Startseite Plasmacytoid dendritic cells and autoimmune inflammation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Plasmacytoid dendritic cells and autoimmune inflammation

  • Georgina Galicia

    Georgina Galicia completed her PhD at Catholic University of Leuven, Belgium where she studied experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Dr. Galicia then moved to Toronto to continue her studies in the Department of Immunology at the University of Toronto. Upon joining the Gommerman lab, Dr. Galicia won a post-doctroral fellowship from the MS Society of Canada. Currently Dr. Galicia investigates the immunopathology of EAE, with particular focus on cells of immune cells such as plasmacytoid dendritic cells (pDC) and B cells.

    und Jennifer L. Gommerman

    Jen Gommerman received her PhD in 1998 from the Department of Immunology at the University of Toronto. She went on to do a post-doctoral fellowship with Dr. Michael Carroll at Harvard Medical School and subsequently joined Biogen Idec as a staff scientist under the direction of Dr. Jeffrey Browning. Dr. Gommerman returned to Toronto in 2003 to establish her laboratory in the Department of Immunology at the University of Toronto. She has received funding from the Canadian Institutes of Health Research, the MS Society of Canada and the Kidney Foundation to study the immune system in the context of health and disease. Her funding from the MS Society has allowed her to examine the role of different immune cell types in the immunopathology of EAE.

    EMAIL logo
Veröffentlicht/Copyright: 30. Oktober 2013

Abstract

Plasmacytoid dendritic cells (pDC) are a sub-population of dendritic cells (DC) that produce large amounts of type I interferon (IFN) in response to nucleic acids that bind and activate toll-like-receptor (TLR)9 and TLR7. Type I IFN can regulate the function of B, T, DC, and natural killer (NK) cells and can also alter the residence time of leukocytes within lymph nodes. Activated pDC can also function as antigen presenting cells (APC) and have the potential to prime and differentiate T cells into regulatory or inflammatory effector cells, depending on the context. In this review we discuss pDC ontogeny, function, trafficking, and activation. We will also examine how pDC can potentially be involved in regulating immune responses in the periphery as well as within the central nervous system (CNS) during multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE).


Corresponding author: Jennifer L. Gommerman, Department of Immunology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada, e-mail:

About the authors

Georgina Galicia

Georgina Galicia completed her PhD at Catholic University of Leuven, Belgium where she studied experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Dr. Galicia then moved to Toronto to continue her studies in the Department of Immunology at the University of Toronto. Upon joining the Gommerman lab, Dr. Galicia won a post-doctroral fellowship from the MS Society of Canada. Currently Dr. Galicia investigates the immunopathology of EAE, with particular focus on cells of immune cells such as plasmacytoid dendritic cells (pDC) and B cells.

Jennifer L. Gommerman

Jen Gommerman received her PhD in 1998 from the Department of Immunology at the University of Toronto. She went on to do a post-doctoral fellowship with Dr. Michael Carroll at Harvard Medical School and subsequently joined Biogen Idec as a staff scientist under the direction of Dr. Jeffrey Browning. Dr. Gommerman returned to Toronto in 2003 to establish her laboratory in the Department of Immunology at the University of Toronto. She has received funding from the Canadian Institutes of Health Research, the MS Society of Canada and the Kidney Foundation to study the immune system in the context of health and disease. Her funding from the MS Society has allowed her to examine the role of different immune cell types in the immunopathology of EAE.

This work was funded by an operating grant from the MS Society of Canada to J.L.G and a post-doctoral fellowship from the MS Society of Canada to G.G. The authors would like to acknowledge the helpful comments from Dennis Ng.

References

Allman, D., Dalod, M., Asselin-Paturel, C., Delale, T., Robbins, S.H., Trinchieri, G., Biron, C.A., Kastner, P., and Chan, S. (2006). Ikaros is required for plasmacytoid dendritic cell differentiation. Blood 108, 4025–4034.10.1182/blood-2006-03-007757Suche in Google Scholar PubMed PubMed Central

Andersen, O., Lygner, P.E., Bergstrom, T., Andersson, M., and Vahlne, A. (1993). Viral infections trigger multiple sclerosis relapses: a prospective seroepidemiological study. J. Neurol. 240, 417–422.10.1007/BF00867354Suche in Google Scholar PubMed

Aung, L.L., Fitzgerald-Bocarsly, P., Dhib-Jalbut, S., and Balashov, K. (2010). Plasmacytoid dendritic cells in multiple sclerosis: chemokine and chemokine receptor modulation by interferon-beta. J. Neuroimmunol. 226, 158–164.10.1016/j.jneuroim.2010.06.008Suche in Google Scholar PubMed PubMed Central

