.046Suche in Google Scholar PubMed

Chan, N.C., Salazar, A.M., Pham, A.H., Sweredoski, M.J., Kolawa, N.J., Graham, R.L.J., Hess, S., and Chan, D.C. (2011). Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum. Mol. Genet. 20, 1726–1737.10.1093/hmg/ddr048Suche in Google Scholar PubMed PubMed Central

Chaugule, V.K., Burchell, L., Barber, K.R., Sidhu, A., Leslie, S.J., Shaw, G.S., and Walden, H. (2011). Autoregulation of Parkin activity through its ubiquitin-like domain. EMBO J. 30, 2853–2867.10.1038/emboj.2011.204Suche in Google Scholar PubMed PubMed Central

Chauhan, D., Tian, Z., Nicholson, B., Kumar, K.G.S., Zhou, B., Carrasco, R., McDermott, J.L., Leach, C.A., Fulcinniti, M., Kodrasov, M.P., et al. (2012). A small molecule inhibitor of ubiquitin-specific protease-7 induces apoptosis in multiple myeloma cells and overcomes bortezomib resistance. Cancer Cell 22, 345–358.10.1016/j.ccr.2012.08.007Suche in Google Scholar PubMed PubMed Central

Chen, G., Cizeau, J., Vande Velde, C., Park, J.H., Bozek, G., Bolton, J., Shi, L., Dubik, D., and Greenberg, A. (1999). Nix and Nip3 form a subfamily of pro-apoptotic mitochondrial proteins. J. Biol. Chem. 274, 7–10.10.1074/jbc.274.1.7Suche in Google Scholar PubMed

Chen, Y. and Dorn, G.W. (2013). PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 340, 471–475.10.1126/science.1231031Suche in Google Scholar PubMed PubMed Central

Chen, G., Han, Z., Feng, D., Chen, Y., Chen, L., Wu, H., Huang, L., Zhou, C., Cai, X., Fu, C., et al. (2014). A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy. Mol. Cell 54, 362–377.10.1016/j.molcel.2014.02.034Suche in Google Scholar PubMed

Chourasia, A.H., Tracy, K., Frankenberger, C., Boland, M.L., Sharifi, M.N., Drake, L.E., Sachleben, J.R., Asara, J.M., Locasale, J.W., Karczmar, G.S., et al. (2015). Mitophagy defects arising from BNip3 loss promote mammary tumor progression to metastasis. EMBO Rep. 16, 1145–1163.10.15252/embr.201540759Suche in Google Scholar PubMed PubMed Central

Chu, C.T., Ji, J., Dagda, R.K., Jiang, J.F., Tyurina, Y.Y., Kapralov, A.A., Tyurin, V.A., Yanamala, N., Shrivastava, I.H., Mohammadyani, D., et al. (2013). Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat. Cell Biol. 15, 1197–1205.10.1038/ncb2837Suche in Google Scholar PubMed PubMed Central

Cochemé, H.M. and Murphy, M.P. (2008). Complex I is the major site of mitochondrial superoxide production by paraquat. J. Biol. Chem. 283, 1786–1798.10.1074/jbc.M708597200Suche in Google Scholar PubMed

Colman, R.J., Anderson, R.M., Johnson, S.C., Kastman, E.K., Kosmatka, K.J., Beasley, T.M., Allison, D.B., Cruzen, C., Simmons, H.A., Kemnitz, J.W., et al. (2009). Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325, 201–204.10.1126/science.1173635Suche in Google Scholar PubMed PubMed Central

Colman, R.J., Beasley, T.M., Kemnitz, J.W., Johnson, S.C., Weindruch, R., and Anderson, R.M. (2014). Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Nat. Commun. 5, 3557.10.1038/ncomms4557Suche in Google Scholar PubMed PubMed Central

Cornelissen, T., Haddad, D., Wauters, F., Van Humbeeck, C., Mandemakers, W., Koentjoro, B., Sue, C., Gevaert, K., De Strooper, B., Verstreken, P., et al. (2014). The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy. Hum. Mol. Genet. 23, 5227–5242.10.1093/hmg/ddu244Suche in Google Scholar PubMed PubMed Central

Cunningham, C.N., Baughman, J.M., Phu, L., Tea, J.S., Yu, C., Coons, M., Kirkpatrick, D.S., Bingol, B., and Corn, J.E. (2015). USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria. Nat. Cell Biol. 17, 160–169.10.1038/ncb3097Suche in Google Scholar PubMed

De Duve, C. and Wattiaux, R. (1966). Functions of lysosomes. Annu. Rev. Physiol. 28, 435–492.10.1146/annurev.ph.28.030166.002251Suche in Google Scholar PubMed

De Vos, K.J., Allan, V.J., Grierson, A.J., and Sheetz, M.P. (2005). Mitochondrial function and actin regulate dynamin-related protein 1-dependent mitochondrial fission. Curr. Biol. 15, 678–683.10.1016/j.cub.2005.02.064Suche in Google Scholar PubMed

Deas, E., Plun-Favreau, H., Gandhi, S., Desmond, H., Kjaer, S., Loh, S.H.Y., Renton, A.E.M., Harvey, R.J., Whitworth, A.J., Martins, L.M., et al. (2011). PINK1 cleavage at position A103 by the mitochondrial protease PARL. Hum. Mol. Genet. 20, 867–879.10.1093/hmg/ddq526Suche in Google Scholar PubMed PubMed Central

Di Bartolomeo, S., Corazzari, M., Nazio, F., Oliverio, S., Lisi, G., Antonioli, M., Pagliarini, V., Matteoni, S., Fuoco, C., Giunta, L., et al. (2010). The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy. J. Cell. Biol. 191, 155–168.10.1083/jcb.201002100Suche in Google Scholar PubMed PubMed Central

Ding, W.-X., Ni, H.-M., Li, M., Liao, Y., Chen, X., Stolz, D.B., Dorn, G.W., and Yin, X.-M. (2010). Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming. J. Biol. Chem. 285, 27879–27890.10.1074/jbc.M110.119537Suche in Google Scholar PubMed PubMed Central

Durcan, T.M., Kontogiannea, M., Thorarinsdottir, T., Fallon, L., Williams, A.J., Djarmati, A., Fantaneanu, T., Paulson, H.L., and Fon, E.A. (2011). The Machado-Joseph disease-associated mutant form of ataxin-3 regulates Parkin ubiquitination and stability. Hum. Mol. Genet. 20, 141–154.10.1093/hmg/ddq452Suche in Google Scholar PubMed PubMed Central

Durcan, T.M., Kontogiannea, M., Bedard, N., Wing, S.S., and Fon, E.A. (2012). Ataxin-3 deubiquitination is coupled to Parkin ubiquitination via E2 ubiquitin-conjugating enzyme. J. Biol. Chem. 287, 531–541.10.1074/jbc.M111.288449Suche in Google Scholar PubMed PubMed Central

