Abstract
The flavin adenine dinucleotide-dependent amine oxidase LSD1 is the first molecularly defined histone demethylase, which specifically demethylates H3K4me1/me2. The enzyme dynamically controls a large variety of biological processes and is associated with protein complexes controlling transcriptional repression and activation. Molecular analysis of the Drosophila LSD1 homolog revealed new insights into the epigenetic control of heterochromatin formation during early embryogenesis, the establishment of transcriptional gene silencing and the epigenetic mechanisms associated with the maintenance of stem cell identity in primordial germline cells. This review summarizes our recent knowledge about the control of enzymatic activity and molecular function of LSD1 enzyme complexes in different model organisms including Schizosaccharomyces pombe, Drosophila and mammals. Finally, new developments in applied cancer research based on molecular analysis of LSD1 in cancer cells are discussed.
We thank Gary Sawers for helpful comments on the manuscript. Deutsche Forschungsgemeinschaft (DFG), SFB610, Project C3 supported the work on the LSD1 histone demethylase in the Reuter lab. T.R. is supported by the European Regional Development Fund of the European Commission.
References
Allfrey, V.G., Faulkner, R., and Mirsky, A.E. (1964). Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc. Natl. Acad. Sci. USA 51, 786–794.10.1073/pnas.51.5.786Suche in Google Scholar
Alvarez-Venegas, R., Sadder, M., Tikhonov, A., and Avramova, Z. (2007). Origin of the bacterial SET domain genes: vertical or horizontal? Mol. Biol. Evol. 24, 482–497.10.1093/molbev/msl184Suche in Google Scholar
Anantharaman, V., Iyer, L.M., and Aravind, L. (2007). Comperative genomics of protists: new insights into the evolution of eukaryotic signal transduction and gene regulation. Annu. Rev. Microbiol. 61, 453–475.10.1146/annurev.micro.61.080706.093309Suche in Google Scholar
Aravind, L. and Iyer, L.M. (2003). Provenance of SET-domain histone methyltransferases through duplication of a simple structural unit. Cell Cycle 2, 369–376.10.4161/cc.2.4.419Suche in Google Scholar
Ballas, N., Battaglioli, E., Atouf, F., Andres, M.E., Chenoweth, J., Anderson, M.E., Burger, C., Moniwa, M., Davie, J.R., Bowers, W.J., et al. (2001). Regulation of neuronal traits by a novel transcriptional complex. Neuron 31, 353–365.10.1016/S0896-6273(01)00371-3Suche in Google Scholar
Chen, Y., Yang, Y., Wang, F., Wan, K., Yamane, K., Zhang, Y., and Lei, M. (2006). Crystal structure of human histone lysine-specific demethylase 1 (LSD1). Proc. Natl. Acad. Sci. USA 103, 13956–13961.10.1073/pnas.0606381103Suche in Google Scholar PubMed PubMed Central
Choi, H.K., Kim, B.J., Seo, J.H., Kang, J.S., Cho, H., and Seong-Tae Kim, S.T. (2010a). Cohesion establishment factors, Eco1 represses transcription via association with histone demethylase, LSD1. Biophys. Res. Commun. 394, 1063–1068.10.1016/j.bbrc.2010.03.125Suche in Google Scholar PubMed
Choi, J., Jang, H., Kim, S.-T., Cho, E.-J., and Youn, H.-D. (2010b). Histone demethylase LSD1 is required to induce skeletal muscle differentiation by regulating myogenic factors. Biochem. Biophys. Res. Commun. 401, 327–332.10.1016/j.bbrc.2010.09.014Suche in Google Scholar PubMed