Axtell, R.C., de Jong, B.A., Boniface, K., van der Voort, L.F., Bhat, R., De Sarno, P., Naves, R., Han, M., Zhong, F., Castellanos, J.G., et al. (2010). T helper type 1 and 17 cells determine efficacy of interferon-β in multiple sclerosis and experimental encephalomyelitis. Nat. Med. 16, 406–412.10.1038/nm.2110Suche in Google Scholar PubMed PubMed Central

Bailey, S.L., Schreiner, B., McMahon, E.J., and Miller, S.D. (2007). CNS myeloid DCs presenting endogenous myelin peptides ‘preferentially’ polarize CD4+ T(H)-17 cells in relapsing EAE. Nat. Immunol. 8, 172–180.10.1038/ni1430Suche in Google Scholar PubMed

Bailey-Bucktrout, S.L., Caulkins, S.C., Goings, G., Fischer, J.A., Dzionek, A., and Miller, S.D. (2008). Cutting edge: central nervous system plasmacytoid dendritic cells regulate the severity of relapsing experimental autoimmune encephalomyelitis. J. Immunol. 180, 6457–6461.10.4049/jimmunol.180.10.6457Suche in Google Scholar PubMed PubMed Central

Balashov, K.E., Aung, L.L., Vaknin-Dembinsky, A., Dhib-Jalbut, S., and Weiner, H.L. (2010). Interferon-β inhibits toll-like receptor 9 processing in multiple sclerosis. Ann. Neurol. 68, 899–906.10.1002/ana.22136Suche in Google Scholar PubMed PubMed Central

Banchereau, J., Briere, F., Caux, C., Davoust, J., Lebecque, S., Liu, Y.J., Pulendran, B., and Palucka, K. (2000). Immunobiology of dendritic cells. Annu. Rev. Immunol. 18, 767–811.10.1146/annurev.immunol.18.1.767Suche in Google Scholar PubMed

Bao, M., and Liu, Y.J. (2013). Regulation of TLR7/9 signaling in plasmacytoid dendritic cells. Protein Cell 4, 40–52.10.1007/s13238-012-2104-8Suche in Google Scholar PubMed PubMed Central

Baxter, A.G. (2007). The origin and application of experimental autoimmune encephalomyelitis. Nat. Rev. Immunol. 7, 904–912.10.1038/nri2190Suche in Google Scholar PubMed

Bayas, A., Stasiolek, M., Kruse, N., Toyka, K.V., Selmaj, K., and Gold, R. (2009). Altered innate immune response of plasmacytoid dendritic cells in multiple sclerosis. Clin. Exp. Immunol. 157. 332–342.10.1111/j.1365-2249.2009.03964.xSuche in Google Scholar PubMed PubMed Central

Cao, W. and Bover, L. (2010). Signaling and ligand interaction of ILT7: receptor-mediated regulatory mechanisms for plasmacytoid dendritic cells. Immunol. Rev. 234, 163–176.10.1111/j.0105-2896.2009.00867.xSuche in Google Scholar PubMed PubMed Central

Carotta, S., Dakic, A., D’Amico, A., Pang, S.H., Greig, K.T., Nutt, S.L., and Wu, L. (2010). The transcription factor PU.1 controls dendritic cell development and Flt3 cytokine receptor expression in a dose-dependent manner. Immunity 32, 628–641.10.1016/j.immuni.2010.05.005Suche in Google Scholar PubMed

Cella, M., Facchetti, F., Lanzavecchia, A., and Colonna, M. (2000). Plasmacytoid dendritic cells activated by influenza virus and CD40L drive a potent TH1 polarization. Nat. Immunol. 1, 305–310.10.1038/79747Suche in Google Scholar PubMed

Cella, M., Jarrossay, D., Facchetti, F., Alebardi, O., Nakajima, H., Lanzavecchia, A., and Colonna, M. (1999). Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat Med. 5, 919–923.10.1038/11360Suche in Google Scholar PubMed

Chiurchiu, V., Cencioni, M.T., Bisicchia, E., De Bardi, M., Gasperini, C., Borsellino, G., Centonze, D., Battistini, L., and Maccarrone, M. (2013). Distinct modulation of human myeloid and plasmacytoid dendritic cells by anandamide in multiple sclerosis. Ann Neurol. 73, 626–636.10.1002/ana.23875Suche in Google Scholar PubMed

Cisse, B., Caton, M.L., Lehner, M., Maeda, T., Scheu, S., Locksley, R., Holmberg, D., Zweier, C., den Hollander, N.S., Kant, S.G., et al. (2008). Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development. Cell 135, 37–48.10.1016/j.cell.2008.09.016Suche in Google Scholar PubMed PubMed Central

