Startseite Determination of pinene content in black liquor by solvent-assisted/pyrogallol-protected headspace gas chromatography (HS-GC)
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Determination of pinene content in black liquor by solvent-assisted/pyrogallol-protected headspace gas chromatography (HS-GC)

  • Hui-Chao Hu EMAIL logo , Tong Zeng , Shaokai Zhang , Lihui Chen , Liulian Huang EMAIL logo und Yonghao Ni
Veröffentlicht/Copyright: 22. Juni 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A solvent-assisted and pyrogallol (PG)-protected headspace gas chromatography (HS-GC) method was developed to determine the pinene (α- and β-pinene) content in the kraft pulping black liquor (BL). Ethanol (EtOH) addition eliminated pinene’s micelles in BL by complete dissolution in the EtOH/BL medium. PG was applied to protect pinene from oxidation during the sample storage and measurement. The results showed that, with a 25% (v/v) of EtOH content and a 0.1 g of PG in 5-ml of sample solution, a rapid and stable pinene HS extraction can be obtained in 20 min at 80°C. The method has high precision with relative standard deviations within 4.2%. The sensitivity [limits of quantification (LOQ) are ~140 μg l−1] was high, and a good accuracy (recovery=96.0–104%) was typical for the pinene detection. The presented method is simple, rapid, accurate and is suitable for pinene quantification in biorefinery related processes and it leads to the preparation of high-value chemicals.

Award Identifier / Grant number: 2015J05018

Award Identifier / Grant number: 31700507

Award Identifier / Grant number: 21576105

Funding statement: The authors acknowledge the Fujian Provincial Department of Science and Technology, Funder Id: 10.13039/501100005270 (2015J05018), National Natural Science Foundation of China, Funder Id: 10.13039/501100001809 (31700507 and 21576105), Fujian Provincial Department of Education (JK2014015), and National Key Research and Development Program of China (2017YFB0307900) for sponsoring this research.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Employment or leadership: None declared.

  3. Honorarium: None declared.

References

Ancel, J.E., Maksimchuk, N.V., Simakova, I.L., Semikolenov, V.A. (2004) Kinetic peculiarities of α-pinene oxidation by molecular oxygen. Appl. Catal. A Gen. 272:109–114.10.1016/j.apcata.2004.05.020Suche in Google Scholar

ASTM standard (2014). D6387, Standard test methods for composition of turpentine and related terpene products by capillary gas chromatography.Suche in Google Scholar

Baser, K.H.C., Buchbauer, G. (eds). Handbook of Essential Oils: Science, Technology, and Applications. CRC Press, Boca Rato, FL, 2010.10.1201/9781420063165Suche in Google Scholar

Bohlmann, J., Keeling, C.I. (2008) Terpenoid biomaterials. Plant J. 54:656–669.10.1111/j.1365-313X.2008.03449.xSuche in Google Scholar

Den Bergh, V.V., Coeckelberghs, H., Vanhees, I., De Boer, R., Compernolle, F., Vinckier, C. (2002) HPLC-MS determination of the oxidation products of the reaction between α- and β-pinene and OH radicals. Anal. Bioanal. Chem. 372:630–638.10.1007/s00216-002-1246-6Suche in Google Scholar

Dhar, P., Chan, P., Cohen, D.T., Khawam, F., Gibbons, S., Snyder-Leiby, T., Dickstein, E., Rai, P.K., Watal, G. (2014) Synthesis, antimicrobial evaluation, and structure-activity relationship of α-pinene derivatives. J. Agr. Food Chem. 62:3548–3552.10.1021/jf403586tSuche in Google Scholar

Green, J.M. (1996) A practical guide to analytical method validation. Anal. Chem. 68:305–309.10.1021/ac961912fSuche in Google Scholar

Haneke, K.E. Turpentine (8006-64-2) Review of Toxicological Literature. National Institute of Environmental Health Sciences, North Caroline, USA, 2002.Suche in Google Scholar

Knuuttila, P. (2013) Wood sulphate turpentine as a gasoline bio-component. Fuel 104:101–108.10.1016/j.fuel.2012.06.036Suche in Google Scholar