Durcan, T.M., Tang, M.Y., Pérusse, J.R., Dashti, E.A., Aguileta, M.A., McLelland, G.-L., Gros, P., Shaler, T.A., Faubert, D., Coulombe, B., et al. (2014). USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin. EMBO J. 33, 2473–2491.10.15252/embj.201489729Suche in Google Scholar PubMed PubMed Central

Fimia, G.M., Stoykova, A., Romagnoli, A., Giunta, L., Di Bartolomeo, S., Nardacci, R., Corazzari, M., Fuoco, C., Ucar, A., Schwartz, P., et al. (2007). Ambra1 regulates autophagy and development of the nervous system. Nature 447, 1121–1125.10.1038/nature05925Suche in Google Scholar PubMed

Frank, S., Gaume, B., Bergmann-Leitner, E.S., Leitner, W.W., Robert, E.G., Catez, F., Smith, C.L., and Youle, R.J. (2001). The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev. Cell 1, 515–525.10.1016/S1534-5807(01)00055-7Suche in Google Scholar PubMed

Frezza, C., Cipolat, S., Martins de Brito, O., Micaroni, M., Beznoussenko, G.V., Rudka, T., Bartoli, D., Polishuck, R.S., Danial, N.N., De Strooper, B., et al. (2006). OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126, 177–189.10.1016/j.cell.2006.06.025Suche in Google Scholar PubMed

Fujiwara, M., Marusawa, H., Wang, H.-Q., Iwai, A., Ikeuchi, K., Imai, Y., Kataoka, A., Nukina, N., Takahashi, R., and Chiba, T. (2008). Parkin as a tumor suppressor gene for hepatocellular carcinoma. Oncogene 27, 6002–6011.10.1038/onc.2008.199Suche in Google Scholar PubMed

García-Prat, L., Martinez-Vicente, M., Perdiguero, E., Ortet, L., Rodríguez-Ubreva, J., Rebollo, E., Ruiz-Bonilla, V., Gutarra, S., Ballestar, E., Serrano, A.L., et al. (2016). Autophagy maintains stemness by preventing senescence. Nature 529, 37–42.10.1038/nature16187Suche in Google Scholar PubMed

Gegg, M.E., Cooper, J.M., Chau, K.-Y., Rojo, M., Schapira, A.H.V., and Taanman, J.-W. (2010). Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum. Mol. Genet. 19, 4861–4870.10.1093/hmg/ddq419Suche in Google Scholar PubMed PubMed Central

Goldberg, M.S., Fleming, S.M., Palacino, J.J., Cepeda, C., Lam, H.A., Bhatnagar, A., Meloni, E.G., Wu, N., Ackerson, L.C., Klapstein, G.J., et al. (2003). Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J. Biol. Chem. 278, 43628–43635.10.1074/jbc.M308947200Suche in Google Scholar PubMed

Gong, Y., Zack, T.I., Morris, L.G.T., Lin, K., Hukkelhoven, E., Raheja, R., Tan, I.-L., Turcan, S., Veeriah, S., Meng, S., et al. (2014). Pan-cancer genetic analysis identifies PARK2 as a master regulator of G1/S cyclins. Nat. Genet. 46, 588–594.10.1038/ng.2981Suche in Google Scholar PubMed PubMed Central

Gong, G., Song, M., Csordas, G., Kelly, D.P., Matkovich, S.J., and Dorn, G.W. (2015). Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice. Science 350, aad2459.10.1126/science.aad2459Suche in Google Scholar PubMed PubMed Central

Greene, J.C., Whitworth, A.J., Kuo, I., Andrews, L.A., Feany, M.B., and Pallanck, L.J. (2003). Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc. Natl. Acad. Sci. USA 100, 4078–4083.10.1073/pnas.0737556100Suche in Google Scholar PubMed PubMed Central

Greene, A.W., Grenier, K., Aguileta, M.A., Muise, S., Farazifard, R., Haque, M.E., McBride, H.M., Park, D.S., and Fon, E.A. (2012). Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep. 13, 378–385.10.1038/embor.2012.14Suche in Google Scholar PubMed PubMed Central

Guo, J.Y., Chen, H.-Y., Mathew, R., Fan, J., Strohecker, A.M., Karsli-Uzunbas, G., Kamphorst, J.J., Chen, G., Lemons, J.M.S., Karantza, V., et al. (2011). Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev. 25, 460–470.10.1101/gad.2016311Suche in Google Scholar PubMed PubMed Central

Guo, J.Y., Karsli-Uzunbas, G., Mathew, R., Aisner, S.C., Kamphorst, J.J., Strohecker, A.M., Chen, G., Price, S., Lu, W., Teng, X., et al. (2013). Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev. 27, 1447–1461.10.1101/gad.219642.113Suche in Google Scholar PubMed PubMed Central

Hailey, D.W., Rambold, A.S., Satpute-Krishnan, P., Mitra, K., Sougrat, R., Kim, P.K., and Lippincott-Schwartz, J. (2010). Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141, 656–667.10.1016/j.cell.2010.04.009Suche in Google Scholar PubMed PubMed Central

Hamacher-Brady, A., Brady, N.R., Logue, S.E., Sayen, M.R., Jinno, M., Kirshenbaum, L.A., Gottlieb, R.A., and Gustafsson, Å.B. (2007). Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ. 14, 146–157.10.1038/sj.cdd.4401936Suche in Google Scholar PubMed

Hanna, R.A., Quinsay, M.N., Orogo, A.M., Giang, K., Rikka, S., and Gustafsson, Å.B. (2012). Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J. Biol. Chem. 287, 19094–19104.10.1074/jbc.M111.322933Suche in Google Scholar PubMed PubMed Central

Harrison, D.E., Strong, R., Sharp, Z.D., Nelson, J.F., Astle, C.M., Flurkey, K., Nadon, N.L., Wilkinson, J.E., Frenkel, K., Carter, C.S., et al. (2009). Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392–395.10.1038/nature08221Suche in Google Scholar PubMed PubMed Central

Hasson, S.A., Kane, L.A., Yamano, K., Huang, C.-H., Sliter, D.A., Buehler, E., Wang, C., Heman-Ackah, S.M., Hessa, T., Guha, R., et al. (2013). High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy. Nature 504, 291–295.10.1038/nature12748Suche in Google Scholar PubMed PubMed Central

Heo, J.-M., Ordureau, A., Paulo, J.A., Rinehart, J., and Harper, J.W. (2015). The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol. Cell 60, 7–20.10.1016/j.molcel.2015.08.016Suche in Google Scholar PubMed PubMed Central

Hertz, N.T., Berthet, A., Sos, M.L., Thorn, K.S., Burlingame, A.L., Nakamura, K., and Shokat, K.M. (2013). A neo-substrate that amplifies catalytic activity of parkinson’s-disease-related kinase PINK1. Cell 154, 737–747.10.1016/j.cell.2013.07.030Suche in Google Scholar PubMed PubMed Central

Hirschey, M.D., Shimazu, T., Goetzman, E., Jing, E., Schwer, B., Lombard, D.B., Grueter, C.A., Harris, C., Biddinger, S., Ilkayeva, O.R., et al. (2010). SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464, 121–125.10.1038/nature08778Suche in Google Scholar PubMed PubMed Central