Cooper, M.A., Fehniger, T.A., Turner, S.C., Chen, K.S., Ghaheri, B.A., Ghayur, T., Carson, W.E., and Caligiuri, M.A. (2001). Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subset. Blood 97, 3146–3151.10.1182/blood.V97.10.3146Suche in Google Scholar PubMed

Crozat, K., Guiton, R., Guilliams, M., Henri, S., Baranek, T., Schwartz-Cornil, I., Malissen, B., and Dalod, M. (2010). Comparative genomics as a tool to reveal functional equivalences between human and mouse dendritic cell subsets. Immunol. Rev. 234, 177–198.10.1111/j.0105-2896.2009.00868.xSuche in Google Scholar PubMed

Dai, J., Megjugorac, N.J., Amrute, S.B., and Fitzgerald-Bocarsly, P. (2004). Regulation of IFN regulatory factor-7 and IFN-α production by enveloped virus and lipopolysaccharide in human plasmacytoid dendritic cells. J. Immunol. 173, 1535–1548.10.4049/jimmunol.173.3.1535Suche in Google Scholar PubMed

Deal, E.M., Lahl, K., Narvaez, C.F., Butcher, E.C., and Greenberg, H.B. (2013). Plasmacytoid dendritic cells promote rotavirus-induced human and murine B cell responses. J. Clin. Invest. 123, 2464–2474.10.1172/JCI60945Suche in Google Scholar PubMed PubMed Central

Derkow, K., Bauer, J.M., Hecker, M., Paap, B.K., Thamilarasan, M., Koczan, D., Schott, E., Deuschle, K., Bellmann-Strobl, J., Paul, F., et al. (2013). Multiple sclerosis: modulation of toll-like receptor (TLR) expression by interferon-β includes upregulation of TLR7 in plasmacytoid dendritic cells. PLoS One 8, e70626.10.1371/journal.pone.0070626Suche in Google Scholar PubMed PubMed Central

Di Pucchio, T., Chatterjee, B., Smed-Sorensen, A., Clayton, S., Palazzo, A., Montes, M., Xue, Y., Mellman, I., Banchereau, J., and Connolly, J.E. (2008). Direct proteasome-independent cross-presentation of viral antigen by plasmacytoid dendritic cells on major histocompatibility complex class I. Nat. Immunol. 9, 551–557.10.1038/ni.1602Suche in Google Scholar PubMed PubMed Central

Diacovo, T.G., Blasius, A.L., Mak, T.W., Cella, M., and Colonna, M. (2005). Adhesive mechanisms governing interferon-producing cell recruitment into lymph nodes. J. Exp. Med. 202, 687–696.10.1084/jem.20051035Suche in Google Scholar PubMed PubMed Central

Domingues, H.S., Mues, M., Lassmann, H., Wekerle, H., and Krishnamoorthy, G. (2010). Functional and pathogenic differences of Th1 and Th17 cells in experimental autoimmune encephalomyelitis. PLoS One 5, e15531.10.1371/journal.pone.0015531Suche in Google Scholar PubMed PubMed Central

Dzionek, A., Fuchs, A., Schmidt, P., Cremer, S., Zysk, M., Miltenyi, S., Buck, D.W., and Schmitz, J. (2000). BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J. Immunol. 165, 6037–6046.10.4049/jimmunol.165.11.6037Suche in Google Scholar PubMed

Eidenschenk, C., Crozat, K., Krebs, P., Arens, R., Popkin, D., Arnold, C.N., Blasius, A.L., Benedict, C.A., Moresco, E.M., Xia, Y., et al. (2010). Flt3 permits survival during infection by rendering dendritic cells competent to activate NK cells. Proc. Natl. Acad. Sci. USA 107, 9759–9764.10.1073/pnas.1005186107Suche in Google Scholar PubMed PubMed Central

Facchetti, F., de Wolf-Peeters, C., Mason, D.Y., Pulford, K., van den Oord, J.J., and Desmet, V.J. (1988). Plasmacytoid T cells. Immunohistochemical evidence for their monocyte/macrophage origin. Am. J. Pathol. 133, 15–21.Suche in Google Scholar

Feng, X., Reder, N.P., Yanamandala, M., Hill, A., Franek, B.S., Niewold, T.B., Reder, A.T., and Javed, A. (2012). Type I interferon signature is high in lupus and neuromyelitis optica but low in multiple sclerosis. J. Neurol. Sci. 313, 48–53.10.1016/j.jns.2011.09.032Suche in Google Scholar PubMed PubMed Central

Fonteneau, J.F., Larsson, M., Beignon, A.S., McKenna, K., Dasilva, I., Amara, A., Liu, Y.J., Lifson, J.D., Littman, D.R., and Bhardwaj, N. (2004). Human immunodeficiency virus type 1 activates plasmacytoid dendritic cells and concomitantly induces the bystander maturation of myeloid dendritic cells. J. Virol. 78, 5223–5232.10.1128/JVI.78.10.5223-5232.2004Suche in Google Scholar

