Startseite Subcellular localization and RNP formation of IGF2BPs (IGF2 mRNA-binding proteins) is modulated by distinct RNA-binding domains
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Subcellular localization and RNP formation of IGF2BPs (IGF2 mRNA-binding proteins) is modulated by distinct RNA-binding domains

  • Kristin Wächter , Marcel Köhn , Nadine Stöhr und Stefan Hüttelmaier EMAIL logo
Veröffentlicht/Copyright: 1. Mai 2013

Abstract

The IGF2 mRNA-binding protein family (IGF2BPs) directs the cytoplasmic fate of various target mRNAs and controls essential cellular functions. The three IGF2BP paralogues expressed in mammals comprise two RNA-recognition motifs (RRM) as well as four KH domains. How these domains direct IGF2BP paralogue-dependent protein function remains largely elusive. In this study, we analyze the role of KH domains in IGF2BPs by the mutational GXXG-GEEG conversion of single KH domain loops in the context of full-length polypeptides. These analyses reveal that all four KH domains of IGF2BP1 and IGF2BP2 are essentially involved in RNA-binding in vitro and the cellular association with RNA-binding proteins (RBPs). Moreover the KH domains prevent the nuclear accumulation of these two paralogues and facilitate their recruitment to stress granules. The role of KH domains appears less pronounced in IGF2BP3, because GxxG-GEEG conversion in all four KH domains only modestly affects RNA-binding, subcellular localization and RNA-dependent protein association of this paralogue. These findings indicate paralogue-dependent RNA-binding properties of IGF2BPs which likely direct distinct cellular functions. Our findings suggest that IGF2BPs contact target RNAs via all four KH domains. This implies significant structural constraints, which presumably allow the formation of exceedingly stable protein-RNA complexes.


Corresponding author: Stefan Hüttelmaier, Institute of Molecular Medicine, Section for Molecular Cell Biology, Martin-Luther-University Halle, 06120 Halle, Germany

The authors apologize for omitted references. This work was supported by DFG-funding (SFB610-TP/C5) to S.H. We thank Jessica L. Bell for critical reading of the manuscript.

References

Anderson, P. and Kedersha, N. (2009). RNA granules: post-transcriptional and epigenetic modulators of gene expression. Nat. Rev. Mol. Cell. Biol. 10, 430–436.10.1038/nrm2694Suche in Google Scholar PubMed

Backe, P.H., Messias, A.C., Ravelli, R.B., Sattler, M., and Cusack, S. (2005). X-ray crystallographic and NMR studies of the third KH domain of hnRNP K in complex with single-stranded nucleic acids. Structure 13, 1055–1067.10.1016/j.str.2005.04.008Suche in Google Scholar PubMed

Bell, J.L., Wachter, K., Muhleck, B., Pazaitis, N., Kohn, M., Lederer, M., and Huttelmaier, S. (2012). Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs): post-transcriptional drivers of cancer progression? Cell. Mol. Life. Sci. Oct 16. DOI: 10.1007/s00018-012-1186-z.10.1007/s00018-012-1186-zSuche in Google Scholar PubMed PubMed Central

Buchan, J.R. and Parker, R. (2009). Eukaryotic stress granules: the ins and outs of translation. Mol. Cell 36, 932–941.10.1016/j.molcel.2009.11.020Suche in Google Scholar PubMed PubMed Central

Chao, J.A., Patskovsky, Y., Patel, V., Levy, M., Almo, S.C., and Singer R.H. (2010). ZBP1 recognition of beta-actin zipcode induces RNA looping. Genes Dev. 24, 148–158.10.1101/gad.1862910Suche in Google Scholar PubMed PubMed Central

Christiansen, J., Kolte, A.M., Hansen, T.O., and Nielsen, F.C. (2009). IGF2 mRNA-binding protein 2: biological function and putative role in type 2 diabetes. J. Mol. Endocrinol. 43, 187–195.10.1677/JME-09-0016Suche in Google Scholar PubMed

Farina, K.L., Huttelmaier, S., Musunuru, K., Darnell, R., and Singer R.H. (2003). Two ZBP1 KH domains facilitate beta-actin mRNA localization, granule formation, and cytoskeletal attachment. J. Cell. Biol. 160, 77–87.10.1083/jcb.200206003Suche in Google Scholar PubMed PubMed Central

Git, A. and Standart, N. (2002). The KH domains of Xenopus Vg1RBP mediate RNA binding and self-association. Rna 8, 1319–1933.10.1017/S135583820202705XSuche in Google Scholar PubMed PubMed Central

Green, C.D., Long, K.S., Shi, H., and Wolin, S.L. (1998). Binding of the 60-kDa Ro autoantigen to Y RNAs: evidence for recognition in the major groove of a conserved helix. RNA 4, 750–765.10.1017/S1355838298971667Suche in Google Scholar PubMed PubMed Central

Hafner, M., Landthaler, M., Burger, L., Khorshid, M., Hausser, J., Berninger, P., Rothballer, A., Ascano, M. Jr., Jungkamp, A.C., Munschauer, M., et al. (2010a). Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129–141.10.1016/j.cell.2010.03.009Suche in Google Scholar PubMed PubMed Central

