Home The assembly and disassembly of the AcrAB-TolC three-component multidrug efflux pump
Article
Licensed
Unlicensed Requires Authentication

The assembly and disassembly of the AcrAB-TolC three-component multidrug efflux pump

  • Reinke Tobias Müller and Klaas Martinus Pos EMAIL logo
Published/Copyright: June 9, 2015

Abstract

In Gram-negative bacteria, tripartite efflux pumps, like AcrAB-TolC from Escherichia coli, play a prominent role in the resistance against multiple antibiotics. Transport of the drugs across the outer membrane and its coupling to the electrochemical gradient is dependent on the presence of all three components. As the activity of the E. coli AcrAB-TolC efflux pump is dependent on both the concentration of substrates and the extent of the electrochemical gradient across the inner membrane, the dynamics of tripartite pump assembly and disassembly might be crucial for effective net transport of drugs towards the outside of the cell.


Corresponding author: Klaas Martinus Pos, Institute of Biochemistry, Goethe University Frankfurt, D-60438 Frankfurt/Main, Germany, e-mail:

Acknowledgments

Many of the ideas described in this review arose during the workshop ‘Toward an integrated understanding of drug resistance’ in Santa Fe, NM, USA on 18–20 February 2015. I would like to thank all the colleagues present at that occasion for their open discussion spirit. Work in the Pos lab is supported by the German Research Foundation (SFB 807, Transport and Communication across Biological Membranes and FOR2251, Adaptation and persistence of the emerging pathogen Acinetobacter baumannii), the DFG-EXC115 (Cluster of Excellence Macromolecular Complexes at the Goethe University Frankfurt), Innovative Medicines Initiative Joint Undertaking Project Translocation (IMI-Translocation), EU Marie Curie Actions ITN, Human Frontiers Science Program (HFSP) and the German-Israeli Foundation (GIF).

References

Boyer, P.D. (1997). The ATP synthase – a splendid molecular machine. Annu. Rev. Biochem. 66, 717–749.10.1146/annurev.biochem.66.1.717Search in Google Scholar

Cha, H. and Pos, K.M. (2014). Membrane Transport Mechanism (Berlin, Heidelberg: Springer Berlin Heidelberg).Search in Google Scholar

Cha, H.J., Müller, R.T., and Pos, K.M. (2014). Switch-loop flexibility affects transport of large drugs by the promiscuous AcrB multidrug efflux transporter. Antimicrob. Agents Chemother. 58, 4767–4772.10.1128/AAC.02733-13Search in Google Scholar

Cherepanov, D.A., Feniouk, B.A., Junge, W., and Mulkidjanian, A.Y. (2003). Low dielectric permittivity of water at the membrane interface: effect on the energy coupling mechanism in biological membranes. Biophys. J. 85, 1307–1316.10.1016/S0006-3495(03)74565-2Search in Google Scholar

Cherepanov, D.A., Junge, W., and Mulkidjanian, A.Y. (2004). Proton transfer dynamics at the membrane/water interface: dependence on the fixed and mobile pH buffers, on the size and form of membrane particles, and on the interfacial potential barrier. Biophys. J. 86, 665–680.10.1016/S0006-3495(04)74146-6Search in Google Scholar

Du, D., Wang, Z., James, N.R., Voss, J.E., Klimont, E., Ohene-Agyei, T., Venter, H., Chiu, W., and Luisi, B.F. (2014). Structure of the AcrAB-TolC multidrug efflux pump. Nature 509, 512–515.10.1038/nature13205Search in Google Scholar PubMed PubMed Central

Du, D., van Veen, H.W., and Luisi, B.F. (2015a). Assembly and operation of bacterial tripartite multidrug efflux pumps. Trends Microbiol. 23, 311–319.10.1016/j.tim.2015.01.010Search in Google Scholar PubMed