Hollville, E., Carroll, R.G., Cullen, S.P., and Martin, S.J. (2014). Bcl-2 family proteins participate in mitochondrial quality control by regulating Parkin/PINK1-dependent mitophagy. Mol. Cell 55, 451–466.10.1016/j.molcel.2014.06.001Suche in Google Scholar PubMed

Honda, S., Arakawa, S., Nishida, Y., Yamaguchi, H., Ishii, E., and Shimizu, S. (2014). Ulk1-mediated Atg5-independent macroautophagy mediates elimination of mitochondria from embryonic reticulocytes. Nat. Commun. 5, 4004.10.1038/ncomms5004Suche in Google Scholar PubMed

Hoshino, A., Mita, Y., Okawa, Y., Ariyoshi, M., Iwai-Kanai, E., Ueyama, T., Ikeda, K., Ogata, T., and Matoba, S. (2013). Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart. Nat. Commun. 4, 2308.10.1038/ncomms3308Suche in Google Scholar PubMed

Houtkooper, R.H., and Vaz, F.M. (2008). Cardiolipin, the heart of mitochondrial metabolism. Cell Mol. Life Sci. 65, 2493–2506.10.1007/s00018-008-8030-5Suche in Google Scholar PubMed

Hu, H.-H., Kannengiesser, C., Lesage, S., André, J., Mourah, S., Michel, L., Descamps, V., Basset-Seguin, N., Bagot, M., Bensussan, A., et al. (2016). PARKIN inactivation links Parkinson’s disease to melanoma. J. Natl. Cancer Inst. 108, djv340.10.1093/jnci/djv340Suche in Google Scholar PubMed

Huang, C., Andres, A.M., Ratliff, E.P., Hernandez, G., Lee, P., and Gottlieb, R.A. (2011). Preconditioning involves selective mitophagy mediated by Parkin and p62/SQSTM1. PLoS ONE 6, e20975.10.1371/journal.pone.0020975Suche in Google Scholar PubMed PubMed Central

Iguchi, M., Kujuro, Y., Okatsu, K., Koyano, F., Kosako, H., Kimura, M., Suzuki, N., Uchiyama, S., Tanaka, K., and Matsuda, N. (2013). Parkin-catalyzed ubiquitin-ester transfer is triggered by PINK1-dependent phosphorylation. J. Biol. Chem. 288, 22019–22032.10.1074/jbc.M113.467530Suche in Google Scholar PubMed PubMed Central

Iyer, S.S., He, Q., Janczy, J.R., Elliott, E.I., Zhong, Z., Olivier, A.K., Sadler, J.J., Knepper-Adrian, V., Han, R., Qiao, L., et al. (2013). Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity 39, 311–323.10.1016/j.immuni.2013.08.001Suche in Google Scholar PubMed PubMed Central

Jin, S.M. and Youle, R.J. (2013). The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria. Autophagy 9, 1750–1757.10.4161/auto.26122Suche in Google Scholar PubMed PubMed Central

Johnson, B.N., Berger, A.K., Cortese, G.P., and LaVoie, M.J. (2012). The ubiquitin E3 ligase parkin regulates the proapoptotic function of Bax. Proc. Natl. Acad. Sci. USA 109, 6283–6288.10.1073/pnas.1113248109Suche in Google Scholar PubMed PubMed Central

Kagan, V.E., Jiang, J., Huang, Z., Tyurina, Y.Y., Desbourdes, C., Cottet-Rousselle, C., Dar, H.H., Verma, M., Tyurin, V.A., Kapralov, A.A., et al. (2016). NDPK-D (NM23-H4)-mediated externalization of cardiolipin enables elimination of depolarized mitochondria by mitophagy. Cell Death Differ. Doi: 10.1038/cdd.2015.160.Suche in Google Scholar PubMed PubMed Central

Kanamori, H., Takemura, G., Goto, K., Maruyama, R., Tsujimoto, A., Ogino, A., Takeyama, T., Kawaguchi, T., Watanabe, T., Fujiwara, T., et al. (2011). The role of autophagy emerging in postinfarction cardiac remodelling. Cardiovasc. Res. 91, 330–339.10.1093/cvr/cvr073Suche in Google Scholar PubMed

Kane, L.A., Lazarou, M., Fogel, A.I., Li, Y., Yamano, K., Sarraf, S.A., Banerjee, S., and Youle, R.J. (2014). PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J. Cell Biol. 205, 143–153.10.1083/jcb.201402104Suche in Google Scholar PubMed PubMed Central

Kanki, T., Wang, K., and Klionsky, D.J. (2010). A genomic screen for yeast mutants defective in mitophagy. Autophagy 6, 278–280.10.4161/auto.6.2.10901Suche in Google Scholar PubMed PubMed Central

Kapahi, P., Zid, B.M., Harper, T., Koslover, D., Sapin, V., and Benzer, S. (2004). Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr. Biol. 14, 885–890.10.1016/j.cub.2004.03.059Suche in Google Scholar PubMed PubMed Central

Kazlauskaite, A., Martínez-Torres, R.J., Wilkie, S., Kumar, A., Peltier, J., Gonzalez, A., Johnson, C., Zhang, J., Hope, A.G., Peggie, M., et al. (2015). Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation. EMBO Rep. 16, 939–954.10.15252/embr.201540352Suche in Google Scholar PubMed PubMed Central

Kim, N.C., Tresse, E., Kolaitis, R.-M., Molliex, A., Thomas, R.E., Alami, N.H., Wang, B., Joshi, A., Smith, R.B., Ritson, G.P., et al. (2013). VCP is essential for mitochondrial quality control by PINK1/Parkin and this function is impaired by VCP mutations. Neuron 78, 65–80.10.1016/j.neuron.2013.02.029Suche in Google Scholar PubMed PubMed Central

Kissová, I., Deffieu, M., Manon, S., and Camougrand, N. (2004). Uth1p is involved in the autophagic degradation of mitochondria. J. Biol. Chem. 279, 39068–39074.10.1074/jbc.M406960200Suche in Google Scholar PubMed

Kitada, T., Asakawa, S., Hattori, N., Matsumine, H., Yamamura, Y., Minoshima, S., Yokochi, M., Mizuno, Y., and Shimizu, N. (1998). Mutations in the parkin gene cause autosomal recessive juvenile Parkinsonism. Nature 392, 605–608.10.1038/33416Suche in Google Scholar PubMed

Kitada, T., Tong, Y., Gautier, C.A., and Shen, J. (2009). Absence of nigral degeneration in aged parkin/DJ-1/PINK1 triple knockout mice. J. Neurochem. 111, 696–702.10.1111/j.1471-4159.2009.06350.xSuche in Google Scholar PubMed PubMed Central

