Home Biosynthesis of membrane dependent proteins in insect cell lysates: identification of limiting parameters for folding and processing
Article
Licensed
Unlicensed Requires Authentication

Biosynthesis of membrane dependent proteins in insect cell lysates: identification of limiting parameters for folding and processing

  • Helmut Merk EMAIL logo , Ralf-Bernhardt Rues , Christine Gless , Kerstin Beyer , Fang Dong , Volker Dötsch , Michael Gerrits and Frank Bernhard EMAIL logo
Published/Copyright: May 22, 2015

Abstract

G protein-coupled receptors, like many other membrane proteins, are notoriously difficult to synthesize in conventional cellular systems. Although expression in insect cells is considered the preferred technique for structural characterizations in particular, inefficient membrane translocation, instability, toxic effects and low yields still pose clear limitations for their production in living cells. Recent studies started to explore alternative strategies for the in vitro production of problematic membrane proteins in cell-free lysates in combination with supplied membranes. We provide a detailed study on the production efficiencies and quality of G protein-coupled receptors, Fab fragments and other proteins synthesized in insect cell lysates containing endogenous microsomes. Effects of different reaction kinetics, redox conditions and sample preparations on the specific activities of synthesized proteins have been analyzed. The extent of glycosylation, membrane translocation and percentages of ligand binding active fractions of synthesized protein samples have been determined. We provide strong evidence that membrane insertion of integral membrane proteins can represent a prime limiting factor for their preparative scale in vitro production. Improved expression protocols resulting into higher production rates yielded more active protein in case of Fab fragments, but not in case of the human endothelin B receptor.


Corresponding authors: Helmut Merk, RiNA Netzwerk RNA-Technologien GmbH, Volmerstraße 9, D-12489 Berlin, Germany, e-mail: ; and Frank Bernhard, Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J. W. Goethe University, Max-von-Laue Str. 9, D-60438 Frankfurt/Main, Germany, e-mail:

Acknowledgments

This study was supported by a grant from the Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF, No. 0316079). Financial support was further provided by the Collaborative Research Center (SFB) 807 of the German Research Foundation (DFG). Plasmid DNA encoding ETB was kindly provided by Prof. Dr. Michael Schaefer (Universität Leipzig).

References

Ballatori, N., Krance, S.M., Marchan, R., and Hammond, C.L. (2008). Plasma membrane glutathione transporters and their roles in cell physiology and pathophysiology. Mol. Aspects Med. 30, 13–28.10.1016/j.mam.2008.08.004Search in Google Scholar PubMed PubMed Central

Bernhard, F. and Tozawa, Y. (2013). Cell-free expression – making a mark. Curr. Opin. Struct. Biol. 23, 374–380.10.1016/j.sbi.2013.03.012Search in Google Scholar PubMed

Boland, C., Li, D., Shah S.T.A., Haberstock, S., Dötsch, V., Bernhard, F., and Caffrey, M. (2014). Cell-free expression and in meso crystallisation of an integral membrane kinase for structure determination. Cell. Mol. Life Sci. 71, 4895–4910.10.1007/s00018-014-1655-7Search in Google Scholar PubMed PubMed Central

Doi, T., Hiroaki, Y., Arimoto, I., Fujiyoshi, Y., Okamoto, T., Satoh, M., and Furuichi, Y. (1997). Characterization of human endothelin B receptor and mutant receptors expressed in insect cells. Eur. J. Biochem. 248, 139–148.10.1111/j.1432-1033.1997.00139.xSearch in Google Scholar PubMed

Ezure, T., Suzuki, T., Higashide, S., Shintani, E., Endo, K., Kobayashi, S., Shikata, M., Ito, M., Tanimizu, K., and Nishimura, O. (2006). Cell-free protein synthesis system prepared from insect cells by freeze-thawing. Biotechnol. Prog. 22, 1570–1577.10.1021/bp060110vSearch in Google Scholar PubMed

Ezure, T., Suzuki, T., and Ando, E. (2014). A cell-free protein synthesis system from insect cells. Methods Mol. Biol. 1118, 285–296.10.1007/978-1-62703-782-2_20Search in Google Scholar PubMed

Fenz, S.F., Sachse, R., Schmidt, T., and Kubick, S. (2014). Cell-free synthesis of membrane proteins: tailored cell models out of microsomes. Biochim. Biophys. Acta 1838, 1382–1388.10.1016/j.bbamem.2013.12.009Search in Google Scholar PubMed

Gao, T., Petrlova, J., He, W., Huser, T., Kudlick, W., Voss, J., and Coleman, M.A. (2012). Characterization of de novo synthesized GPCRs supported in nanolipoprotein discs. PLoS One 7, e44911.10.1371/journal.pone.0044911Search in Google Scholar PubMed PubMed Central