Hafner, M., Landthaler, M., Burger, L., Khorshid, M., Hausser, J., Berninger, P., Rothballer, A.. Ascano, M. Jr., Jungkamp, A.C., Munschauer, M., et al. (2010b). PAR-CliP–a method to identify transcriptome-wide the binding sites of RNA binding proteins. J. Vis. Exp. 41, pii: 2034.10.3791/2034Suche in Google Scholar PubMed PubMed Central

Hollingworth, D., Candel, A.M., Nicastro, G., Martin, S.R., Briata, P., Gherzi, R., and Ramos, A. (2012). KH domains with impaired nucleic acid binding as a tool for functional analysis. Nucleic Acids Res. 40, 6873–6886.10.1093/nar/gks368Suche in Google Scholar PubMed PubMed Central

Huttelmaier, S., Zenklusen, D., Lederer, M., Dictenberg, J., Lorenz, M., Meng, X., Bassell, G.J., Condeelis, J., and Singer, R.H. (2005). Spatial regulation of beta-actin translation by Src-dependent phosphorylation of ZBP1. Nature 438, 512–515.10.1038/nature04115Suche in Google Scholar PubMed

Jonson, L., Vikesaa, J., Krogh, A., Nielsen, L.K., Hansen, T., Borup, R., Johnsen, A.H., Christiansen, J., and Nielsen, F.C. (2007). Molecular composition of IMP1 ribonucleoprotein granules. Mol. Cell. Proteomics 6, 798–811.10.1074/mcp.M600346-MCP200Suche in Google Scholar PubMed

Kobel, M., Weidensdorfer, D., Reinke, C., Lederer, M., Schmitt, W.D., Zeng, K., Thomssen, C., Hauptmann, S., and Huttelmaier, S. (2007). Expression of the RNA-binding protein IMP1 correlates with poor prognosis in ovarian carcinoma. Oncogene 26, 7584–7589.10.1038/sj.onc.1210563Suche in Google Scholar PubMed

Kohn, M., Lederer, M., Wachter, K., and Huttelmaier, S. (2010). Near-infrared (NIR) dye-labeled RNAs identify binding of ZBP1 to the noncoding Y3-RNA. RNA 16, 1420–1428.10.1261/rna.2152710Suche in Google Scholar PubMed PubMed Central

Köhn, M., Pazaitis N., and Hüttelmaier S. (2013). Why YRNAs? About Versatile RNAs and Their Functions. Biomolecules 3, 143–156.10.3390/biom3010143Suche in Google Scholar PubMed PubMed Central

Lemm, I. and Ross, J. (2002). Regulation of c-myc mRNA decay by translational pausing in a coding region instability determinant. Mol. Cell. Biol. 22, 3959–3969.10.1128/MCB.22.12.3959-3969.2002Suche in Google Scholar PubMed PubMed Central

Nielsen, J., Christiansen, J., Lykke-Andersen, J., Johnsen, A.H., Wewer, U.M., and Nielsen, F.C. (1999). A family of insulin-like growth factor II mRNA-binding proteins represses translation in late development. Mol. Cell. Biol. 19, 1262–1270.10.1128/MCB.19.2.1262Suche in Google Scholar PubMed PubMed Central

Nielsen, J., Adolph, S.K., De-Meyts, E.R., Andersen, J.L., Koch, G., Christiansen, J., and Nielsen, F.C. (2003). Nuclear transit of human zipcode-binding protein IMP1. Biochem. J. 376, 383–391.10.1042/bj20030943Suche in Google Scholar PubMed PubMed Central

Nielsen, J., Kristensen, M.A., Willemoes, M., Nielsen, F.C., and Christiansen, J. (2004). Sequential dimerization of human zipcode-binding protein IMP1 on RNA: a cooperative mechanism providing RNP stability. Nucleic Acids Res. 32, 4368–4376.10.1093/nar/gkh754Suche in Google Scholar PubMed PubMed Central

Noubissi, F.K., Elcheva, I., Bhatia, N., Shakoori, A., Ougolkov, A., Liu, J., Minamoto, T., Ross, J., Fuchs, S.Y., and Spiegelman, V.S. (2006). CRD-BP mediates stabilization of betaTrCP1 and c-myc mRNA in response to beta-catenin signalling. Nature 441, 898–901.10.1038/nature04839Suche in Google Scholar PubMed

Oleynikov, Y. and Singer, R.H. (2003). Real-time visualization of ZBP1 association with beta-actin mRNA during transcription and localization. Curr. Biol. 13, 199–207.10.1016/S0960-9822(03)00044-7Suche in Google Scholar PubMed PubMed Central

Pan, F., Huttelmaier, S., Singer, R.H., and Gu, W. (2007). ZBP2 facilitates binding of ZBP1 to beta-actin mRNA during transcription. Mol. Cell. Biol. 27, 8340–8351.10.1128/MCB.00972-07Suche in Google Scholar PubMed PubMed Central