Fuchs, A., Cella, M., Kondo, T., and Colonna, M. (2005). Paradoxic inhibition of human natural interferon-producing cells by the activating receptor NKp44. Blood. 106, 2076–2082.10.1182/blood-2004-12-4802Suche in Google Scholar PubMed

Galicia-Rosas, G., Pikor, N., Schwartz, J.A., Rojas, O., Jian, A., Summers-Deluca, L., Ostrowski, M., Nuesslein-Hildesheim, B., and Gommerman, J.L. (2012). A sphingosine-1-phosphate receptor 1-directed agonist reduces central nervous system inflammation in a plasmacytoid dendritic cell-dependent manner. J. Immunol. 189, 3700–3706.10.4049/jimmunol.1102261Suche in Google Scholar PubMed

Gao, Y., Majchrzak-Kita, B., Fish, E.N., and Gommerman, J.L. (2009). Dynamic accumulation of plasmacytoid dendritic cells in lymph nodes is regulated by interferon-beta. Blood 114, 2623–2631.10.1182/blood-2008-10-183301Suche in Google Scholar PubMed

Gay, N.J., Gangloff, M., and O’Neill, L.A. (2011). What the Myddosome structure tells us about the initiation of innate immunity. Trends Immunol. 32, 104–109.10.1016/j.it.2010.12.005Suche in Google Scholar PubMed

Georg, P. and Bekeredjian-Ding, I. (2012). Plasmacytoid dendritic cells control B cell-derived IL-10 production. Autoimmunity 45, 579–583.10.3109/08916934.2012.719955Suche in Google Scholar PubMed

Gilliet, M., Cao, W., and Liu, Y.J. (2008). Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat. Rev. Immunol. 8, 594–606.10.1038/nri2358Suche in Google Scholar PubMed

Goubier, A., Dubois, B., Gheit, H., Joubert, G., Villard-Truc, F., Asselin-Paturel, C., Trinchieri, G., and Kaiserlian, D. (2008). Plasmacytoid dendritic cells mediate oral tolerance. Immunity 29, 464–475.10.1016/j.immuni.2008.06.017Suche in Google Scholar PubMed PubMed Central

Haas, J., Fritzsching, B., Trubswetter, P., Korporal, M., Milkova, L., Fritz, B., Vobis, D., Krammer, P.H., Suri-Payer, E., and Wildemann, B. (2007). Prevalence of newly generated naive regulatory T cells (Treg) is critical for Treg suppressive function and determines Treg dysfunction in multiple sclerosis. J. Immunol. 179, 1322–1330.10.4049/jimmunol.179.2.1322Suche in Google Scholar PubMed

Heyder, P., Bekeredjian-Ding, I., Parcina, M., Blank, N., Ho, A.D., Herrmann, M., Lorenz, H.M., Heeg, K., and Schiller, M. (2007). Purified apoptotic bodies stimulate plasmacytoid dendritic cells to produce IFN-α. Autoimmunity 40, 331–332.10.1080/08916930701356515Suche in Google Scholar PubMed

Irla, M., Kupfer, N., Suter, T., Lissilaa, R., Benkhoucha, M., Skupsky, J., Lalive, P.H., Fontana, A., Reith, W., and Hugues, S. (2010). MHC class II-restricted antigen presentation by plasmacytoid dendritic cells inhibits T cell-mediated autoimmunity. J. Exp. Med. 207, 1891–1905.10.1084/jem.20092627Suche in Google Scholar PubMed PubMed Central

Isaksson, M., Ardesjo, B., Ronnblom, L., Kampe, O., Lassmann, H., Eloranta, M.L., and Lobell, A. (2009). Plasmacytoid DC promote priming of autoimmune Th17 cells and EAE. Eur. J. Immunol. 39. 2925–2935.10.1002/eji.200839179Suche in Google Scholar PubMed

Jego, G., Palucka, A.K., Blanck, J.P., Chalouni, C., Pascual, V., and Banchereau, J. (2003). Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity 19, 225–234.10.1016/S1074-7613(03)00208-5Suche in Google Scholar

Ji, Q., Castelli, L., and Goverman, J.M. (2013). MHC class I-restricted myelin epitopes are cross-presented by Tip-DCs that promote determinant spreading to CD8+ T cells. Nat. Immunol. 14, 254–261.10.1038/ni.2513Suche in Google Scholar

Kalinke, U. and Prinz, M. (2012). Endogenous, or therapeutically induced, type I interferon responses differentially modulate Th1/Th17-mediated autoimmunity in the CNS. Immunol. Cell. Biol. 90, 505–509.10.1038/icb.2012.8Suche in Google Scholar