Haberstock, S., Roos, C., Hoevels, Y., Dötsch, V., Schnapp, G., Pautsch, A., and Bernhard, F. (2012). A systematic approach to increase the efficiency of membrane protein production in cell-free expression systems. Protein Expr. Purif. 82, 308–316.10.1016/j.pep.2012.01.018Search in Google Scholar PubMed

Hara, M., Tozawa, F., Itazaki, K., Mihara, S., and Fujimoto, M. (1998). Endothelin ET(B) receptors show different binding profiles in intact cells and cell membrane preparations. Eur. J. Pharmacol. 345, 339–342.10.1016/S0014-2999(98)00016-8Search in Google Scholar PubMed

Hein, C., Henrich, E., Orbán, E., Dötsch, V., and Bernhard, F. (2014). Hydrophobic supplements in cell-free systems: Designing artificial environments for membrane proteins. J. Eng. Life Sci. 14, 365–379.10.1002/elsc.201300050Search in Google Scholar

Hunte, C. and Richers, S. (2008). Lipids and membrane protein structures. Curr. Opin. Struct. Biol. 18, 406–411.10.1016/j.sbi.2008.03.008Search in Google Scholar PubMed

Johnson, N., Powis, K., and High, S. (2013). Post-translational translocation into the endoplasmic reticulum. Biochim. Biophys. Acta 1833, 2403–2409.10.1016/j.bbamcr.2012.12.008Search in Google Scholar PubMed

Kaiser, L., Graveland-Bikker, J., Steuerwald, D., Vanberghem, M., Herlihy, K., and Zhang, S. (2008). Efficient cell-free production of olfactory receptors: detergent optimization, structure, and ligand binding analyses. Proc. Natl. Acad. Sci. USA 105, 15726–15731.10.1073/pnas.0804766105Search in Google Scholar PubMed PubMed Central

Kalmbach, R., Chizhov, I., Schumacher, M.C., Friedrich, T., Bamberg, E., and Engelhard, M. (2007). Functional cell-free synthesis of a seven helix membrane protein: in situ insertion of bacteriorhodopsin into liposomes. J. Mol. Biol. 371, 639–648.10.1016/j.jmb.2007.05.087Search in Google Scholar PubMed

Klammt, C., Schwarz, D., Eifler, N., Engel, A., Piehler, J., Haase, W., Hahn, S., Dötsch, V., and Bernhard, F. (2007). Cell-free production of G protein-coupled receptors for functional and structural studies. J. Struct. Biol. 158, 482–493.10.1016/j.jsb.2007.01.006Search in Google Scholar PubMed

Köchl, R., Alken, M., Rutz, C., Krause, G., Oksche, A., Rosenthal, W., and Schülein, R. (2002). The signal peptide of the G protein-coupled human endothelin B receptor is necessary for translocation of the N-terminal tail across the endoplasmic reticulum membrane. J. Biol. Chem. 277, 16131–16138.10.1074/jbc.M111674200Search in Google Scholar PubMed

Kubick, S., Schacherl, J., Fleischer-Notter, H., Royall, E., Roberts, L.O., and Stiege, W. (2003). In vitro translation in an insect-based cell-free system. Cell-Free Protein Expr. 209–217.10.1007/978-3-642-59337-6_25Search in Google Scholar

Lundstrom, K., Wagner, R., Reinhart, C., Desmyter, A., Cherouati, N., Magnin, T., Zeder-Lutz, G., Courtot, M., Prual, C., André, N., et al. (2006). Structural genomics on membrane proteins: comparison of more than 100 GPCRs in 3 expression systems. J. Struct. Funct. Genomics 7, 77–91.10.1007/s10969-006-9011-2Search in Google Scholar PubMed

Madin, K., Sawasaki, T., Ogasawara, T., and Endo, Y. (2000). A highly efficient and robust cell-free protein synthesis system prepared from wheat embryos: plants apparently contain a suicide system directed at ribosomes. Proc. Natl. Acad. Sci. USA 97, 559–564.10.1073/pnas.97.2.559Search in Google Scholar PubMed PubMed Central

Maeda, S. and Schertler, G.F.X. (2013). Production of GPCR and GPCR complexes for structure determination. Curr. Opin. Struct. Biol. 23, 381–392.10.1016/j.sbi.2013.04.006Search in Google Scholar PubMed

Matthies, D., Haberstock, S., Joos, F., Dötsch, V., Vonck, J., Bernhard, F., and Meier, T. (2011). Cell-free expression and assembly of ATP synthase. J. Mol. Biol. 413, 593–603.10.1016/j.jmb.2011.08.055Search in Google Scholar PubMed