Czermin, B., Schotta, G., Hülsmann, B.B., Brehm, A., Becker, P.B., Reuter, G., and Imhof, A. (2001). Physical and functional interaction of SU(VAR)3-9 and HDAC1 in Drosophila. EMBO Rep. 2, 915–919.10.1093/embo-reports/kve210Suche in Google Scholar PubMed PubMed Central
Di Stefano, L., Ji, J.Y., Moon, N.S., Herr, A., and Dyson, N. (2007). Mutation of DrosophilaLsd1 disrupts H3-K4 methylation, resulting in tissue-specific defects during development. Curr. Biol. 17, 808–812.10.1016/j.cub.2007.03.068Suche in Google Scholar PubMed PubMed Central
Eissenberg, J.C., Lee, M.G., Schneider, J., Ilvarsonn, A., Shiekhattar, R., and Shilatifard, A. (2007). The trithorax-group gene in Drosophila little imaginal discs encodes a trimethylated histone H3 Lys4 demethylase. Nat. Struct. Mol. Biol. 14, 344–346.10.1038/nsmb1217Suche in Google Scholar PubMed
Elgin, S.C.R. and Reuter, G. (2006). Position effect variegation in Drosophila: a tool to investigate heterochromatin formation. In: Epigenetics, C.D. Allis, T. Jenuwein, and D. Reinberg, eds. (Cold Spring Harbor: Laboratory Press), pp. 81–100.Suche in Google Scholar
Forneris, F., Binda, C., Battaglioli, E., and Mattevi, A. (2008). LSD1: oxidative chemistry for multifaceted functions in chromatin regulation. Trends Biochem. Sci. 33, 181–189.10.1016/j.tibs.2008.01.003Suche in Google Scholar PubMed
Forneris, F., Binda, C., Vanoni, M.A., Battaglioli, E., and Mattevi, A. (2005a). Human histone demethylase LSD1 reads the histone code. J. Biol. Chem. 280, 41360–41365.10.1074/jbc.M509549200Suche in Google Scholar PubMed
Forneris, F., Binda, C., Vanoni, M.A., Mattevi, A., and Battaglioli, E. (2005b). Histone demethylation catalysed by LSD1 is a flavin-dependent oxidative process. FEBS Lett. 579, 2203–2207.10.1016/j.febslet.2005.03.015Suche in Google Scholar PubMed
Foster CT, Dovey, O.M., Lezina, L., Luo, J.L., Gant, T.W., Barlev, N., Bradley, A., and Cowley, S.M. (2010). Lysine-specific demethylase 1 regulates the embryonic transcriptome and CoREST stability. Mol. Cell. Biol. 30, 4851–4863.10.1128/MCB.00521-10Suche in Google Scholar PubMed PubMed Central
Glozak, M.A. and Seto, E. (2007). Histone deacetylases and cancer. Oncogene 26, 5420–5432.10.1038/sj.onc.1210610Suche in Google Scholar PubMed
Hakimi, M., Bochar, D., Chenoweth, J., Lane, W.S., Mandel, G., and Shiekhattar, R. (2002). A core-BRAF35 complex containing histone deacetylase mediates repression of neuronal-specific genes. Proc. Natl. Acad. Sci. USA 99, 7420–7425.10.1073/pnas.112008599Suche in Google Scholar PubMed PubMed Central
Hayami, S., Kelly, J.D., Cho, H.S., Yoshimatsu, M., Unoki, M., Tsunoda, T., Field, H.I., Neal, D.E., Yamaue, H., Ponder, B.A.J., et al. (2011). Overexpression of LSD1 contributes to human carcinogenesis through chromatin regulation in various cancers. Int. J. Cancer 128, 574–586.10.1002/ijc.25349Suche in Google Scholar PubMed
He, Y., Michaels, S.D., and Amasino, R. (2003). Regulation of flowering time by histone acetylation in Arabidopsis. Science 302, 1751–1754.10.1126/science.1091109Suche in Google Scholar PubMed
Hino, S., Sakamoto, A., Nagaoka, K., Anan, K., Wang, Y., Mimasu, S., Umehara, T., Yokoyama, S., Kosai, K., and Nakao, M. (2011). FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure. Nat. Commun. 3, 758–769.10.1038/ncomms1755Suche in Google Scholar PubMed PubMed Central