Kolb, B., Ettre, L.S. Static Headspace-Gas Chromatography: Theory and Practice (2nd ed.). John Wiley & Sons, Hoboken, NJ, 2006.10.1002/0471914584Suche in Google Scholar

Kolehmainen, E., Laihia, K., Laatikainen, R., Vepsalainen, J., Niemitz, M., Suontamo, R. (1997) Complete spectral analysis of the 1H NMR 16-spin system of β-pinene. Magn. Reson. Chem. 35:463–467.10.1002/(SICI)1097-458X(199707)35:7<463::AID-OMR110>3.0.CO;2-TSuche in Google Scholar

Lee, S. (2002) α-Pinene and myrtenol: complete 1H NMR assignment. Magn. Reson. Chem. 40:311–312.10.1002/mrc.972Suche in Google Scholar

López-Carballo, G., Cava, D., Lagaron, J.M., Catala, R., Gavara, R. (2005) Characterization of the interaction between two food aroma components, α-pinene and ethyl butyrate, and ethylene-vinyl alcohol copolymer (EVOH) packaging films as a function of environmental humidity. J. Agr. Food Chem. 53:7212–7216.10.1021/jf051041nSuche in Google Scholar

Meylemans, H.A., Quintana, R.L., Harvey, B.G. (2012) Efficient conversion of pure and mixed terpene feedstocks to high density fuels. Fuel 97:560–568.10.1016/j.fuel.2012.01.062Suche in Google Scholar

Nerio, L.S., Olivero-Verbel, J., Stashenko, E. (2010) Repellent activity of essential oils: a review. Bioresource Technol. 101:372–378.10.1016/j.biortech.2009.07.048Suche in Google Scholar

Neuenschwander, U., Guignard, F., Hermans, I. (2010) Mechanism of the aerobic oxidation of α-pinene. ChemSusChem 3:75–84.10.1002/cssc.200900228Suche in Google Scholar

Papa, G., Kirby, J., Murthy Konda, N.V.S.N., Tran, K., Singh, S., Keasling, J.D., Peter, G.F., Simmons, B.A. (2017) Development of an integrated approach for α-pinene recovery and sugar production from loblolly pine using ionic liquids. Green Chem. 19:1117–1127.10.1039/C6GC02637KSuche in Google Scholar

Pouteau, C., Dole, P., Cathala, B., Averous, L., Boquillon, N. (2003) Antioxidant of properties of lignin in polypropylene. Polym. Degrad. Stabil. 81:9–18.10.1016/S0141-3910(03)00057-0Suche in Google Scholar

Sarria, S., Wong, B., Martin, H.G., Keasling, J.D., Peraltayahya, P. (2014) Microbial synthesis of pinene. ACS Synth. Biol. 3:466–475.10.1021/sb4001382Suche in Google Scholar

Sixta, H. Handbook of Pulp. Wiley-VCH, Weinheim, Germany, 2006.10.1002/9783527619887Suche in Google Scholar

Stromvall, A.-M., Petersson, G. (1992) Terpenes emitted to air from TMP and sulphite pulp mill. Holzforschung 46:99–102.10.1515/hfsg.1992.46.2.99Suche in Google Scholar

Tashiro, M., Kiyota, H., Kawainoma, S., Saito, K., Ikeuchi, M., Iijima, Y., Umeno, D. (2016) Bacterial production of pinene by a laboratory-evolved pinene-synthase. ACS Synth. Biol. 5:1011–1020.10.1021/acssynbio.6b00140Suche in Google Scholar

Vanhees, I., Den Bergh, V.V., Schildermans, R., De Boer, R., Compernolle, F., Vinckier, C. (2001) Determination of the oxidation products of the reaction between α-pinene and hydroxyl radicals by high-performance liquid chromatography. J. Chromatogra. A 915:75–83.10.1016/S0021-9673(01)00649-5Suche in Google Scholar

Zou, J.J., Chang, N., Zhang, X., Wang, L. (2012) Isomerization and dimerization of pinene using Al-incorporated MCM-41 mesoporous materials. ChemCatChem 4:1289–1297.10.1002/cctc.201200106Suche in Google Scholar

Received: 2018-02-11
Accepted: 2018-05-25
Published Online: 2018-06-22
Published in Print: 2018-11-27

©2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 28.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hf-2018-0031/html
Button zum nach oben scrollen