Kool, M., Geurtsvankessel, C., Muskens, F., Madeira, F.B., van Nimwegen, M., Kuipers, H., Thielemans, K., Hoogsteden, H.C., Hammad, H., and Lambrecht, B.N. (2011). Facilitated antigen uptake and timed exposure to TLR ligands dictate the antigen-presenting potential of plasmacytoid DCs. J. Leukoc. Biol. 90, 1177–1190.10.1189/jlb.0610342Suche in Google Scholar

Kornete, M. and Piccirillo, C.A. (2012). Functional crosstalk between dendritic cells and Foxp3+ regulatory T cells in the maintenance of immune tolerance. Front. Immunol. 3, 165.10.3389/fimmu.2012.00165Suche in Google Scholar

Korporal, M., Haas, J., Balint, B., Fritzsching, B., Schwarz, A., Moeller, S., Fritz, B., Suri-Payer, E., and Wildemann, B. (2008). Interferon beta-induced restoration of regulatory T-cell function in multiple sclerosis is prompted by an increase in newly generated naive regulatory T cells. Arch. Neurol. 65, 1434–1439.10.1001/archneur.65.11.1434Suche in Google Scholar

Lande, R., Gafa, V., Serafini, B., Giacomini, E., Visconti, A., Remoli, M.E., Severa, M., Parmentier, M., Ristori, G., Salvetti, M., et al. (2008). Plasmacytoid dendritic cells in multiple sclerosis: intracerebral recruitment and impaired maturation in response to interferon-β. J. Neuropathol. Exp. Neurol. 67, 388–401.10.1097/NEN.0b013e31816fc975Suche in Google Scholar

Lande, R. and Gilliet, M. (2010). Plasmacytoid dendritic cells: key players in the initiation and regulation of immune responses. Ann. N.Y. Acad. Sci. 1183, 89–103.10.1111/j.1749-6632.2009.05152.xSuche in Google Scholar

Le Bon, A., Schiavoni, G., D’Agostino, G., Gresser, I., Belardelli, F., and Tough, D.F. (2001). Type i interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity 1, 461–470.10.1016/S1074-7613(01)00126-1Suche in Google Scholar

Le Bon, A., Thompson, C., Kamphuis, E., Durand, V., Rossmann, C., Kalinke, U., and Tough, D.F. (2006). Cutting edge: enhancement of antibody responses through direct stimulation of B and T cells by type I IFN. J. Immunol. 176, 2074–2078.10.4049/jimmunol.176.4.2074Suche in Google Scholar PubMed

Li, Z., Lim, W.K., Mahesh, S.P., Liu, B., and Nussenblatt, R.B. (2005). Cutting edge: in vivo blockade of human IL-2 receptor induces expansion of CD56(bright) regulatory NK cells in patients with active uveitis. J. Immunol. 174, 5187–5191.10.4049/jimmunol.174.9.5187Suche in Google Scholar PubMed

Limmroth, V., Putzki, N., and Kachuck, N.J. (2011). The interferon beta therapies for treatment of relapsing-remitting multiple sclerosis: are they equally efficacious? A comparative review of open-label studies evaluating the efficacy, safety, or dosing of different interferon beta formulations alone or in combination. Ther. Adv. Neurol. Disord. 4, 281–296.10.1177/1756285611413825Suche in Google Scholar PubMed PubMed Central

Longhini, A.L., von Glehn, F., Brandao, C.O., de Paula, R.F., Pradella, F., Moraes, A.S., Farias, A.S., Oliveira, E.C., Quispe-Cabanillas, J.G., Abreu, C.H., et al. (2011). Plasmacytoid dendritic cells are increased in cerebrospinal fluid of untreated patients during multiple sclerosis relapse. J. Neuroinflammation 8, 2.10.1186/1742-2094-8-2Suche in Google Scholar PubMed PubMed Central

Lopez, C., Comabella, M., Al-zayat, H., Tintore, M., and Montalban, X. (2006). Altered maturation of circulating dendritic cells in primary progressive MS patients. J. Neuroimmunol. 175, 183–191.10.1016/j.jneuroim.2006.03.010Suche in Google Scholar PubMed

Loschko, J., Heink, S., Hackl, D., Dudziak, D., Reindl, W., Korn, T., and Krug, A.B. (2011). Antigen targeting to plasmacytoid dendritic cells via Siglec-H inhibits Th cell-dependent autoimmunity. J. Immunol. 187, 6346–6356.10.4049/jimmunol.1102307Suche in Google Scholar PubMed

Merad, M., Sathe, P., Helft, J., Miller, J., and Mortha, A. (2013). The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol. 31, 563–604.10.1146/annurev-immunol-020711-074950Suche in Google Scholar PubMed PubMed Central