Hoffmann, I., Roatsch, M., Schmitt, M.L., Carlino, L., Pippel, M., Sippl, W., and Jung, M. (2012). The role of histone demethylases in cancer therapy. Mol. Oncology 6, 683–703.10.1016/j.molonc.2012.07.004Suche in Google Scholar PubMed PubMed Central
Holmes, A., Roseaulin, L., Schurra, C., Waxin, H., Lambert, S., Zaratiegui, M., Martienssen, R.A., and Arcangioli, B. (2012). Lsd1 and Lsd2 control programmed replication fork pauses and imprinting in fission yeast. Cell Rep. 2, 1513–1520.10.1016/j.celrep.2012.10.011Suche in Google Scholar PubMed PubMed Central
Hou, F. and Zou, H. (2005). Two human orthologues of Eco1/Ctf7 acetyltransferases are both required for proper sister-chromatid cohesion. Mol. Biol. Cell 16, 3908–3918.10.1091/mbc.e04-12-1063Suche in Google Scholar PubMed PubMed Central
Huang, J., Sengupta, R., Espejo, A.B., Lee, M.G., Dorsey, J.A., Richter, M., Opravil, S., Shiekhattar, R., Bedford, M.T., Jenuwein, T., et al. (2007). p53 is regulated by the lysine demethylase LSD1. Nature 449, 105–108.10.1038/nature06092Suche in Google Scholar PubMed
Huang, Y., Stewart, T.M., Wu, Y., Baylin, S.B., Marton, L.J., Perkins, B., Jones, R.J., Woster, P.M., and Casero, R.A., Jr. (2009). Novel oligoamine analogues inhibit lysinespecific demethylase 1 and induce reexpression of epigenetically silenced genes. Clin. Cancer Res. 15, 7217–7228.10.1158/1078-0432.CCR-09-1293Suche in Google Scholar PubMed PubMed Central
Iyer, L.M., Anantharaman, V., Wolf, M.Y., and Aravind, L. (2008). Comparative genomics of transcription factors and chromatin proteins in parasitic protists and other eukaryotes. Int. J. Parasitol. 38, 1–31.10.1016/j.ijpara.2007.07.018Suche in Google Scholar PubMed
Jiang, D., Yang, W., He, Y., and Amasino, R.M. (2007). Arabidopsis relatives of the human lysine-specific demethylase1 repress the expression of FWA and FLOWERING LOCUS C and thus promote the floral transition. Plant Cell 19, 2975–2987.10.1105/tpc.107.052373Suche in Google Scholar PubMed PubMed Central
Katz, D.J., Edwards, T.M., Reinke, V., and Kelly, W.G. (2009). A C. elegans LSD1 demethylase contributes to germline immortality by reprogramming epigenetic memory. Cell 137, 308–320.10.1016/j.cell.2009.02.015Suche in Google Scholar PubMed PubMed Central
Kaykov, A., Holmes, A.M., and Arcangioli, B. (2004). Formation, maintenance and consequences of the imprint at the mating-type locus in fission yeast. EMBO J. 23, 930–938.10.1038/sj.emboj.7600099Suche in Google Scholar PubMed PubMed Central
Kim, B.J., Kang, K.M., Jung, S.Y., Choi, H.K., Seo, J.H., Chae, J.H., Cho, E.J., Youn, H.D., Qin, J., and Kim, S.T. (2008). Esco2 is a novel corepressor that associates with various chromatin modifying enzymes. Biochem. Biophys. Res. Commun. 372, 298–304.10.1016/j.bbrc.2008.05.056Suche in Google Scholar PubMed
Lakowski, B., Roelens, I., and Jacob, S. (2006). CoREST-like complexes regulate chromatin modification and neuronal gene expression. J. Mol. Neurosci. 29, 227–239.10.1385/JMN:29:3:227Suche in Google Scholar
Lan, F., Zaratiegui, M., Villen, J., Vaughn, M.W., Verdel, A., Huarte, M., Shi, Y., Gygi, S. P., Moazed, D., Martienssen, R.A., et al. (2007). S. pombe LSD1 homologs regulate heterochromatin propagation and euchromatic gene transcription. Mol. Cell 26, 89–101.10.1016/j.molcel.2007.02.023Suche in Google Scholar
Lee, M.G., Wynder, C., Cooch, N., and Shiekhattar, R. (2005). An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature 437, 432–435.10.1038/nature04021Suche in Google Scholar
