Startseite Identification of prolyl oligopeptidase as a cyclosporine-sensitive protease by screening of mouse liver extracts
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Identification of prolyl oligopeptidase as a cyclosporine-sensitive protease by screening of mouse liver extracts

  • Alexander Rentzsch , Viktoria Kahlert , Günther Jahreis , Bernhard Schlott , Mike Schutkowski , Miroslav Malešević und Gunter Fischer EMAIL logo
Veröffentlicht/Copyright: 14. März 2013

Abstract

Cyclosporine A (CsA) is a cyclic undecapeptide well known for its ability to prevent rejection episodes after organ transplantation via gain-of-function. Therefore, biomedical studies on CsA have been focused on both immunosuppressive properties and binding to the biocatalytically-active immune receptors, the cyclophilins. Much less attention has been spent on effects of cyclosporines on the biological function of other proteins. We used a 9-mer fluorescence-quenched peptide library with defined sequences to identify cyclosporine-sensitive proteolysis in mouse liver extracts. A highly soluble [d-Ser]8-CsA derivative was utilized to avoid drug precipitation at extended incubation times. Analysis of the time courses of proteolysis revealed 15 out of 360 peptide sequences where proteolysis exhibited marked sensitivity to the cyclosporine derivative. As a first example, a collagen-derived substrate was selected from those hits to identify the targeted proteolytic pathway. After purification from mouse liver extracts, prolyl oligopeptidase (EC 3.4.21.26) could be identified as a protease sensitive to submicromolar concentrations of cyclosporines. Surprisingly, in a series of cyclosporine derivatives an inverse relationship was found between the inhibition of prolyl oligopeptidase and inhibition of cyclophilin A.


Corresponding author: Gunter Fischer, Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, D-06120 Halle, Germany; and Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany

We thank Michael Schumann and Klaus Peter Rücknagel for measurements of PPIase activity, Cordelia Schiene-Fischer for kindly providing SUMO protease and Angelika Schierhorn for mass spectrometry. This project was supported by the Deutsche Forschungsgemeinschaft SFB610-TP A4 and BMBF ProNet-T3.

References

Aumüller, T., Jahreis, G., Fischer, G., and Schiene-Fischer, C. (2010). Role of prolyl cis/trans isomers in cyclophilin-assisted Pseudomonas syringae AvrRpt2 protease activation. Biochemistry 49, 1042–1052.10.1021/bi901813eSuche in Google Scholar

Brandt, I., Scharpé, S., and Lambeir, A.M. (2007). Suggested functions for prolyl oligopeptidase: a puzzling paradox. Clin. Chim. Acta 377, 50–61.10.1016/j.cca.2006.09.001Suche in Google Scholar

Cheng, Y. and Prusoff, W.H. (1973). Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (IC50) of an enzymatic reaction. Biochem. Pharmacol. 22, 3099–3108.10.1016/0006-2952(73)90196-2Suche in Google Scholar

Ciesek, S., Steinmann, E., Wedemeyer, H., Manns, M.P., Neyts, J., Tautz, N., Madan, V., Bartenschlager, R., von Hahn, T., and Pietschmann, T. (2009). Cyclosporine A inhibits hepatitis C virus nonstructural protein 2 trough cyclophilin A. Hepatology 50, 1638–1645.10.1002/hep.23281Suche in Google Scholar

Coaker, G., Falick, A., and Staskawicz, B. (2005). Activation of a phytopathogenic bacterial effector protein by a eukaryotic cyclophilin. Science 308, 548–550.10.1126/science.1108633Suche in Google Scholar

Fischer, G., Gallay, P., and Hopkins, S. (2010) Cyclophilin inhibitors for the treatment of HCV infections. Curr. Opin. Investig. Drugs 11, 911–918.Suche in Google Scholar

García-Horsman, J.A., Männistö, P.T., and Venäläinen, J.I. (2007). On the role of prolyl oligopeptidase in health and disease. Neuropeptides 41, 1–24.10.1016/j.npep.2006.10.004Suche in Google Scholar

Gorrao, S.S., Hemerly, J.P., Lima, A.R., Melo, R.L., Szeltner, Z., Polgar, L., Juliano, M.A., and Juliano, L. (2007). Fluorescence resonance energy transfer (FRET) peptides and cycloretro-inverso peptides derived from bradykinin as substrates and inhibitors of prolyl oligopeptidase. Peptides 28, 2146–2154.10.1016/j.peptides.2007.08.018Suche in Google Scholar

Kahyaoglu, A., Haghjoo, K., Kraicsovits, F., Jordan, F., and Polgár, L. (1997). Benzyloxycarbonylprolylprolinal, a transition-state analogue for prolyl oligopeptidase, forms a tetrahedral adduct with catalytic serine, not a reactive cysteine. Biochem. J. 322, 839–843.10.1042/bj3220839Suche in Google Scholar