Mitosek-Szewczyk, K., Tabarkiewicz, J., Wilczynska, B., Lobejko, K., Berbecki, J., Nastaj, M., Dworzanska, E., Kolodziejczyk, B., Stelmasiak, Z., and Rolinski, J. (2013). Impact of cladribine therapy on changes in circulating dendritic cell subsets, T cells and B cells in patients with multiple sclerosis. J. Neurol. Sci. 332, 35–40.10.1016/j.jns.2013.06.003Suche in Google Scholar PubMed

Moore, A.J. and Anderson, M.K. (2013). Dendritic cell development: a choose-your-own-adventure story. Adv. Hematol. 2013, 949513.10.1155/2013/949513Suche in Google Scholar PubMed PubMed Central

Mouries, J., Moron, G., Schlecht, G., Escriou, N., Dadaglio, G., and Leclerc, C. (2008). Plasmacytoid dendritic cells efficiently cross-prime naive T cells in vivo after TLR activation. Blood 112, 3713–3722.10.1182/blood-2008-03-146290Suche in Google Scholar PubMed PubMed Central

Naves, R., Singh, S.P., Cashman, K.S., Rowse, A.L., Axtell, R.C., Steinman, L., Mountz, J.D., Steele, C., De Sarno, P., and Raman, C. (2013). The interdependent, overlapping, and differential roles of type I and II IFNs in the pathogenesis of experimental autoimmune encephalomyelitis. J. Immunol. 191, 2967–2977.10.4049/jimmunol.1300419Suche in Google Scholar PubMed PubMed Central

Obermoser, G. and Pascual, V. (2010). The interferon-α signature of systemic lupus erythematosus. Lupus 19, 1012–1019.10.1177/0961203310371161Suche in Google Scholar PubMed PubMed Central

Ogata, M., Ito, T., Shimamoto, K., Nakanishi, T., Satsutani, N., Miyamoto, R., and Nomura, S. (2013). Plasmacytoid dendritic cells have a cytokine-producing capacity to enhance ICOS ligand-mediated IL-10 production during T-cell priming. Int. Immunol. 25, 171–182.10.1093/intimm/dxs103Suche in Google Scholar PubMed

Okada, T., Ngo, V.N., Ekland, E.H., Forster, R., Lipp, M., Littman, D.R., and Cyster, J.G. (2002). Chemokine requirements for B cell entry to lymph nodes and Peyer’s patches. J. Exp. Med. 196, 65–75.10.1084/jem.20020201Suche in Google Scholar PubMed PubMed Central

Onai, N., Kurabayashi, K., Hosoi-Amaike, M., Toyama-Sorimachi, N., Matsushima, K., Inaba, K., and Ohteki, T. (2013). A clonogenic progenitor with prominent plasmacytoid dendritic cell developmental potential. Immunity 38, 943–957.10.1016/j.immuni.2013.04.006Suche in Google Scholar PubMed

Pashenkov, M., Huang, Y.M., Kostulas, V., Haglund, M., Soderstrom, M., and Link, H. (2001). Two subsets of dendritic cells are present in human cerebrospinal fluid. Brain 124, 480–492.10.1093/brain/124.3.480Suche in Google Scholar PubMed

Prinz, M., Schmidt, H., Mildner, A., Knobeloch, K.P., Hanisch, U.K., Raasch, J., Merkler, D., Detje, C., Gutcher, I., Mages, J., et al. (2008). Distinct and nonredundant in vivo functions of IFNAR on myeloid cells limit autoimmunity in the central nervous system. Immunity 28, 675–686.10.1016/j.immuni.2008.03.011Suche in Google Scholar PubMed

Sanna, A., Huang, Y.M., Arru, G., Fois, M.L., Link, H., Rosati, G., and Sotgiu, S. (2008). Multiple sclerosis: reduced proportion of circulating plasmacytoid dendritic cells expressing BDCA-2 and BDCA-4 and reduced production of IL-6 and IL-10 in response to herpes simplex virus type 1. Mult Scler. 14, 1199–1207.10.1177/1352458508094401Suche in Google Scholar PubMed

Saraste, M., Irjala, H., and Airas, L. (2007). Expansion of CD56Bright natural killer cells in the peripheral blood of multiple sclerosis patients treated with interferon-β. Neurol. Sci. 28, 121–126.10.1007/s10072-007-0803-3Suche in Google Scholar PubMed

Sasaki, I., Hoshino, K., Sugiyama, T., Yamazaki, C., Yano, T., Iizuka, A., Hemmi, H., Tanaka, T., Saito, M., Sugiyama, M., et al. (2012). Spi-B is critical for plasmacytoid dendritic cell function and development. Blood 120, 4733–4743.10.1182/blood-2012-06-436527Suche in Google Scholar PubMed