Lee, M.G., Wynder, C., Bochar, D.A., Hakimi, M.A., Cooch, N., and Shiekhattar, R. (2006). Functional interplay between histone demethylase and deacetylase enzymes. Mol. Cell. Biol. 26, 6395–6402.10.1128/MCB.00723-06Suche in Google Scholar
Lin, Y., Wu, Y., Li, J., Dong, C., Ye, X., Chi, Y.-I., Evers, B.M., and Zhou, B.P. (2010). The SNAG domain of Snail1 functions as a molecular hook for recruiting lysine-specific demethylase 1. EMBO J 29, 1803–1816.10.1038/emboj.2010.63Suche in Google Scholar
Lv, S., Bu, W., Jiao, H., Liu, B., Zhu, L., Zhao, H., Liao, J., Li, J., and Xu, X. (2010). LSD1 is required for chromosome segregation during mitosis. Eur. J. Cell Biol. 89, 557–563.10.1016/j.ejcb.2010.01.004Suche in Google Scholar
Manzur, K.L. and Zhou, M.M. (2005). An archaeal SET domain protein exhibits distinct lysine methyltransferase activity towards DNA-associated protein MC1-α. FEBS Lett. 579, 3859–3865.10.1016/j.febslet.2005.05.026Suche in Google Scholar
Metzger, E., Wissmann, M., Yin, N., Muller, J.M., Schneider, R., Peters, A.H., Gunther, T., Buettner, R., and Schüle, R. (2005). LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437, 436–439.10.1038/nature04020Suche in Google Scholar
Metzger, E., Imhof, A., Patel, D., Kahl, P., Hoffmeyer, K., Friedrichs, N., Müller, J.M., Greschik, H., Kirfel, J., Ji, S., et al. (2010). Phosphorylation of histone H3T6 by PKCβ(I) controls demethylation at histone H3K4. Nature 464, 792–796.10.1038/nature08839Suche in Google Scholar
Miotto, B., Sagnier, T., Bohmann, D., Pradel, J., and Graba, Y. (2006). Chameau HAT and DRpd3 HDAC function as antagonistic cofactors of JNK/AP-1-dependent transcription during Drosophila metamorphosis. Genes Dev. 20, 101–112.10.1101/gad.359506Suche in Google Scholar
Moody, S.E., Perez, D., Pan, T.C., Sarkisian, C.J., Portocarrero, C.P., Sterner, C.J., Notorfrancesco, K.L., Cardiff, R.D., and Chodosh, L.A. (2005). The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell 8, 197–209.10.1016/j.ccr.2005.07.009Suche in Google Scholar PubMed
Mulligan, P., Yang, F., Di Stefano, L., Ji, J.Y., Ouyang, J., Nishikawa, J.L., Toiber, D., Kulkarni, M., Wang, Q., Najafi-Shoushtari, S.H., et al. (2011). A SIRT1-LSD1 corepressor complex regulates Notch target gene expression and development. Mol. Cell 42, 689–699.10.1016/j.molcel.2011.04.020Suche in Google Scholar PubMed PubMed Central
Murray, K. (1964). The occurrence of epsilon-N-methyl lysine in histones. Biochemistry 3, 10–15.10.1021/bi00889a003Suche in Google Scholar PubMed
Musri, M.M., Carmona, M.C., Hanzu, F.A., Kaliman, P., Gomis, R., and Parrizas, M. (2010). Histone demethylase LSD1 regulates adipogenesis. J. Biol. Chem. 285, 30034–30041.10.1074/jbc.M110.151209Suche in Google Scholar PubMed PubMed Central
Nair, V.D., Ge, Y., Balasubramaniyan, N., Kim, J., Okawa, Y., Chikina, M., Troyanskaya, O., and Sealfon, S.C. (2012). Involvement of histone demethylase LSD1 in short-time-scale gene expression changes during cell cycle progression in embryonic stem cells. Mol. Cell. Biol. 32, 4861–4876.10.1128/MCB.00816-12Suche in Google Scholar PubMed PubMed Central
Ng, H.H., Feng, Q., Wang, H., Erdjument-Bromage, H., Tempst, P., Zhang, Y., and Struhl, K. (2002). Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association. Genes Dev. 16, 1518–1527.10.1101/gad.1001502Suche in Google Scholar PubMed PubMed Central