Kataoka, M., Shimizu, Y., Kunikiyo, K., Asahara, Y., Yamashita, K., Ninomiya, M., Morisaki, I., Ohsaki, Y., Kido, J.-I., and Nagata, T. (2000). Cyclosporine A decreases the degradation of type I collagen in rat gingival overgrowth. J. Cell. Physiol. 182, 351–358.10.1002/(SICI)1097-4652(200003)182:3<351::AID-JCP5>3.0.CO;2-USuche in Google Scholar

Kaul, A., Stauffer, S., Berger, C., Pertel, T., Schmitt, J., Kallis, S., Zayas, M., Lohmann, V., Luban, J., and Bartenschlager, R. (2009). Essential role of cyclophilin A for hepatitis C virus replication and virus production and possible link to polyprotein cleavage kinetics. PLoS Pathog 5: e1000546.Suche in Google Scholar

Klappa, P., Dierks, T., and Zimmermann, R. (1996). Cyclosporine A inhibits the degradation of signal sequences after processing of presecretory proteins by signal peptidase. Eur. J. Biochem. 239, 509–518.10.1111/j.1432-1033.1996.0509u.xSuche in Google Scholar

Lawandi, J., Gerber-Lemaire, S., Juillerat-Jeanneret, L., and Moitessier, N. (2009). Inhibitors of prolyl oligopeptidases for the therapy of human diseases: defining diseases and inhibitors. J. Med. Chem. 53, 3423–3438.10.1021/jm901104gSuche in Google Scholar

Liu, J., Farmer, J.D. Jr., Lane, W.S., Friedman, J., Weissman, I., and Schreiber, S.L. (1991). Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66, 807–815.10.1016/0092-8674(91)90124-HSuche in Google Scholar

López, A., Tarragó, T., and Giralt, E. (2011). Low molecular weight inhibitors of prolyl oligopeptidase: a review of compounds patented from 2003 to 2010. Expert Opin. Ther. Pat. 21, 1023–1044.10.1517/13543776.2011.577416Suche in Google Scholar PubMed

Malešević, M., Kühling, J., Erdmann, F., Balsley, M.A., Bukrinsky, M.I., Constant, S.L. and Fischer, G. (2010). A cyclosporine derivative discriminates between extracellular and intracellular cyclophilins. Angew. Chem. Int. Ed. 49, 213–215.10.1002/anie.200904529Suche in Google Scholar PubMed PubMed Central

Olivo, R.A., Nascimento, N.G., Teixeira, C.F., and Silveira, P.F. (2008). Methotrexate and cyclosporine treatments modify the activities of dipeptidyl peptidase IV and prolyl oligopeptidase in murine macrophages. Clin. Dev. Immunol. 2008, 794050.10.1155/2008/794050Suche in Google Scholar PubMed PubMed Central

O’Reilly, P.J., Hardison, M.T., Jackson, P.L., Xu, X., Snelgrove, R.J., Gaggar, A., Galin, F.S., and Blalock, J.E. (2009). Neutrophils contain prolyl endopeptidase and generate the chemotactic peptide, PGP, from collagen. J. Neuroimmunol. 217, 51–54.10.1016/j.jneuroim.2009.09.020Suche in Google Scholar PubMed PubMed Central

Pallet, N., Rabant, M., Xu-Dubois, Y.C., Lecorre, D., Mucchielli, M.H., Imbeaud, S., Agier, N., Hertig, A., Thervet, E., Legendre, C., et al. (2008). Response of human renal tubular cells to cyclosporine and sirolimus: a toxicogenomic study. Toxicol. Appl. Pharmacol. 229, 184–96.10.1016/j.taap.2008.01.019Suche in Google Scholar PubMed

Polgár, L. (1991). pH-dependent mechanism in the catalysis of prolyl endopeptidase from pig muscle. Eur. J. Biochem. 197, 441–447.10.1111/j.1432-1033.1991.tb15930.xSuche in Google Scholar PubMed

Polgár, L. (1992). Unusual secondary specificity of prolyl oligopeptidase and the different reactivities of its two forms toward charged substrates. Biochemistry 31, 7729–773510.1021/bi00148a038Suche in Google Scholar PubMed

Prell, E., Kahlert, V., Rücknagel, K.P., Malešević, M., and Fischer, G. (2013). Fine tuning the inhibition profile of cyclosporine A by derivatization of the MeBmt residue. ChemBioChem 14, 63–65.10.1002/cbic.201200621Suche in Google Scholar PubMed

Schumann, M., Jahreis, G., Kahlert, V., Lücke, C., and Fischer, G. (2011). Oligopeptide cyclophilin inhibitors: a reassessment. Eur. J. Med. Chem. 46, 5556–5561.10.1016/j.ejmech.2011.09.019Suche in Google Scholar

Shevchenko, A., Wilm, M., Vorm, O., and Mann, M. (1996). Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68, 850–858.10.1021/ac950914hSuche in Google Scholar