Sathe, P., Vremec, D., Wu, L., Corcoran, L., and Shortman, K. (2013). Convergent differentiation: myeloid and lymphoid pathways to murine plasmacytoid dendritic cells. Blood 121, 11–19.10.1182/blood-2012-02-413336Suche in Google Scholar PubMed

Satpathy, A.T., Kc, W., Albring, J.C., Edelson, B.T., Kretzer, N.M., Bhattacharya, D., Murphy, T.L., and Murphy, K.M. (2012a). Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages. J. Exp. Med. 209, 1135–1152.10.1084/jem.20120030Suche in Google Scholar PubMed PubMed Central

Satpathy, A.T., Wu, X., Albring, J.C., and Murphy, K.M. (2012b). Re(de)fining the dendritic cell lineage. Nat. Immunol. 13, 1145–1154.10.1038/ni.2467Suche in Google Scholar PubMed PubMed Central

Schotte, R., Nagasawa, M., Weijer, K., Spits, H., and Blom, B. (2004). The ETS transcription factor Spi-B is required for human plasmacytoid dendritic cell development. J. Exp. Med. 200, 1503–1509.10.1084/jem.20041231Suche in Google Scholar PubMed PubMed Central

Schwab, N., Zozulya, A.L., Kieseier, B.C., Toyka, K.V., and Wiendl, H. (2010). An imbalance of two functionally and phenotypically different subsets of plasmacytoid dendritic cells characterizes the dysfunctional immune regulation in multiple sclerosis. J. Immunol. 184, 5368–5374.10.4049/jimmunol.0903662Suche in Google Scholar PubMed

Serafini, B., Rosicarelli, B., Magliozzi, R., Stigliano, E., Capello, E., Mancardi, G.L., and Aloisi, F. (2006). Dendritic cells in multiple sclerosis lesions: maturation stage, myelin uptake, and interaction with proliferating T cells. J. Neuropathol. Exp. Neurol. 65, 124–141.10.1093/jnen/65.2.124Suche in Google Scholar

Seth, S., Oberdorfer, L., Hyde, R., Hoff, K., Thies, V., Worbs, T., Schmitz, S., and Forster, R. (2011). CCR7 essentially contributes to the homing of plasmacytoid dendritic cells to lymph nodes under steady-state as well as inflammatory conditions. J. Immunol. 186, 3364–3372.10.4049/jimmunol.1002598Suche in Google Scholar PubMed

Shigematsu, H., Reizis, B., Iwasaki, H., Mizuno, S., Hu, D., Traver, D., Leder, P., Sakaguchi, N., and Akashi, K. (2004). Plasmacytoid dendritic cells activate lymphoid-specific genetic programs irrespective of their cellular origin. Immunity 21, 43–53.10.1016/j.immuni.2004.06.011Suche in Google Scholar PubMed

Shiow, L.R., Rosen, D.B., Brdickova, N., Xu, Y., An, J., Lanier, L.L., Cyster, J.G., and Matloubian, M. (2006). CD69 acts downstream of interferon-α/β to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature 440, 540–544.10.1038/nature04606Suche in Google Scholar PubMed

Siegal, F.P., Kadowaki, N., Shodell, M., Fitzgerald-Bocarsly, P.A., Shah, K., Ho, S., Antonenko, S., and Liu, Y.J. (1999). The nature of the principal type 1 interferon-producing cells in human blood. Science 284, 1835–1837.10.1126/science.284.5421.1835Suche in Google Scholar PubMed

Sospedra, M. and Martin, R. (2005). Immunology of multiple sclerosis. Annu. Rev. Immunol. 23, 683–747.10.1146/annurev.immunol.23.021704.115707Suche in Google Scholar PubMed

Sozzani, S., Vermi, W., Del Prete, A., and Facchetti, F. (2010). Trafficking properties of plasmacytoid dendritic cells in health and disease. Trends Immunol. 31, 270–277.10.1016/j.it.2010.05.004Suche in Google Scholar PubMed

Stasiolek, M., Bayas, A., Kruse, N., Wieczarkowiecz, A., Toyka, K.V., Gold, R., and Selmaj, K. (2006). Impaired maturation and altered regulatory function of plasmacytoid dendritic cells in multiple sclerosis. Brain 129, 1293–1305.10.1093/brain/awl043Suche in Google Scholar PubMed

Teige, I., Treschow, A., Teige, A., Mattsson, R., Navikas, V., Leanderson, T., Holmdahl, R., and Issazadeh-Navikas, S. (2003). IFN-β gene deletion leads to augmented and chronic demyelinating experimental autoimmune encephalomyelitis. J. Immunol. 170, 4776–4784.10.4049/jimmunol.170.9.4776Suche in Google Scholar PubMed