Klionsky, D.J., Baehrecke, E.H., Brumell, J.H., Chu, C.T., Codogno, P., Cuervo, A.M., Debnath, J., Deretic, V., Elazar, Z., Eskelinen, E.-L., et al. (2011). A comprehensive glossary of autophagy-related molecules and processes (2nd edition). Autophagy 7, 1273–1294.10.4161/auto.7.11.17661Suche in Google Scholar PubMed PubMed Central

Kondapalli, C., Kazlauskaite, A., Zhang, N., Woodroof, H.I., Campbell, D.G., Gourlay, R., Burchell, L., Walden, H., Macartney, T.J., Deak, M., et al. (2012). PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol. 2, 120080.10.1098/rsob.120080Suche in Google Scholar PubMed PubMed Central

Koyano, F., Okatsu, K., Kosako, H., Tamura, Y., Go, E., Kimura, M., Kimura, Y., Tsuchiya, H., Yoshihara, H., Hirokawa, T., et al. (2014). Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510, 162–166.10.1038/nature13392Suche in Google Scholar PubMed

Kubli, D.A., Ycaza, J.E., and Gustafsson, Å.B. (2007). Bnip3 mediates mitochondrial dysfunction and cell death through Bax and Bak. Biochem. J. 405, 407–415.10.1042/BJ20070319Suche in Google Scholar PubMed PubMed Central

Kubli, D.A., Zhang, X., Lee, Y., Hanna, R.A., Quinsay, M.N., Nguyen, C.K., Jimenez, R., Petrosyan, S., Murphy, A.N., and Gustafsson, Å.B. (2013). Parkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction. J. Biol. Chem. 288, 915–926.10.1074/jbc.M112.411363Suche in Google Scholar PubMed PubMed Central

Kubli, D.A., Cortez, M.Q., Moyzis, A.G., Najor, R.H., Lee, Y., and Gustafsson, Å.B. (2015). PINK1 is dispensable for mitochondrial recruitment of Parkin and activation of mitophagy in cardiac Myocytes. PLoS One 10, e0130707.10.1371/journal.pone.0130707Suche in Google Scholar PubMed PubMed Central

Kumar, A., Aguirre, J.D., Condos, T.E., Martinez-Torres, R.J., Chaugule, V.K., Toth, R., Sundaramoorthy, R., Mercier, P., Knebel, A., Spratt, D.E., et al. (2015). Disruption of the autoinhibited state primes the E3 ligase Parkin for activation and catalysis. EMBO J. 34, 2506–2521.10.15252/embj.201592337Suche in Google Scholar PubMed PubMed Central

Kundu, M., Lindsten, T., Yang, C.-Y., Wu, J., Zhao, F., Zhang, J., Selak, M.A., Ney, P.A., and Thompson, C.B. (2008). Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood 112, 1493–1502.10.1182/blood-2008-02-137398Suche in Google Scholar PubMed PubMed Central

Kuwana, T., Mackey, M.R., Perkins, G., Ellisman, M.H., Latterich, M., Schneiter, R., Green, D.R., and Newmeyer, D.D. (2002). Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111, 331–342.10.1016/S0092-8674(02)01036-XSuche in Google Scholar PubMed

Lazarou, M., Narendra, D.P., Jin, S.M., Tekle, E., Banerjee, S., and Youle, R.J. (2013). PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding. J. Cell Biol. 200, 163–172.10.1083/jcb.201210111Suche in Google Scholar PubMed PubMed Central

Lazarou, M., Sliter, D.A., Kane, L.A., Sarraf, S.A., Wang, C., Burman, J.L., Sideris, D.P., Fogel, A.I., and Youle, R.J. (2015). The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524, 309–314.10.1038/nature14893Suche in Google Scholar PubMed PubMed Central

Lee, Y., Lee, H.-Y., Hanna, R.A., and Gustafsson, Å.B. (2011). Mitochondrial autophagy by Bnip3 involves Drp1-mediated mitochondrial fission and recruitment of Parkin in cardiac myocytes. Am. J. Physiol. Heart Circ. Physiol. 301, H1924–H1931.10.1152/ajpheart.00368.2011Suche in Google Scholar PubMed PubMed Central

Lee, S.B., Kim, J.J., Nam, H.-J., Gao, B., Yin, P., Qin, B., Yi, S.-Y., Ham, H., Evans, D., Kim, S.-H., et al. (2015). Parkin regulates mitosis and genomic stability through Cdc20/Cdh1. Mol. Cell 60, 21–34.10.1016/j.molcel.2015.08.011Suche in Google Scholar PubMed PubMed Central

Lemasters, J.J. (2005). Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res. 8, 3–5.10.1089/rej.2005.8.3Suche in Google Scholar PubMed

Lesage, S. and Brice, A. (2009). Parkinson’s disease: from monogenic forms to genetic susceptibility factors. Hum. Mol. Genet. 18, R48–R59.10.1093/hmg/ddp012Suche in Google Scholar PubMed

Liang, J.-R., Martinez, A., Lane, J.D., Mayor, U., Clague, M.J., and Urbé, S. (2015). USP30 deubiquitylates mitochondrial Parkin substrates and restricts apoptotic cell death. EMBO Rep. 16, 618–627.10.15252/embr.201439820Suche in Google Scholar PubMed PubMed Central

Lill, J.R. and Wertz, I.E. (2014). Toward understanding ubiquitin-modifying enzymes: from pharmacological targeting to proteomics. Trends Pharmacol. Sci. 35, 187–207.10.1016/j.tips.2014.01.005Suche in Google Scholar PubMed

Liu, L., Feng, D., Chen, G., Chen, M., Zheng, Q., Song, P., Ma, Q., Zhu, C., Wang, R., Qi, W., et al. (2012). Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell Biol. 14, 177–185.10.1038/ncb2422Suche in Google Scholar PubMed

López-Otín, C., Blasco, M.A., Partridge, L., Serrano, M., and Kroemer, G. (2013). The hallmarks of aging. Cell 153, 1194–1217.10.1016/j.cell.2013.05.039Suche in Google Scholar PubMed PubMed Central

Lopez, J., Bessou, M., Riley, J.S., Giampazolias, E., Todt, F., Rochegüe, T., Oberst, A., Green, D.R., Edlich, F., Ichim, G., et al. (2016). Mito-priming as a method to engineer Bcl-2 addiction. Nat. Commun. 7, 10538.10.1038/ncomms10538Suche in Google Scholar PubMed PubMed Central

Lustbader, J.W., Cirilli, M., Lin, C., Xu, H.W., Takuma, K., Wang, N., Caspersen, C., Chen, X., Pollak, S., Chaney, M., et al. (2004). ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science 304, 448–452.10.1126/science.1091230Suche in Google Scholar PubMed

Lutter, M., Fang, M., Luo, X., Nishijima, M., Xie, X., and Wang, X. (2000). Cardiolipin provides specificity for targeting of tBid to mitochondria. Nat. Cell Biol. 2, 754–761.10.1038/35036395Suche in Google Scholar PubMed