Du, D., Voss, J., Wang, Z., Chiu, W., and Luisi, B.F. (2015b). The pseudo-atomic structure of an RND-type tripartite multidrug efflux pump. Biol. Chem. 396, 1073–1082.10.1515/hsz-2015-0118Search in Google Scholar PubMed

Eicher, T., Cha, H.J., Seeger, M.A., Brandstätter, L., El-Delik, J., Bohnert, J.A, Kern, W.V, Verrey, F., Grütter, M.G., Diederichs, K., et al. (2012). Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are separated by a switch-loop. Proc. Natl. Acad. Sci. USA 109, 5687–5692.10.1073/pnas.1114944109Search in Google Scholar PubMed PubMed Central

Eicher, T., Seeger, M.A., Anselmi, C., Zhou, W., Brandstätter, L., Verrey, F., Diederichs, K., Faraldo-Gómez, J.D., and Pos, K.M. (2014). Coupling of remote alternating-access transport mechanisms for protons and substrates in the multidrug efflux pump AcrB. Elife 3, e03145.10.7554/eLife.03145.033Search in Google Scholar

Fischer, N. and Kandt, C. (2011). Three ways in, one way out: water dynamics in the trans-membrane domains of the inner membrane translocase AcrB. Proteins 79, 2871–2885.10.1002/prot.23122Search in Google Scholar PubMed

Hung, L.-W., Kim, H.-B., Murakami, S., Gupta, G., Kim, C.-Y., and Terwilliger, T.C. (2013). Crystal structure of AcrB complexed with linezolid at 3.5 Å resolution. J. Struct. Funct. Genomics 14, 71–75.10.1007/s10969-013-9154-xSearch in Google Scholar PubMed PubMed Central

Janganan, T.K., Bavro, V.N., Zhang, L., Borges-Walmsley, M.I., and Walmsley, A.R. (2013). Tripartite efflux pumps: energy is required for dissociation, but not assembly or opening of the outer membrane channel of the pump. Mol. Microbiol. 88, 590–602.10.1111/mmi.12211Search in Google Scholar PubMed PubMed Central

Kashket, E.R. (1985). The proton motive force in bacteria: a critical assessment of methods. Annu. Rev. Microbiol. 39, 219–242.10.1146/annurev.mi.39.100185.001251Search in Google Scholar PubMed

Kinana, A.D., Vargiu, A.V, and Nikaido, H. (2013). Some ligands enhance the efflux of other ligands by the Escherichia coli multidrug pump AcrB. Biochemistry 52, 8342–8351.10.1021/bi401303vSearch in Google Scholar PubMed PubMed Central

Kralj, J.M., Hochbaum, D.R., Douglass, A.D., and Cohen, A.E. (2011). Electrical spiking in Escherichia coli probed with a fluorescent voltage-indicating protein. Science 333, 345–348.10.1126/science.1204763Search in Google Scholar PubMed

Lim, S.P. and Nikaido, H. (2010). Kinetic parameters of efflux of penicillins by the multidrug efflux transporter AcrAB-TolC of Escherichia coli. Antimicrob. Agents Chemother. 54, 1800–1806.10.1128/AAC.01714-09Search in Google Scholar PubMed PubMed Central

Murakami, S., Nakashima, R., Yamashita, E., and Yamaguchi, A. (2002). Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419, 587–593.10.1038/nature01050Search in Google Scholar PubMed

Murakami, S., Nakashima, R., Yamashita, E., Matsumoto, T., and Yamaguchi, A. (2006). Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature 443, 173–179.10.1038/nature05076Search in Google Scholar PubMed

Nagano, K. and Nikaido, H. (2009). Kinetic behavior of the major multidrug efflux pump AcrB of Escherichia coli. Proc. Natl. Acad. Sci. USA 106, 5854–5858.10.1073/pnas.0901695106Search in Google Scholar PubMed PubMed Central

Nakashima, R., Sakurai, K., Yamasaki, S., Nishino, K., and Yamaguchi, A. (2011). Structures of the multidrug exporter AcrB reveal a proximal multisite drug-binding pocket. Nature 480, 565–569.10.1038/nature10641Search in Google Scholar PubMed