Tezuka, H., Abe, Y., Asano, J., Sato, T., Liu, J., Iwata, M., and Ohteki, T. (2011). Prominent role for plasmacytoid dendritic cells in mucosal T cell-independent IgA induction. Immunity. 34, 247–257.10.1016/j.immuni.2011.02.002Suche in Google Scholar PubMed

Tumanov, A.V., Koroleva, E.P., Guo, X., Wang, Y., Kruglov, A., Nedospasov, S., and Fu, Y.X. (2011). Lymphotoxin controls the IL-22 protection pathway in gut innate lymphoid cells during mucosal pathogen challenge. Cell Host Microbe 10, 44–53.10.1016/j.chom.2011.06.002Suche in Google Scholar PubMed PubMed Central

Venken, K., Hellings, N., Hensen, K., Rummens, J.L., Medaer, R., D’Hooghe M, B., Dubois, B., Raus, J., and Stinissen, P. (2006). Secondary progressive in contrast to relapsing-remitting multiple sclerosis patients show a normal CD4+CD25+ regulatory T-cell function and FOXP3 expression. J. Neurosci. Res. 83, 1432–1446.10.1002/jnr.20852Suche in Google Scholar PubMed

Viglietta, V., Baecher-Allan, C., Weiner, H.L., and Hafler, D.A. (2004). Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J. Exp. Med. 199, 971–979.10.1084/jem.20031579Suche in Google Scholar PubMed PubMed Central

Villadangos, J.A. and Young, L. (2008). Antigen-presentation properties of plasmacytoid dendritic cells. Immunity 29, 352–361.10.1016/j.immuni.2008.09.002Suche in Google Scholar PubMed

Wang, Y., Koroleva, E.P., Kruglov, A.A., Kuprash, D.V., Nedospasov, S.A., Fu, Y.X., and Tumanov, A.V. (2010). Lymphotoxin beta receptor signaling in intestinal epithelial cells orchestrates innate immune responses against mucosal bacterial infection. Immunity 32, 403–413.10.1016/j.immuni.2010.02.011Suche in Google Scholar PubMed PubMed Central

Waskow, C., Liu, K., Darrasse-Jeze, G., Guermonprez, P., Ginhoux, F., Merad, M., Shengelia, T., Yao, K., and Nussenzweig, M. (2008). The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat. Immunol. 9, 676–683.10.1038/ni.1615Suche in Google Scholar PubMed PubMed Central

Wendland, M., Czeloth, N., Mach, N., Malissen, B., Kremmer, E., Pabst, O., and Forster, R. (2007). CCR9 is a homing receptor for plasmacytoid dendritic cells to the small intestine. Proc. Natl. Acad. Sci. U S A 104, 6347–6352.10.1073/pnas.0609180104Suche in Google Scholar PubMed PubMed Central

Yogev, N., Frommer, F., Lukas, D., Kautz-Neu, K., Karram, K., Ielo, D., von Stebut, E., Probst, H.C., van den Broek, M., Riethmacher, D., et al. (2012). Dendritic cells ameliorate autoimmunity in the CNS by controlling the homeostasis of PD-1 receptor(+) regulatory T cells. Immunity 37, 264–275.10.1016/j.immuni.2012.05.025Suche in Google Scholar PubMed

Young, L.J., Wilson, N.S., Schnorrer, P., Proietto, A., Ten Broeke, T., Matsuki, Y., Mount, A.M., Belz, G.T., O’Keeffe, M., Ohmura-Hoshino, M., et al. (2008). Differential MHC class II synthesis and ubiquitination confers distinct antigen-presenting properties on conventional and plasmacytoid dendritic cells. Nat. Immunol. 9, 1244–1252.10.1038/ni.1665Suche in Google Scholar PubMed

Zhang, L., Yuan, S., Cheng, G., and Guo, B. (2011). Type I IFN promotes IL-10 production from T cells to suppress Th17 cells and Th17-associated autoimmune inflammation. PLoS One 6, e28432.10.1371/journal.pone.0028432Suche in Google Scholar PubMed PubMed Central

Zozulya, A.L., Clarkson, B.D., Ortler, S., Fabry, Z., and Wiendl, H. (2010). The role of dendritic cells in CNS autoimmunity. J. Mol. Med. (Berl.) 88, 535–544.10.1007/s00109-010-0607-4Suche in Google Scholar PubMed PubMed Central

Received: 2013-6-27
Accepted: 2013-10-29
Published Online: 2013-10-30
Published in Print: 2014-03-01

©2014 by Walter de Gruyter Berlin Boston

Heruntergeladen am 23.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2013-0213/html
Button zum nach oben scrollen