Martinez-Vicente, M., Tallóczy, Z., Wong, E., Tang, G., Koga, H., Kaushik, S., de Vries, R., Arias, E., Harris, S., Sulzer, D., et al. (2010). Cargo recognition failure is responsible for inefficient autophagy in Huntington’s disease. Nat. Neurosci. 13, 567–576.10.1038/nn.2528Suche in Google Scholar PubMed PubMed Central

Martinou, J.-C. and Youle, R.J. (2011). Mitochondria in apoptosis: bcl-2 family members and mitochondrial dynamics. Dev. Cell 21, 92–101.10.1016/j.devcel.2011.06.017Suche in Google Scholar PubMed PubMed Central

Matsuda, N., Sato, S., Shiba, K., Okatsu, K., Saisho, K., Gautier, C.A., Sou, Y.-S., Saiki, S., Kawajiri, S., Sato, F., et al. (2010). PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol. 189, 211–221.10.1083/jcb.200910140Suche in Google Scholar PubMed PubMed Central

Mattison, J.A., Roth, G.S., Beasley, T.M., Tilmont, E.M., Handy, A.M., Herbert, R.L., Longo, D.L., Allison, D.B., Young, J.E., Bryant, M., et al. (2012). Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature 489, 318–321.10.1038/nature11432Suche in Google Scholar PubMed PubMed Central

McLelland, G.-L., Soubannier, V., Chen, C.X., McBride, H.M., and Fon, E.A. (2014). Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J. 33, 282–295.10.1002/embj.201385902Suche in Google Scholar PubMed PubMed Central

Meissner, C., Lorenz, H., Weihofen, A., Selkoe, D.J., and Lemberg, M.K. (2011). The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking. J. Neurochem. 117, 856–867.10.1111/j.1471-4159.2011.07253.xSuche in Google Scholar PubMed

Meléndez, A., Tallóczy, Z., Seaman, M., Eskelinen, E.-L., Hall, D.H., and Levine, B. (2003). Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301, 1387–1391.10.1126/science.1087782Suche in Google Scholar PubMed

Mendl, N., Occhipinti, A., Müller, M., Wild, P., Dikic, I., and Reichert, A.S. (2011). Mitophagy in yeast is independent of mitochondrial fission and requires the stress response gene WHI2. J. Cell Sci. 124, 1339–1350.10.1242/jcs.076406Suche in Google Scholar PubMed

Mortensen, M., Ferguson, D.J.P., Edelmann, M., Kessler, B., Morten, K.J., Komatsu, M., and Simon, A.K. (2010). Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo. Proc. Natl. Acad. Sci. USA 107, 832–837.10.1073/pnas.0913170107Suche in Google Scholar PubMed PubMed Central

Murakawa, T., Yamaguchi, O., Hashimoto, A., Hikoso, S., Takeda, T., Oka, T., Yasui, H., Ueda, H., Akazawa, Y., Nakayama, H., et al. (2015). Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nat. Commun. 6, 7527.10.1038/ncomms8527Suche in Google Scholar PubMed PubMed Central

Müller-Rischart, A.K., Pilsl, A., Beaudette, P., Patra, M., Hadian, K., Funke, M., Peis, R., Deinlein, A., Schweimer, C., Kuhn, P.-H., et al. (2013). The E3 ligase Parkin maintains mitochondrial integrity by increasing linear ubiquitination of NEMO. Mol. Cell 49, 908–921.10.1016/j.molcel.2013.01.036Suche in Google Scholar PubMed

Nakai, A., Yamaguchi, O., Takeda, T., Higuchi, Y., Hikoso, S., Taniike, M., Omiya, S., Mizote, I., Matsumura, Y., Asahi, M., et al. (2007). The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat. Med. 13, 619–624.10.1038/nm1574Suche in Google Scholar PubMed

Narendra, D., Tanaka, A., Suen, D.-F., and Youle, R.J. (2008). Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795–803.10.1083/jcb.200809125Suche in Google Scholar PubMed PubMed Central

Narendra, D.P., Jin, S.M., Tanaka, A., Suen, D.-F., Gautier, C.A., Shen, J., Cookson, M.R., and Youle, R.J. (2010a). PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 8, e1000298.10.1371/journal.pbio.1000298Suche in Google Scholar PubMed PubMed Central

Narendra, D., Kane, L.A., Hauser, D.N., Fearnley, I.M., and Youle, R.J. (2010b). p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy 6, 1090–1106.10.4161/auto.6.8.13426Suche in Google Scholar PubMed PubMed Central

Nazio, F., Strappazzon, F., Antonioli, M., Bielli, P., Cianfanelli, V., Bordi, M., Gretzmeier, C., Dengjel, J., Piacentini, M., Fimia, G.M., et al. (2013). mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat. Cell Biol. 15, 406–416.10.1038/ncb2708Suche in Google Scholar PubMed

Neuspiel, M., Schauss, A.C., Braschi, E., Zunino, R., Rippstein, P., Rachubinski, R.A., Andrade-Navarro, M.A., and McBride, H.M. (2008). Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers. Curr. Biol. 18, 102–108.10.1016/j.cub.2007.12.038Suche in Google Scholar PubMed

Nishida, Y., Arakawa, S., Fujitani, K., Yamaguchi, H., Mizuta, T., Kanaseki, T., Komatsu, M., Otsu, K., Tsujimoto, Y., and Shimizu, S. (2009). Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 461, 654–658.10.1038/nature08455Suche in Google Scholar PubMed

Novak, I., Kirkin, V., McEwan, D.G., Zhang, J., Wild, P., Rozenknop, A., Rogov, V., Löhr, F., Popovic, D., Occhipinti, A., et al. (2010). Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep. 11, 45–51.10.1038/embor.2009.256Suche in Google Scholar PubMed PubMed Central

O’Flanagan, C.H., Morais, V.A., Wurst, W., De Strooper, B., and O’Neill, C. (2015). The Parkinson’s gene PINK1 regulates cell cycle progression and promotes cancer-associated phenotypes. Oncogene 34, 1363–1374.10.1038/onc.2014.81Suche in Google Scholar PubMed

Okamoto, K., Kondo-Okamoto, N., and Ohsumi, Y. (2009). Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev. Cell 17, 87–97.10.1016/j.devcel.2009.06.013Suche in Google Scholar PubMed

Okatsu, K., Koyano, F., Kimura, M., Kosako, H., Saeki, Y., Tanaka, K., and Matsuda, N. (2015). Phosphorylated ubiquitin chain is the genuine Parkin receptor. J. Cell Biol. 209, 111–128.10.1083/jcb.201410050Suche in Google Scholar PubMed PubMed Central

Okatsu, K., Saisho, K., Shimanuki, M., Nakada, K., Shitara, H., Sou, Y.-S., Kimura, M., Sato, S., Hattori, N., Komatsu, M., et al. (2010). p62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria. Genes Cells 15, 887–900.10.1111/j.1365-2443.2010.01426.xSuche in Google Scholar PubMed PubMed Central

Olichon, A., Baricault, L., Gas, N., Guillou, E., Valette, A., Belenguer, P., and Lenaers, G. (2003). Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J. Biol. Chem. 278, 7743–7746.10.1074/jbc.C200677200Suche in Google Scholar PubMed