Nicolas, E., Lee, M.G., Hakimi, M.A., Cam, H.P., Grewal, S.I., and Shiekhattar, R. (2006). Fission yeast homologs of human histone H3 lysine 4 demethylase regulate a common set of genes with diverse functions. J. Biol. Chem. 281, 35983–35988.10.1074/jbc.M606349200Suche in Google Scholar PubMed
Nottke, A., Colaiácovo, M.P., and Shi, Y. (2009). Developmental roles of the histone lysine demethylases. Development 136, 879–889.10.1242/dev.020966Suche in Google Scholar PubMed PubMed Central
Nottke, A.C, Beese-Sims, S.E., Pantalena, L.F., Reinke, V., Shi, Y., and Colaiacovo, M.P. (2011). SPR-5 is a histone H3K4 demethylase with a role in meiotic double-strand break repair. Proc. Natl. Acad. Sci. USA 108, 12805–12810.10.1073/pnas.1102298108Suche in Google Scholar PubMed PubMed Central
Opel, M., Lando, D., Bonilla, C., Trewick, S.C., Boukaba, A., Walfridsson, J., Cauwood, J., Werler, P.J., Carr, A.M., Kouzarides, T., et al. (2007). Genome-wide studies of histone demethylation catalysed by the fission yeast homologues of mammalian LSD1. PLoS ONE 2, e386.10.1371/journal.pone.0000386Suche in Google Scholar PubMed PubMed Central
Paik, W.K. and Kim, S. (1973). Enzymatic demethylation of calf thymus histones. Biochem. Biophys. Res. Commun. 51, 781–788.10.1016/0006-291X(73)91383-1Suche in Google Scholar
Pedersen, M.T. and Helin, K. (2010). Histone demethylases in development and disease. Trends Cell Biol. 20, 662–671.10.1016/j.tcb.2010.08.011Suche in Google Scholar
Rea, S., Eisenhaber, F., O’Carroll, D., Stahl, B.D., Sun, Z-W., Schmid, M., Opravil, S., Mechtler, K., Ponting, C.P., Allis, C.D., et al. (2000). Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593–599.10.1038/35020506Suche in Google Scholar
Reuter, G., Dorn, R., and Hoffmann, H.-J. (1982). Butyrate sensitive suppressor of position-effect variegation mutations in Drosophila melanogaster. Mol. Gen. Genet. 188, 480–485.10.1007/BF00330052Suche in Google Scholar
Rotili, D. and Mai, A. (2011). Targeting histone demethylases: A new avenue for the fight against cancer. Genes Cancer 2, 663–679.10.1177/1947601911417976Suche in Google Scholar
Rudolph, T., Yonezawa, M., Lein, S., Heidrich, K., Kubicek, S., Schäfer, C., Phalke, S., Walther, M., Schmidt, A., Jenuwein, T., et al. (2007). Heterochromatin formation in Drosophila is initiated through active removal of H3K4 methylation by the LSD1 homolog SU(VAR)3-3. Mol. Cell 26, 103–115.10.1016/j.molcel.2007.02.025Suche in Google Scholar
Schaner, C.E., Deshpande, G., Schedl, P.D., and Kelly, W.G. (2003). A conserved chromatin architecture marks and maintains the restricted germ cell lineage in worms and flies. Dev. Cell 5, 747–757.10.1016/S1534-5807(03)00327-7Suche in Google Scholar
Schotta, G., Ebert, A., Dorn, R., and Reuter, G. (2003). Position-effect variegation and the genetic dissection of chromatin regulation in Drosophila. Semin. Cell Dev. Biol. 14, 67–75.10.1016/S1084-9521(02)00138-6Suche in Google Scholar
Schule, B., Oviedo, A., Johnston, K., Pai, S., and Francke, U. (2005). Inactivating mutations in ESCO2 cause SC phocomelia and Roberts syndrome: no phenotype-genotype correlation. Am. J. Hum. Genet. 77, 1117–1128.10.1086/498695Suche in Google Scholar PubMed PubMed Central