McCusker, E.C., Bane, S.E., O’Malley, M.A., and Robinson, A.S. (2007). Heterologous GPCR expression: a bottleneck to obtaining crystal structures. Biotechnol. Prog. 23, 540–547.10.1021/bp060349bSearch in Google Scholar PubMed

Merk, H., Meschkat, D., and Stiege, W. (2003). Expression-PCR: from gene pools to purified proteins within 1 day. Cell-Free Protein Expr. 209–217.10.1007/978-3-642-59337-6_3Search in Google Scholar

Merk, H., Gless, C., Maertens, B., Gerrits, M., and Stiege, W. (2012). Cell-free synthesis of functional and endotoxin-free antibody Fab fragments by translocation into microsomes. Biotechniques 53, 153–160.10.2144/0000113904Search in Google Scholar PubMed

Mureev, S., Kovtun, O., Nguyen, U.T.T., and Alexandrov, K. (2009). Species-independent translational leaders facilitate cell-free expression. Nat. Biotechnol. 27, 747–752.10.1038/nbt.1556Search in Google Scholar PubMed

Orbán, E., Proverbio, D., Haberstock, S., Dötsch, V., and Bernhard, F. (2015). Cell-free expression of G-protein-coupled receptors. Methods Mol. Biol. 1261, 171–195.10.1007/978-1-4939-2230-7_10Search in Google Scholar PubMed

Proverbio, D., Roos, C., Beyermann, M., Orbán, E., Dötsch, V., and Bernhard, F. (2013). Functional properties of cell-free expressed human endothelin A and endothelin B receptors in artificial membrane environments. Biochim. Biophys. Acta 1828, 2182–2192.10.1016/j.bbamem.2013.05.031Search in Google Scholar PubMed

Reckel, S., Gottstein, D., Stehle, J., Löhr, F., Verhoefen, M.K., Takeda, M., Silvers, R., Kainosho, M., Glaubitz, C., Wachtveitl, J., et al. (2011). Solution NMR structure of proteorhodopsin. Angew. Chem. Int. Ed. 50, 11942–11946.10.1002/anie.201105648Search in Google Scholar PubMed PubMed Central

Ritz, S., Hulko, M., Zerfaß, C., May, S., Hospach, I., Krasteva, N., Nelles, G., and Sinner, E.K. (2013). Cell-free expression of a mammalian olfactory receptor and unidirectional insertion into small unilamellar vesicles (SUVs). Biochimie 95, 1909–1916.10.1016/j.biochi.2013.06.021Search in Google Scholar PubMed

Roos, C., Kai, L., Proverbio, D., Ghoshdastider, U., Filipek, S., Dötsch, V., and Bernhard, F. (2013). Co-translational association of cell-free expressed membrane proteins with supplied lipid bilayers. Mol. Membr. Biol. 30, 75–89.10.3109/09687688.2012.693212Search in Google Scholar PubMed

Sachse, R., Dondapati, S.K., Fenz, S.F., Schmidt, T., and Kubick, S. (2014). Membrane protein synthesis in cell-free systems: from bio-mimetic systems to bio-membranes. FEBS Lett. 588, 2774–2781.10.1016/j.febslet.2014.06.007Search in Google Scholar PubMed

Sansuk, K., Balog, C.I.A., van der Does, A.M., Booth, R., de Grip, W.J., Deelder, A.M., Bakker, R.A., Leurs, R., and Hensbergen, P.J. (2008). GPCR proteomics: mass spectrometric and functional analysis of histamine H 1 receptor after baculovirus-driven and in vitro cell free expression. J. Proteome Res. 7, 621–629.10.1021/pr7005654Search in Google Scholar PubMed

Sarramegna, V., Talmont, F., Demange, P., and Milon, A. (2003). Heterologous expression of G-protein-coupled receptors: comparison of expression systems from the standpoint of large-scale production and purification. Cell. Mol. Life Sci. 60, 1529–1546.10.1007/s00018-003-3168-7Search in Google Scholar PubMed

Stech, M., Quast, R.B., Sachse, R., Schulze, C., Wüstenhagen, D.A., Kubick, S., and Preiss, T. (2014). A continuous-exchange cell-free protein synthesis system based on extracts from cultured insect cells. PLoS One 9, e96635.10.1371/journal.pone.0096635Search in Google Scholar PubMed PubMed Central

Suzuki, T., Ito, M., Ezure, T., Kobayashi, S., Shikata, M., Tanimizu, K., and Nishimura, O. (2006). Performance of expression vector, pTD1, in insect cell-free translation system. J. Biosci. Bioeng. 102, 69–71.10.1263/jbb.102.69Search in Google Scholar PubMed