Ordureau, A., Sarraf, S.A., Duda, D.M., Heo, J.-M., Jedrychowski, M.P., Sviderskiy, V.O., Olszewski, J.L., Koerber, J.T., Xie, T., Beausoleil, S.A., et al. (2014). Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Mol. Cell 56, 360–375.10.1016/j.molcel.2014.09.007Suche in Google Scholar PubMed PubMed Central

Ordureau, A., Heo, J.-M., Duda, D.M., Paulo, J.A., Olszewski, J.L., Yanishevski, D., Rinehart, J., Schulman, B.A., and Harper, J.W. (2015). Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy. Proc. Natl. Acad. Sci. USA 112, 6637–6642.10.1073/pnas.1506593112Suche in Google Scholar PubMed PubMed Central

Orvedahl, A., Sumpter, R., Xiao, G., Ng, A., Zou, Z., Tang, Y., Narimatsu, M., Gilpin, C., Sun, Q., Roth, M., et al. (2011). Image-based genome-wide siRNA screen identifies selective autophagy factors. Nature 480, 113–117.10.1038/nature10546Suche in Google Scholar PubMed PubMed Central

Palikaras, K., Lionaki, E., and Tavernarakis, N. (2015). Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans. Nature 521, 525–528.10.1038/nature14300Suche in Google Scholar PubMed

Park, J., Lee, S.B., Lee, S., Kim, Y., Song, S., Kim, S., Bae, E., Kim, J., Shong, M., Kim, J.-M., et al. (2006). Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441, 1157–1161.10.1038/nature04788Suche in Google Scholar PubMed

Perez, F.A. and Palmiter, R.D. (2005). Parkin-deficient mice are not a robust model of Parkinsonism. Proc. Natl. Acad. Sci. USA 102, 2174–2179.10.1073/pnas.0409598102Suche in Google Scholar PubMed PubMed Central

Pickrell, A.M., Huang, C.-H., Kennedy, S.R., Ordureau, A., Sideris, D.P., Hoekstra, J.G., Harper, J.W., and Youle, R.J. (2015). Endogenous Parkin preserves dopaminergic substantia nigral neurons following mitochondrial DNA Mutagenic Stress. Neuron 87, 371–381.10.1016/j.neuron.2015.06.034Suche in Google Scholar PubMed PubMed Central

Pyo, J.-O., Yoo, S.-M., Ahn, H.-H., Nah, J., Hong, S.-H., Kam, T.-I., Jung, S., and Jung, Y.-K. (2013). Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nat. Commun. 4, 2300.10.1038/ncomms3300Suche in Google Scholar PubMed PubMed Central

Rana, A., Rera, M., and Walker, D.W. (2013). Parkin overexpression during aging reduces proteotoxicity, alters mitochondrial dynamics, and extends lifespan. Proc. Natl. Acad. Sci. USA 110, 8638–8643.10.1073/pnas.1216197110Suche in Google Scholar PubMed PubMed Central

Ravikumar, B., Moreau, K., Jahreiss, L., Puri, C., and Rubinsztein, D.C. (2010). Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat. Cell Biol. 12, 747–757.10.1038/ncb2078Suche in Google Scholar PubMed PubMed Central

Rikka, S., Quinsay, M.N., Thomas, R.L., Kubli, D.A., Zhang, X., Murphy, A.N., and Gustafsson, Å.B. (2011). Bnip3 impairs mitochondrial bioenergetics and stimulates mitochondrial turnover. Cell Death Differ. 18, 721–731.10.1038/cdd.2010.146Suche in Google Scholar PubMed PubMed Central

Riley, B.E., Lougheed, J.C., Callaway, K., Velasquez, M., Brecht, E., Nguyen, L., Shaler, T., Walker, D., Yang, Y., Regnstrom, K., et al. (2013). Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases. Nat. Commun. 4, 1982.10.1038/ncomms2982Suche in Google Scholar PubMed PubMed Central

Rosca, M.G., Tandler, B., and Hoppel, C.L. (2013). Mitochondria in cardiac hypertrophy and heart failure. J. Mol. Cell Cardiol. 55, 31–41.10.1016/j.yjmcc.2012.09.002Suche in Google Scholar PubMed PubMed Central

Rosenfeldt, M.T., O’Prey, J., Morton, J.P., Nixon, C., MacKay, G., Mrowinska, A., Au, A., Rai, T.S., Zheng, L., Ridgway, R., et al. (2013). p53 status determines the role of autophagy in pancreatic tumour development. Nature 504, 296–300.10.1038/nature12865Suche in Google Scholar PubMed

Rui, Y.-N., Xu, Z., Patel, B., Chen, Z., Chen, D., Tito, A., David, G., Sun, Y., Stimming, E.F., Bellen, H.J., et al. (2015). Huntingtin functions as a scaffold for selective macroautophagy. Nat. Cell Biol. 17, 262–275.10.1038/ncb3101Suche in Google Scholar PubMed PubMed Central

Sandoval, H., Thiagarajan, P., Dasgupta, S.K., Schumacher, A., Prchal, J.T., Chen, M., and Wang, J. (2008). Essential role for Nix in autophagic maturation of erythroid cells. Nature 454, 232–235.10.1038/nature07006Suche in Google Scholar PubMed PubMed Central

Sarraf, S.A., Raman, M., Guarani-Pereira, V., Sowa, M.E., Huttlin, E.L., Gygi, S.P., and Harper, J.W. (2013). Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496, 372–376.10.1038/nature12043Suche in Google Scholar PubMed PubMed Central

Sauvé, V., Lilov, A., Seirafi, M., Vranas, M., Rasool, S., Kozlov, G., Sprules, T., Wang, J., Trempe, J.-F., and Gehring, K. (2015). A Ubl/ubiquitin switch in the activation of Parkin. EMBO J. 34, 2492–2505.10.15252/embj.201592237Suche in Google Scholar PubMed PubMed Central

Schiavi, A., Maglioni, S., Palikaras, K., Shaik, A., Strappazzon, F., Brinkmann, V., Torgovnick, A., Castelein, N., De Henau, S., Braeckman, B.P., et al. (2015). Iron-starvation-induced mitophagy mediates lifespan extension upon mitochondrial stress in C. elegans. Curr. Biol. 25, 1810–1822.10.1016/j.cub.2015.05.059Suche in Google Scholar PubMed

Schmeisser, S., Schmeisser, K., Weimer, S., Groth, M., Priebe, S., Fazius, E., Kuhlow, D., Pick, D., Einax, J.W., Guthke, R., et al. (2013). Mitochondrial hormesis links low-dose arsenite exposure to lifespan extension. Aging Cell 12, 508–517.10.1111/acel.12076Suche in Google Scholar PubMed PubMed Central

Schwarten, M., Mohrlüder, J., Ma, P., Stoldt, M., Thielmann, Y., Stangler, T., Hersch, N., Hoffmann, B., Merkel, R., and Willbold, D. (2009). Nix directly binds to GABARAP: a possible crosstalk between apoptosis and autophagy. Autophagy 5, 690–698.10.4161/auto.5.5.8494Suche in Google Scholar PubMed