Secombe, J., Li, L., Carlos, L., and Eisenman, R.N. (2007). The Trithorax group protein Lid is a trimethyl histone H3K4 demethylase required for dMyc-induced cell growth. Genes Dev. 21, 537–551.10.1101/gad.1523007Suche in Google Scholar PubMed PubMed Central
Seydoux, G. and Dunn, M.A. (1997). Transcriptionally repressed germ cells lack a subpopulation of phosphorylated RNA polymerase II in early embryos of Caenorhabditis elegans and Drosophila melanogaster. Development 124, 2191–2201.10.1242/dev.124.11.2191Suche in Google Scholar PubMed
Seydoux, G. and Braun, R.E. (2006). Pathway to totipotency: lessons from germ cells. Cell 127, 891–904.10.1016/j.cell.2006.11.016Suche in Google Scholar PubMed
Shi, Y. (2007). Histone lysine demethylases: emerging roles in development, physiology and disease. Nature Rev. Genet. 8, 829–833.10.1038/nrg2218Suche in Google Scholar PubMed
Shi, Y. and Whetstine, J.R. (2007). Dynamic regulation of histone lysine methylation by demethylases. Mol. Cell 25, 1–14.10.1016/j.molcel.2006.12.010Suche in Google Scholar PubMed
Shi, Y., Lan, F., Matson, C., Mulligan, P., Whetstine, J.R., Cole, P.A., Casero, R.A., and Shi, Y. (2004). Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941–953.10.1016/j.cell.2004.12.012Suche in Google Scholar PubMed
Shi, Y.J., Matson, C., Lan, F., Iwase, S., Baba, T., and Shi, Y. (2005). Regulation of LSD1 histone demethylase activity by its associated factors. Mol. Cell 19, 857–864.10.1016/j.molcel.2005.08.027Suche in Google Scholar PubMed
Spedaletti, V., Polticelli, F., Capodaglio, V., Eugenia Schinina, M., Stano, P., Federico, R., and Tavladoraki, P. (2008). Characterization of a lysine-specific histone demethylase from Arabidopsis thaliana. Biochemstry 47, 4936–4947.10.1021/bi701969kSuche in Google Scholar PubMed
Sun, G., Alzayady, K., Stewart, R., Ye, P., Yang, S., Li, W., and Shi, Y. (2010). Histone demethylase LSD1 regulates neural stem cell proliferation. Mol. Cell. Biol. 30, 1997–2005.10.1128/MCB.01116-09Suche in Google Scholar PubMed PubMed Central
Szabad, J., Reuter, G., and Schröder, M.B. (1988). The effect of two mutations connected with chromatin functions on female germ-line cells of Drosophila. Mol. Gen. Genet. 211, 56–62.10.1007/BF00338393Suche in Google Scholar PubMed
Tan, M., Luo, H., Lee, S., Jin, F., Yang, J.S., Montellier, E., Buchou, T., Cheng, Z., Rousseaux, S., Rajagopal, N., et al. (2011). Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146, 1016–1028.10.1016/j.cell.2011.08.008Suche in Google Scholar PubMed PubMed Central
Tian, X. and Fang, J. (2007). Current perspectives on histone demethylases. Acta Biochim. Biophys. Sinica 39, 81–88.10.1111/j.1745-7270.2007.00272.xSuche in Google Scholar
Tsai, M.-C., Manor, O., Wan, Y., Mosammaparast, N., Wang, J.K., Lan, F., Shi, Y., Segal, E., and Chang, H.Y. (2010). Long noncoding RNA as modular scaffold of histone modification complexes. Science 329, 689–693.10.1126/science.1192002Suche in Google Scholar
Tschiersch, B., Hofmann, A., Krauss, V., Dorn, R., Korge, G., and Reuter, G. (1994). The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3-9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO J. 13, 3822–3831.10.1002/j.1460-2075.1994.tb06693.xSuche in Google Scholar
van Leeuwen, F., Gafken, P.R., and Gottschling, D.E. (2002). Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell 109, 745–756.10.1016/S0092-8674(02)00759-6Suche in Google Scholar