Patel, V.L., Mitra, S., Harris, R., Buxbaum, A.R., Lionnet, T., Brenowitz, M., Girvin, M., Levy, M., Almo, S.C., Singer, R.H., et al. (2012). Spatial arrangement of an RNA zipcode identifies mRNAs under post-transcriptional control. Genes Dev. 26, 43–53.10.1101/gad.177428.111Suche in Google Scholar PubMed PubMed Central

Ross, A.F., Oleynikov, Y., Kislauskis, E.H., Taneja, K.L., and Singer, R.H. (1997). Characterization of a beta-actin mRNA zipcode-binding protein. Mol. Cell. Biol. 17, 2158–2165.10.1128/MCB.17.4.2158Suche in Google Scholar PubMed PubMed Central

Stöhr, N. and Hüttelmaier, S. (2012). IGF2BP1: a post-transcriptional “driver” of tumor cell migration. Cell Adh. Migr. 6, 312–318.10.4161/cam.20628Suche in Google Scholar PubMed PubMed Central

Stohr, N., Lederer, M., Reinke, C., Meyer, S., Hatzfeld, M., Singer, R.H., and Huttelmaier, S. (2006). ZBP1 regulates mRNA stability during cellular stress. J. Cell Biol. 175, 527–534.10.1083/jcb.200608071Suche in Google Scholar PubMed PubMed Central

Stohr, N., Kohn, M., Lederer, M., Glass, M., Reinke, C., Singer, R.H., and Huttelmaier, S. (2012). IGF2BP1 promotes cell migration by regulating MK5 and PTEN signaling. Genes Dev. 26, 176–189.10.1101/gad.177642.111Suche in Google Scholar PubMed PubMed Central

Valverde, R., Edwards, L., and Regan, L. (2008). Structure and function of KH domains. FEBS J. 275, 2712–2726.10.1111/j.1742-4658.2008.06411.xSuche in Google Scholar PubMed

Vikesaa, J., Hansen, T.V., Jonson, L., Borup, R., Wewer, U.M., Christiansen, J., and Nielsen, F.C. (2006). RNA-binding IMPs promote cell adhesion and invadopodia formation. Embo J. 25, 1456–1468.10.1038/sj.emboj.7601039Suche in Google Scholar PubMed PubMed Central

Weidensdorfer, D., Stohr, N., Baude, A., Lederer, M., Kohn, M., Schierhorn, A., Buchmeier, S., Wahle, E., and Huttelmaier, S. (2009). Control of c-myc mRNA stability by IGF2BP1-associated cytoplasmic RNPs. Rna 15, 104–115.10.1261/rna.1175909Suche in Google Scholar PubMed PubMed Central

Yisraeli, J.K. (2005). VICKZ proteins: a multi-talented family of regulatory RNA-binding proteins. Biol. Cell 97, 87–96.10.1042/BC20040151Suche in Google Scholar PubMed

Zhang, H.L., Eom, T., Oleynikov, Y., Shenoy, S.M., Liebelt, D.A., Dictenberg, J.B., Singer, R.H., and Bassell, G.J. (2001). Neurotrophin-induced transport of a beta-actin mRNP complex increases beta-actin levels and stimulates growth cone motility. Neuron 31, 261–275.10.1016/S0896-6273(01)00357-9Suche in Google Scholar PubMed

Received: 2013-1-14
Accepted: 2013-4-26
Published Online: 2013-05-01
Published in Print: 2013-08-01

©2013 by Walter de Gruyter Berlin Boston

Artikel in diesem Heft

  1. Masthead
  2. Masthead
  3. Guest Editorial
  4. Highlight: Protein states with cell biological and medicinal relevance
  5. HIGHLIGHT: PROTEIN STATES WITH CELL BIOLOGICAL AND MEDICAL RELEVANCE
  6. Towards improved receptor targeting: anterograde transport, internalization and postendocytic trafficking of neuropeptide Y receptors
  7. Progress in demystification of adhesion G protein-coupled receptors
  8. The unresolved puzzle why alanine extensions cause disease
  9. Molecular function of the prolyl cis/trans isomerase and metallochaperone SlyD
  10. Structure and allosteric regulation of eukaryotic 6-phosphofructokinases
  11. Polyionic and cysteine-containing fusion peptides as versatile protein tags
  12. p0071/PKP4, a multifunctional protein coordinating cell adhesion with cytoskeletal organization
  13. Lysine-specific histone demethylase LSD1 and the dynamic control of chromatin
  14. Methylation of the nuclear poly(A)-binding protein by type I protein arginine methyltransferases – how and why
  15. Oxidative in vitro folding of a cysteine deficient variant of the G protein-coupled neuropeptide Y receptor type 2 improves stability at high concentration
  16. Identification of prolyl oligopeptidase as a cyclosporine-sensitive protease by screening of mouse liver extracts
  17. In vitro maturation of Drosophila melanogaster Spätzle protein with refolded Easter reveals a novel cleavage site within the prodomain
  18. Subcellular localization and RNP formation of IGF2BPs (IGF2 mRNA-binding proteins) is modulated by distinct RNA-binding domains
  19. High level expression of the Drosophila Toll receptor ectodomain and crystallization of its complex with the morphogen Spätzle
Heruntergeladen am 8.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2013-0111/html
Button zum nach oben scrollen