Schweers, R.L., Zhang, J., Randall, M.S., Loyd, M.R., Li, W., Dorsey, F.C., Kundu, M., Opferman, J.T., Cleveland, J.L., Miller, J.L., et al. (2007). NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc. Natl. Acad. Sci. USA 104, 19500–19505.10.1073/pnas.0708818104Suche in Google Scholar PubMed PubMed Central

Scott, I., Webster, B.R., Chan, C.K., Okonkwo, J.U., Han, K., and Sack, M.N. (2014). GCN5-like protein 1 (GCN5L1) controls mitochondrial content through coordinated regulation of mitochondrial biogenesis and mitophagy. J. Biol. Chem. 289, 2864–2872.10.1074/jbc.M113.521641Suche in Google Scholar PubMed PubMed Central

Shin, J.-H., Ko, H.S., Kang, H., Lee, Y., Lee, Y.-I., Pletinkova, O., Troconso, J.C., Dawson, V.L., and Dawson, T.M. (2011). PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson’s disease. Cell 144, 689–702.10.1016/j.cell.2011.02.010Suche in Google Scholar PubMed PubMed Central

Soubannier, V., McLelland, G.-L., Zunino, R., Braschi, E., Rippstein, P., Fon, E.A., and McBride, H.M. (2012). A vesicular transport pathway shuttles cargo from mitochondria to lysosomes. Curr. Biol. 22, 135–141.10.1016/j.cub.2011.11.057Suche in Google Scholar PubMed

Squitieri, F., Cannella, M., Sgarbi, G., Maglione, V., Falleni, A., Lenzi, P., Baracca, A., Cislaghi, G., Saft, C., Ragona, G., et al. (2006). Severe ultrastructural mitochondrial changes in lymphoblasts homozygous for Huntington disease mutation. Mech. Ageing Dev. 127, 217–220.10.1016/j.mad.2005.09.010Suche in Google Scholar PubMed

Strappazzon, F., Nazio, F., Corrado, M., Cianfanelli, V., Romagnoli, A., Fimia, G.M., Campello, S., Nardacci, R., Piacentini, M., Campanella, M., et al. (2015). AMBRA1 is able to induce mitophagy via LC3 binding, regardless of PARKIN and p62/SQSTM1. Cell Death Differ. 22, 419–432.10.1038/cdd.2014.139Suche in Google Scholar PubMed PubMed Central

Strohecker, A.M., Guo, J.Y., Karsli-Uzunbas, G., Price, S.M., Chen, G.J., Mathew, R., McMahon, M., and White, E. (2013). Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors. Cancer Discov. 3, 1272–1285.10.1158/2159-8290.CD-13-0397Suche in Google Scholar PubMed PubMed Central

Sun, N., Yun, J., Liu, J., Malide, D., Liu, C., Rovira, I.I., Holmström, K.M., Fergusson, M.M., Yoo, Y.H., Combs, C.A., et al. (2015). Measuring in vivo mitophagy. Mol. Cell 60, 685–696.10.1016/j.molcel.2015.10.009Suche in Google Scholar PubMed PubMed Central

Tait, S.W.G. and Green, D.R. (2010). Mitochondria and cell death: outer membrane permeabilization and beyond. Nat. Rev. Mol. Cell Biol. 11, 621–632.10.1038/nrm2952Suche in Google Scholar PubMed

Tait, S.W.G., Oberst, A., Quarato, G., Milasta, S., Haller, M., Wang, R., Karvela, M., Ichim, G., Yatim, N., Albert, M.L., et al. (2013). Widespread mitochondrial depletion via mitophagy does not compromise necroptosis. Cell Rep. 5, 878–885.10.1016/j.celrep.2013.10.034Suche in Google Scholar PubMed PubMed Central

Takagi, H., Matsui, Y., Hirotani, S., Sakoda, H., Asano, T., and Sadoshima, J. (2007). AMPK mediates autophagy during myocardial ischemia in vivo. Autophagy 3, 405–407.10.4161/auto.4281Suche in Google Scholar PubMed

Tanaka, A., Cleland, M.M., Xu, S., Narendra, D.P., Suen, D.-F., Karbowski, M., and Youle, R.J. (2010). Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. 191, 1367–1380.10.1083/jcb.201007013Suche in Google Scholar PubMed PubMed Central

Tauchi, H. and Sato, T. (1968). Age changes in size and number of mitochondria of human hepatic cells. J. Gerontol. 23, 454–461.10.1093/geronj/23.4.454Suche in Google Scholar PubMed

Tian, X., Isamiddinova, N.S., Peroutka, R.J., Goldenberg, S.J., Mattern, M.R., Nicholson, B., and Leach, C. (2011). Characterization of selective ubiquitin and ubiquitin-like protease inhibitors using a fluorescence-based multiplex assay format. Assay Drug Dev. Technol. 9, 165–173.10.1089/adt.2010.0317Suche in Google Scholar PubMed PubMed Central

Todd, L.R., Damin, M.N., Gomathinayagam, R., Horn, S.R., Means, A.R., and Sankar, U. (2010). Growth factor erv1-like modulates Drp1 to preserve mitochondrial dynamics and function in mouse embryonic stem cells. Mol. Biol. Cell 21, 1225–1236.10.1091/mbc.e09-11-0937Suche in Google Scholar PubMed

Trempe, J.-F., Sauvé, V., Grenier, K., Seirafi, M., Tang, M.Y., Ménade, M., Al-Abdul-Wahid, S., Krett, J., Wong, K., Kozlov, G., et al. (2013). Structure of parkin reveals mechanisms for ubiquitin ligase activation. Science 340, 1451–1455.10.1126/science.1237908Suche in Google Scholar PubMed

Trifunovic, A., Wredenberg, A., Falkenberg, M., Spelbrink, J.N., Rovio, A.T., Bruder, C.E., Bohlooly-Y, M., Gidlöf, S., Oldfors, A., Wibom, R., et al. (2004). Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417–423.10.1038/nature02517Suche in Google Scholar PubMed

Van Humbeeck, C., Cornelissen, T., Hofkens, H., Mandemakers, W., Gevaert, K., De Strooper, B., and Vandenberghe, W. (2011). Parkin interacts with Ambra1 to induce mitophagy. J. Neurosci. 31, 10249–10261.10.1523/JNEUROSCI.1917-11.2011Suche in Google Scholar PubMed PubMed Central

Vande Velde, C., Cizeau, J., Dubik, D., Alimonti, J., Brown, T., Israels, S., Hakem, R., and Greenberg, A.H. (2000). BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol. Cell Biol. 20, 5454–5468.10.1128/MCB.20.15.5454-5468.2000Suche in Google Scholar PubMed PubMed Central

Vincow, E.S., Merrihew, G., Thomas, R.E., Shulman, N.J., Beyer, R.P., MacCoss, M.J., and Pallanck, L.J. (2013). The PINK1-Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo. Proc. Natl. Acad. Sci. USA 110, 6400–6405.10.1073/pnas.1221132110Suche in Google Scholar PubMed PubMed Central