Wang, J., Scully, K., Zhu, X., Cai, L., Zhang, J., Prefontaine, G.G., Krones, A., Ohgi, K.A., Zhu, P., Garcia-Bassets, I., et al. (2007). Opposing LSD1 complexes function in developmental gene activation and repression programmes. Nature 446, 882–887.10.1038/nature05671Suche in Google Scholar PubMed
Wang, Y., Zhang, H., Chen, Y., Sun, Y., Yang, F., Yu, W., Liang, J., Sun, L., Yang, X., Shi, L., et al. (2009a). LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell 138, 660–672.10.1016/j.cell.2009.05.050Suche in Google Scholar PubMed
Wang, J., Hevi, S., Kurash, J.K., Lei, H., Gay, F., Bajko, J., Su, H., Sun, W., Chang, H., Xu, G., et al. (2009b). The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat. Genet. 41, 125–139.10.1038/ng.268Suche in Google Scholar PubMed
Wang, J., Lu, F., Ren, Q., Sun, H., Xu, Z., Lan, R., Liu, Y., Ward, D., Quan, J., Ye, T., et al. (2011). Novel histone demethylase LSD1 inhibitors selectively target cancer cells with pluripotent stem cell properties. Cancer Res. 71, 7238–7249.10.1158/0008-5472.CAN-11-0896Suche in Google Scholar PubMed PubMed Central
Westpahl, T. and Reuter, G. (2002). Recombinogenetic effects of suppressor of position-effect variegation in Drosophila. Genetics 160, 609–621.10.1093/genetics/160.2.609Suche in Google Scholar PubMed PubMed Central
Whyte, W.A., Bilodeau, S., Orlando, D.A., Hoke, H.A., Frampton, G.M., Foster, C.T., Cowley, S.M., and Young, R.A. (2012). Enhancer decommissioning by LSD1 during embryonic stem cell differentiation. Nature 482, 221–225.10.1038/nature10805Suche in Google Scholar PubMed PubMed Central
Willmann, D., Lim, S., Wetzel, S., Metzger, E., Jandausch, A., Wilk, W., Jung, M., Forne, I., Imhof, A., Janzer, A., et al. (2012). Impairment of prostate cancer cell growth by a selective and reversible lysine-specific demethylase 1 inhibitor. Int. J. Cancer 131, 2704–2709.10.1002/ijc.27555Suche in Google Scholar PubMed
Wustmann, G., Szidonya, J., Taubert, H., and Reuter, G. (1989). The genetics of position-effect modifying loci in Drosophila melanogaster. Mol. Gen. Genet. 217, 520–527.10.1007/BF02464926Suche in Google Scholar PubMed
Yang, M., Culhane, J.C., Szewczuk, L.M., Gocke, C.B., Brautigam, C.A., Tomchick, D.R., Machius, M., Cole, P.A., and Yu, H. (2007). Structural basis of histone demethylation by LSD1 revealed by suicide inactivation. Nat. Struct. Mol. Biol. 14, 535–53910.1038/nsmb1255Suche in Google Scholar PubMed
Yang, J., Huang, J., Dasgupta, M., Sears, N., Miyagi, M., Wang, B., Chance, M.R., Chen, X., Du, Y., Wang, Y., et al. (2010). Reversible methylation of promoter-bound STAT3 by histone-modifying enzymes. Proc. Natl. Acad. Sci. USA 107, 21499–21504.10.1073/pnas.1016147107Suche in Google Scholar PubMed PubMed Central
Yang, P., Wang, Y., Chen, J., Li, H., Kang, L., Zhang, Y., Chen, S., Zhu, B., and Gao, S. (2011). RCOR2 is a subunit of the LSD1 complex that regulates ESC property and substitutes for SOX2 in reprogramming somatic cells to pluripotency. Stem. Cells 29, 791–801.10.1002/stem.634Suche in Google Scholar PubMed
Zhang, J., Shi, X., Li, Y., Kim, B.J., Jia, J., Huang, Z., Yang, T., Fu, X., Jung, S.Y., Wang, Y., et al. (2008). Acetylation of Smc3 by Eco1 is required for S phase sister chromatid cohesion in both human and yeast. Mol. Cell 31, 143–151.10.1016/j.molcel.2008.06.006Suche in Google Scholar PubMed