Szeltner, Z., Renner, V., and Polgár, L. (2000). Substrate- and pH-dependent contribution of oxyanion binding site to the catalysis of prolyl oligopeptidase, a paradigm of the serine oligopeptidase familiy. Protein Sci. 9, 353–360.10.1110/ps.9.2.353Suche in Google Scholar

Travis, J. and Pannell, R. (1973). Selective removal of albumin from plasma by affinity chromatography. Clin. Chim. Acta 49, 49–52.10.1016/0009-8981(73)90341-0Suche in Google Scholar

Twentyman, P.R., Wright, K.A., and Wallace, H.M. (1992). Effects of cyclosporin-A and a non-immunosuppressive analogue, O-acetyl cyclosporin A, upon the growth of parent and multidrug resistant human lung cancer cells in vitro. Br. J. Cancer 65, 335–340.10.1038/bjc.1992.68Suche in Google Scholar

von Ruecker, A.A., Rao, G., and Bidlingmaier, F. (1988). Cyclosporine A inhibits proteolytic cleavage and degradation of membrane-bound protein kinase C in hepatocytes after stimulation by phorbol ester. Biochem. Biophys. Res. Commun. 151, 997–1003.10.1016/S0006-291X(88)80464-9Suche in Google Scholar

Wenger, R.M. (1985). Synthesis of cyclosporine and analogues: structural requirements for immunosuppressive activity. Angew. Chem. Int. Ed. 24, 77–85.10.1002/anie.198500773Suche in Google Scholar

West, G.M., Tucker, C.L., Xu, T., Park, S.K., Han, X., Yates, J.R., and Fitzgerald, M.C. (2010). Quantitative proteomics approach for identifying protein-drug interactions in complex mixtures using protein stability measurements. Proc. Natl. Acad. Sci. USA 107, 9078–9082.10.1073/pnas.1000148107Suche in Google Scholar

Wilmes, A., Limonciel, A., Aschauer, L., Moenks, K., Bielow, C., Leonard, M.O., Hamon, J., Carpi, D., Ruzek, S., Handler, A., et al. (2013). Application of integrated transcriptomic, proteomic and metabolomic profiling for the delineation of mechanisms of drug induced cell stress. J. Proteomics, 79, 180–194.10.1016/j.jprot.2012.11.022Suche in Google Scholar

Yonetani, T. and Theorell, H. (1964). Studies on liver alcohol dehydrogenase complexes III. Multiple inhibition kinetics in the presence of two competitive inhibitors. Arch. Biochem. Biophys. 106, 243–251.10.1016/0003-9861(64)90184-5Suche in Google Scholar

Yoshimoto, T., Simmons, W.H., Kita, T., and Tsuru, D. (1981). Post-proline cleaving enzyme from lamb brain. J. Biochem. 90, 325–334.10.1093/oxfordjournals.jbchem.a133477Suche in Google Scholar PubMed

Received: 2013-1-22
Accepted: 2013-3-9
Published Online: 2013-03-14
Published in Print: 2013-08-01

©2013 by Walter de Gruyter Berlin Boston

Artikel in diesem Heft

  1. Masthead
  2. Masthead
  3. Guest Editorial
  4. Highlight: Protein states with cell biological and medicinal relevance
  5. HIGHLIGHT: PROTEIN STATES WITH CELL BIOLOGICAL AND MEDICAL RELEVANCE
  6. Towards improved receptor targeting: anterograde transport, internalization and postendocytic trafficking of neuropeptide Y receptors
  7. Progress in demystification of adhesion G protein-coupled receptors
  8. The unresolved puzzle why alanine extensions cause disease
  9. Molecular function of the prolyl cis/trans isomerase and metallochaperone SlyD
  10. Structure and allosteric regulation of eukaryotic 6-phosphofructokinases
  11. Polyionic and cysteine-containing fusion peptides as versatile protein tags
  12. p0071/PKP4, a multifunctional protein coordinating cell adhesion with cytoskeletal organization
  13. Lysine-specific histone demethylase LSD1 and the dynamic control of chromatin
  14. Methylation of the nuclear poly(A)-binding protein by type I protein arginine methyltransferases – how and why
  15. Oxidative in vitro folding of a cysteine deficient variant of the G protein-coupled neuropeptide Y receptor type 2 improves stability at high concentration
  16. Identification of prolyl oligopeptidase as a cyclosporine-sensitive protease by screening of mouse liver extracts
  17. In vitro maturation of Drosophila melanogaster Spätzle protein with refolded Easter reveals a novel cleavage site within the prodomain
  18. Subcellular localization and RNP formation of IGF2BPs (IGF2 mRNA-binding proteins) is modulated by distinct RNA-binding domains
  19. High level expression of the Drosophila Toll receptor ectodomain and crystallization of its complex with the morphogen Spätzle
Heruntergeladen am 1.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2013-0125/html
Button zum nach oben scrollen