Vives-Bauza, C., Zhou, C., Huang, Y., Cui, M., de Vries, R.L.A., Kim, J., May, J., Tocilescu, M.A., Liu, W., Ko, H.S., et al. (2010). PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc. Natl. Acad. Sci. USA 107, 378–383.10.1073/pnas.0911187107Suche in Google Scholar PubMed PubMed Central

Wang, X., Winter, D., Ashrafi, G., Schlehe, J., Wong, Y.L., Selkoe, D., Rice, S., Steen, J., LaVoie, M.J., and Schwarz, T.L. (2011). PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147, 893–906.10.1016/j.cell.2011.10.018Suche in Google Scholar PubMed PubMed Central

Warr, M.R., Binnewies, M., Flach, J., Reynaud, D., Garg, T., Malhotra, R., Debnath, J., and Passegué, E. (2013). FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature 494, 323–327.10.1038/nature11895Suche in Google Scholar PubMed PubMed Central

Wauer, T., Simicek, M., Schubert, A., and Komander, D. (2015a). Mechanism of phospho-ubiquitin-induced PARKIN activation. Nature 524, 370–374.10.1038/nature14879Suche in Google Scholar PubMed PubMed Central

Wauer, T., Swatek, K.N., Wagstaff, J.L., Gladkova, C., Pruneda, J.N., Michel, M.A., Gersch, M., Johnson, C.M., Freund, S.M.V., and Komander, D. (2015b). Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis. EMBO J. 34, 307–325.10.15252/embj.201489847Suche in Google Scholar PubMed PubMed Central

Webster, B.R., Scott, I., Han, K., Li, J.H., Lu, Z., Stevens, M.V., Malide, D., Chen, Y., Samsel, L., Connelly, P.S., et al. (2013). Restricted mitochondrial protein acetylation initiates mitochondrial autophagy. J. Cell Sci. 126, 4843–4849.10.1242/jcs.131300Suche in Google Scholar PubMed PubMed Central

Weinstock, J., Wu, J., Cao, P., Kingsbury, W.D., McDermott, J.L., Kodrasov, M.P., McKelvey, D.M., Suresh Kumar, K.G., Goldenberg, S.J., Mattern, M.R., et al. (2012). Selective dual inhibitors of the cancer-related deubiquitylating proteases USP7 and USP47. ACS Med. Chem. Lett. 3, 789–792.10.1021/ml200276jSuche in Google Scholar PubMed PubMed Central

Wenzel, D.M., Lissounov, A., Brzovic, P.S., and Klevit, R.E. (2011). UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids. Nature 474, 105–108.10.1038/nature09966Suche in Google Scholar PubMed PubMed Central

Whitworth, A.J., Theodore, D.A., Greene, J.C., Benes, H., Wes, P.D., and Pallanck, L.J. (2005). Increased glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson’s disease. Proc. Natl. Acad. Sci. USA 102, 8024–8029.10.1073/pnas.0501078102Suche in Google Scholar PubMed PubMed Central

Wild, P., McEwan, D.G., and Dikic, I. (2014). The LC3 interactome at a glance. J. Cell Sci. 127, 3–9.10.1242/jcs.140426Suche in Google Scholar PubMed

Wong, Y.C. and Holzbaur, E.L.F. (2014). Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proc. Natl. Acad. Sci. USA 111, E4439–E4448.10.1073/pnas.1405752111Suche in Google Scholar PubMed PubMed Central

Yamano, K. and Youle, R.J. (2013). PINK1 is degraded through the N-end rule pathway. Autophagy 9, 1758–1769.10.4161/auto.24633Suche in Google Scholar PubMed PubMed Central

Yan, L., Vatner, D.E., Kim, S.-J., Ge, H., Masurekar, M., Massover, W.H., Yang, G., Matsui, Y., Sadoshima, J., and Vatner, S.F. (2005). Autophagy in chronically ischemic myocardium. Proc. Natl. Acad. Sci. USA 102, 13807–13812.10.1073/pnas.0506843102Suche in Google Scholar PubMed PubMed Central

Yang, J.-Y. and Yang, W.Y. (2013). Bit-by-bit autophagic removal of parkin-labelled mitochondria. Nat. Commun. 4, 2428.10.1038/ncomms3428Suche in Google Scholar PubMed

Yen, T.C., Chen, Y.S., King, K.L., Yeh, S.H., and Wei, Y.H. (1989). Liver mitochondrial respiratory functions decline with age. Biochem. Biophys. Res. Commun. 165, 944–1003.10.1016/0006-291X(89)92701-0Suche in Google Scholar

Zarse, K., Schmeisser, S., Groth, M., Priebe, S., Beuster, G., Kuhlow, D., Guthke, R., Platzer, M., Kahn, C.R., and Ristow, M. (2012). Impaired insulin/IGF1 signaling extends life span by promoting mitochondrial L-proline catabolism to induce a transient ROS signal. Cell Metab. 15, 451–465.10.1016/j.cmet.2012.02.013Suche in Google Scholar PubMed PubMed Central

Zhang, J. and Ney, P.A. (2009). Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ. 16, 939–946.10.1038/cdd.2009.16Suche in Google Scholar PubMed PubMed Central

Zhang, J., Randall, M.S., Loyd, M.R., Dorsey, F.C., Kundu, M., Cleveland, J.L., and Ney, P.A. (2009). Mitochondrial clearance is regulated by Atg7-dependent and -independent mechanisms during reticulocyte maturation. Blood 114, 157–164.10.1182/blood-2008-04-151639Suche in Google Scholar PubMed PubMed Central

Zhang, C., Lin, M., Wu, R., Wang, X., Yang, B., Levine, A.J., Hu, W., and Feng, Z. (2011). Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect. Proc. Natl. Acad. Sci. USA 108, 16259–16264.10.1073/pnas.1113884108Suche in Google Scholar PubMed PubMed Central

Zhang, C., Lee, S., Peng, Y., Bunker, E., Giaime, E., Shen, J., Zhou, Z., and Liu, X. (2014). PINK1 triggers autocatalytic activation of Parkin to specify cell fate decisions. Curr. Biol. 24, 1854–1865.10.1016/j.cub.2014.07.014Suche in Google Scholar PubMed PubMed Central

Zhu, H., Tannous, P., Johnstone, J.L., Kong, Y., Shelton, J.M., Richardson, J.A., Le, V., Levine, B., Rothermel, B.A., and Hill, J.A. (2007). Cardiac autophagy is a maladaptive response to hemodynamic stress. J. Clin. Invest. 117, 1782–1793.10.1172/JCI27523Suche in Google Scholar PubMed PubMed Central

Received: 2016-2-12
Accepted: 2016-4-6
Published Online: 2016-4-12
Published in Print: 2016-7-1

©2016 by De Gruyter

Heruntergeladen am 3.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2016-0137/html
Button zum nach oben scrollen