©2013 by Walter de Gruyter Berlin Boston
Artikel in diesem Heft
- Masthead
- Masthead
- Guest Editorial
- Highlight: Protein states with cell biological and medicinal relevance
- HIGHLIGHT: PROTEIN STATES WITH CELL BIOLOGICAL AND MEDICAL RELEVANCE
- Towards improved receptor targeting: anterograde transport, internalization and postendocytic trafficking of neuropeptide Y receptors
- Progress in demystification of adhesion G protein-coupled receptors
- The unresolved puzzle why alanine extensions cause disease
- Molecular function of the prolyl cis/trans isomerase and metallochaperone SlyD
- Structure and allosteric regulation of eukaryotic 6-phosphofructokinases
- Polyionic and cysteine-containing fusion peptides as versatile protein tags
- p0071/PKP4, a multifunctional protein coordinating cell adhesion with cytoskeletal organization
- Lysine-specific histone demethylase LSD1 and the dynamic control of chromatin
- Methylation of the nuclear poly(A)-binding protein by type I protein arginine methyltransferases – how and why
- Oxidative in vitro folding of a cysteine deficient variant of the G protein-coupled neuropeptide Y receptor type 2 improves stability at high concentration
- Identification of prolyl oligopeptidase as a cyclosporine-sensitive protease by screening of mouse liver extracts
- In vitro maturation of Drosophila melanogaster Spätzle protein with refolded Easter reveals a novel cleavage site within the prodomain
- Subcellular localization and RNP formation of IGF2BPs (IGF2 mRNA-binding proteins) is modulated by distinct RNA-binding domains
- High level expression of the Drosophila Toll receptor ectodomain and crystallization of its complex with the morphogen Spätzle
Artikel in diesem Heft
- Masthead
- Masthead
- Guest Editorial
- Highlight: Protein states with cell biological and medicinal relevance
- HIGHLIGHT: PROTEIN STATES WITH CELL BIOLOGICAL AND MEDICAL RELEVANCE
- Towards improved receptor targeting: anterograde transport, internalization and postendocytic trafficking of neuropeptide Y receptors
- Progress in demystification of adhesion G protein-coupled receptors
- The unresolved puzzle why alanine extensions cause disease
- Molecular function of the prolyl cis/trans isomerase and metallochaperone SlyD
- Structure and allosteric regulation of eukaryotic 6-phosphofructokinases
- Polyionic and cysteine-containing fusion peptides as versatile protein tags
- p0071/PKP4, a multifunctional protein coordinating cell adhesion with cytoskeletal organization
- Lysine-specific histone demethylase LSD1 and the dynamic control of chromatin
- Methylation of the nuclear poly(A)-binding protein by type I protein arginine methyltransferases – how and why
- Oxidative in vitro folding of a cysteine deficient variant of the G protein-coupled neuropeptide Y receptor type 2 improves stability at high concentration
- Identification of prolyl oligopeptidase as a cyclosporine-sensitive protease by screening of mouse liver extracts
- In vitro maturation of Drosophila melanogaster Spätzle protein with refolded Easter reveals a novel cleavage site within the prodomain
- Subcellular localization and RNP formation of IGF2BPs (IGF2 mRNA-binding proteins) is modulated by distinct RNA-binding domains
- High level expression of the Drosophila Toll receptor ectodomain and crystallization of its complex with the morphogen Spätzle