Tarui, H., Imanishi, S., and Hara, T. (2000). A novel cell-free translation/glycosylation system prepared from insect cells. J. Biosci. Bioeng. 90, 508–514.10.1016/S1389-1723(01)80031-1Search in Google Scholar

Tate, C.G. (2012). A crystal clear solution for determining G-protein-coupled receptor structures. Trends Biochem. Sci. 37, 343–352.10.1016/j.tibs.2012.06.003Search in Google Scholar PubMed

Tessier, D.C., Thomas, D.Y., Khouri, H.E., Laliberté, F., and Vernet, T. (1991). Enhanced secretion from insect cells of a foreign protein fused to the honeybee melittin signal peptide. Gene 98, 177–183.10.1016/0378-1119(91)90171-7Search in Google Scholar PubMed

Venkatakrishnan, A.J., Deupi, X., Lebon, G., Tate, C.G., Schertler, G.F., and Babu, M.M. (2013). Molecular signatures of G-protein-coupled receptors. Nature 494, 185–194.10.1038/nature11896Search in Google Scholar PubMed

Wada, T., Shimono, K., Kikukawa, T., Hato, M., Shinya, N., Kim, S.Y., Kimura-Someya, T., Shirouzu, M., Tamogami, J., Miyauchi, S., et al. (2011). Crystal structure of the eukaryotic light-driven proton-pumping rhodopsin, Acetabularia rhodopsin II, from marine alga. J. Mol. Biol. 411, 986–998.10.1016/j.jmb.2011.06.028Search in Google Scholar PubMed

Wallin, E. and von Heijne, G. (1995). Properties of N-terminal tails in G-protein coupled receptors: a statistical study. Prot. Eng. 8, 693–698.10.1093/protein/8.7.693Search in Google Scholar PubMed

Wang, X., Wang, J., and Ge, B. (2013). Evaluation of cell-free expression system for the production of soluble and functional human GPCR N-formyl peptide receptors. Protein Pept. Lett. 20, 1272–1279.10.2174/09298665113209990043Search in Google Scholar PubMed

Yang, J.-P., Cirico, T., Katzen, F., Peterson, T.C., and Kudlicki, W. (2011). Cell-free synthesis of a functional G protein-coupled receptor complexed with nanometer scale bilayer discs. BMC Biotechnol. 11, 57.10.1186/1472-6750-11-57Search in Google Scholar PubMed PubMed Central

Yao, Z. and Kobilka, B. (2005). Using synthetic lipids to stabilize purified β2 adrenoceptor in detergent micelles. Anal. Biochem. 343, 344–346.10.1016/j.ab.2005.05.002Search in Google Scholar PubMed

Received: 2015-1-14
Accepted: 2015-5-11
Published Online: 2015-5-22
Published in Print: 2015-9-1

©2015 by De Gruyter

Articles in the same Issue

  1. Frontmatter
  2. Meeting Report
  3. Membrane Transport and Communication in Frankfurt: Speakers’ Summary – Highlights
  4. HIGHLIGHT: MEMBRANE TRANSPORT AND COMMUNICATION
  5. Structure, function, evolution, and application of bacterial Pnu-type vitamin transporters
  6. Team work at its best – TAPL and its two domains
  7. The volume-regulated anion channel is formed by LRRC8 heteromers – molecular identification and roles in membrane transport and physiology
  8. Extending native mass spectrometry approaches to integral membrane proteins
  9. Functional diversity of the superfamily of K+ transporters to meet various requirements
  10. The structure of Na+-translocating of NADH:ubiquinone oxidoreductase of Vibrio cholerae: implications on coupling between electron transfer and Na+ transport
  11. Hybrid rotors in F1Fo ATP synthases: subunit composition, distribution, and physiological significance
  12. Homeostatic control of biological membranes by dedicated lipid and membrane packing sensors
  13. The transporter associated with antigen processing: a key player in adaptive immunity
  14. The pseudo-atomic structure of an RND-type tripartite multidrug efflux pump
  15. The assembly and disassembly of the AcrAB-TolC three-component multidrug efflux pump
  16. A universal mechanism for transport and regulation of CPA sodium proton exchangers
  17. Biosynthesis of membrane dependent proteins in insect cell lysates: identification of limiting parameters for folding and processing
  18. Fluorescence and excited state dynamics of the deprotonated Schiff base retinal in proteorhodopsin
  19. Regulatory role of charged clusters in the N-terminal domain of BetP from Corynebacterium glutamicum
  20. The contribution of methionine to the stability of the Escherichia coli MetNIQ ABC transporter-substrate binding protein complex
  21. The ABC exporter MsbA probed by solid state NMR – challenges and opportunities
  22. Functional properties of LptA and LptD in Anabaena sp. PCC 7120
Downloaded on 6.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2015-0105/html?lang=en
Scroll to top button