Nakashima, R., Sakurai, K., Yamasaki, S., Hayashi, K., Nagata, C., Hoshino, K., Onodera, Y., Nishino, K., and Yamaguchi, A. (2013). Structural basis for the inhibition of bacterial multidrug exporters. Nature 500, 102–106.10.1038/nature12300Search in Google Scholar PubMed

Nikaido, H. (1996). Multidrug efflux pumps of gram-negative bacteria. J. Bacteriol. 178, 5853–5859.10.1128/jb.178.20.5853-5859.1996Search in Google Scholar PubMed PubMed Central

Ntsogo Enguene, V.Y., Verchère, A., Phan, G., Broutin, I., and Picard, M. (2015). Catch me if you can: a biotinylated proteoliposome affinity assay for the investigation of assembly of the MexA-MexB-OprM efflux pump from Pseudomonas aeruginosa. Front. Microbiol. 6. doi: 10.3389/fmicb.2015.00541.10.3389/fmicb.2015.00541Search in Google Scholar PubMed PubMed Central

Ohene-Agyei, T., Lea, J.D., and Venter, H. (2012). Mutations in MexB that affect the efflux of antibiotics with cytoplasmic targets. FEMS Microbiol. Lett. 333, 20–27.10.1111/j.1574-6968.2012.02594.xSearch in Google Scholar PubMed

Piddock, L.J. (2006). Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin. Microbiol. Rev. 19, 382–402.10.1128/CMR.19.2.382-402.2006Search in Google Scholar PubMed PubMed Central

Piddock, L.J.V (2014). Understanding the basis of antibiotic resistance: a platform for drug discovery. Microbiology 160, 2366–2373.10.1099/mic.0.082412-0Search in Google Scholar PubMed

Pos, K.M. (2009). Drug transport mechanism of the AcrB efflux pump. Biochim. Biophys. Acta. 1794, 782–793.10.1016/j.bbapap.2008.12.015Search in Google Scholar PubMed

Ruggerone, P., Murakami, S., Pos, K.M., Vargiu, A.V, Pos, K.M., and Vargiu, A.V (2013). RND efflux pumps: structural information translated into function and inhibition mechanisms. Curr. Top. Med. Chem. 13, 3079–3100.10.2174/15680266113136660220Search in Google Scholar PubMed

Seeger, M.A, Schiefner, A., Eicher, T., Verrey, F., Diederichs, K., and Pos, K.M. (2006). Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism. Science 313, 1295–1298.10.1126/science.1131542Search in Google Scholar PubMed

Seeger, M.A., von Ballmoos, C., Verrey, F., and Pos, K.M. (2009). Crucial role of Asp408 in the proton translocation pathway of multidrug transporter AcrB: evidence from site-directed mutagenesis and carbodiimide labeling. Biochemistry 48, 5801–5812.10.1021/bi900446jSearch in Google Scholar PubMed

Su, C.-C.C., Li, M., Gu, R., Takatsuka, Y., McDermott, G., Nikaido, H., and Yu, E.W. (2006). Conformation of the AcrB multidrug efflux pump in mutants of the putative proton relay pathway. J. Bacteriol. 188, 7290–7296.10.1128/JB.00684-06Search in Google Scholar PubMed PubMed Central

Tikhonova, E.B., Yamada, Y., and Zgurskaya, H.I. (2011). Sequential mechanism of assembly of multidrug efflux pump AcrAB-TolC. Chem. Biol. 18, 454–463.10.1016/j.chembiol.2011.02.011Search in Google Scholar PubMed PubMed Central

Vargiu, A.V. and Nikaido, H. (2012). Multidrug binding properties of the AcrB efflux pump characterized by molecular dynamics simulations. Proc. Natl. Acad. Sci. USA 109, 20637–20642.10.1073/pnas.1218348109Search in Google Scholar PubMed PubMed Central

Verchère, A., Dezi, M., Broutin, I., and Picard, M. (2014). In vitro investigation of the MexAB efflux pump from Pseudomonas aeruginosa. J. Vis. Exp. e50894.Search in Google Scholar

Verchère, A., Dezi, M., Adrien, V., Broutin, I., and Picard, M. (2015). In vitro transport activity of the fully assembled MexAB-OprM efflux pump from Pseudomonas aeruginosa. Nat. Commun. 6, 6890.10.1038/ncomms7890Search in Google Scholar PubMed

Yao, X.Q., Kenzaki, H., Murakami, S., and Takada, S. (2010). Drug export and allosteric coupling in a multidrug transporter revealed by molecular simulations. Nat. Commun. 1, 117.10.1038/ncomms1116Search in Google Scholar PubMed PubMed Central

Zgurskaya, H.I. and Nikaido, H. (1999a). Bypassing the periplasm: reconstitution of the AcrAB multidrug efflux pump of Escherichia coli. Proc. Natl. Acad. Sci. USA 96, 7190–7195.10.1073/pnas.96.13.7190Search in Google Scholar PubMed PubMed Central

Zgurskaya, H.I. and Nikaido, H. (1999b). AcrA is a highly asymmetric protein capable of spanning the periplasm. J. Mol. Biol. 285, 409–420.10.1006/jmbi.1998.2313Search in Google Scholar PubMed

Zgurskaya, H.I., Weeks, J.W., Ntreh, A.T., Nickels, L.M., and Wolloscheck, D. (2015). Mechanism of coupling drug transport reactions located in two different membranes. Front. Microbiol. 6, 100.10.3389/fmicb.2015.00100Search in Google Scholar PubMed PubMed Central

Received: 2015-3-31
Accepted: 2015-6-3
Published Online: 2015-6-9
Published in Print: 2015-9-1

©2015 by De Gruyter

Articles in the same Issue

  1. Frontmatter
  2. Meeting Report
  3. Membrane Transport and Communication in Frankfurt: Speakers’ Summary – Highlights
  4. HIGHLIGHT: MEMBRANE TRANSPORT AND COMMUNICATION
  5. Structure, function, evolution, and application of bacterial Pnu-type vitamin transporters
  6. Team work at its best – TAPL and its two domains
  7. The volume-regulated anion channel is formed by LRRC8 heteromers – molecular identification and roles in membrane transport and physiology
  8. Extending native mass spectrometry approaches to integral membrane proteins
  9. Functional diversity of the superfamily of K+ transporters to meet various requirements
  10. The structure of Na+-translocating of NADH:ubiquinone oxidoreductase of Vibrio cholerae: implications on coupling between electron transfer and Na+ transport
  11. Hybrid rotors in F1Fo ATP synthases: subunit composition, distribution, and physiological significance
  12. Homeostatic control of biological membranes by dedicated lipid and membrane packing sensors
  13. The transporter associated with antigen processing: a key player in adaptive immunity
  14. The pseudo-atomic structure of an RND-type tripartite multidrug efflux pump
  15. The assembly and disassembly of the AcrAB-TolC three-component multidrug efflux pump
  16. A universal mechanism for transport and regulation of CPA sodium proton exchangers
  17. Biosynthesis of membrane dependent proteins in insect cell lysates: identification of limiting parameters for folding and processing
  18. Fluorescence and excited state dynamics of the deprotonated Schiff base retinal in proteorhodopsin
  19. Regulatory role of charged clusters in the N-terminal domain of BetP from Corynebacterium glutamicum
  20. The contribution of methionine to the stability of the Escherichia coli MetNIQ ABC transporter-substrate binding protein complex
  21. The ABC exporter MsbA probed by solid state NMR – challenges and opportunities
  22. Functional properties of LptA and LptD in Anabaena sp. PCC 7120
Downloaded on 6.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2015-0150/html?lang=en
Scroll to top button