Combustion behavior of Scots pine (Pinus sylvestris L.) sapwood treated with a dispersion of aluminum oxychloride-modified silica
Abstract
Treatment of wood with aqueous dispersions of silica that have been modified with aluminum oxychloride (AlOCl) can impart wood water repellence and increased resistance to fungal decay. This study is a comparative survey on the effects of treatment with modified and non-modified silica dispersions in terms of the combustion behavior of the Scots pine (Pinus sylvestris L.) to evaluate the fire risk of this wood utilized as a construction material. The thermogravimetric results showed that treatments with the silica dispersions did not change the pyrolysis temperature of wood polymers, i.e. there was no synergetic interaction between silica and cell wall polymers during pyrolysis. Cone calorimetry (CONE) indicated that the silica-treated wood required longer time for ignition than the untreated control, but wood chars were similar. Treatments with both silica dispersions led to considerable reduction in the heat release (HR) and smoke production, but the cationically modified silica was more efficient than the unmodified silica. These findings were interpreted that incorporation of modified silica did not substantially influence the pyrolysis of cell wall polymers because they have not penetrated the cell wall; they have rather reduced the fire risk via forming a barrier against oxygen access and a thermal protection shield.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 31470585
Funding source: Natural Science Foundation of Heilongjiang Province
Award Identifier / Grant number: JC2015006
Funding statement: The authors thank the support from the Fundamental Research Funds for the Central Universities (2572014CB06 and 2572015EB03). Dr. Yanjun Xie is grateful to the National Natural Science Foundation of China (31470585) and Natural Science Foundation of Heilongjiang Province, China (JC2015006).
Acknowledgments:
The authors thank the support from the Fundamental Research Funds for the Central Universities (2572014CB06 and 2572015EB03). Dr. Yanjun Xie is grateful to the National Natural Science Foundation of China (31470585) and Natural Science Foundation of Heilongjiang Province, China (JC2015006).
References
Acton, Q.A. Silicon Compounds – Advances in Research and Application. ScholarlyEditions, Atlanta, 2013.Suche in Google Scholar
Böttcher, H., Jagoda, C., Trepe, J., Kallies, K.H., Haufe, H. (1999) Sol-gel composite films with controlled release of biocides. J. Conrol. Release 60:57–65.10.1016/S0168-3659(99)00053-XSuche in Google Scholar
Buchelt, B., Dietrich, T., Wagenführ, A. (2014) Testing of set recovery of unmodified and furfurylated densified wood by means of water storage and alternating climate tests. Holzforschung 68:23–28.10.1515/hf-2013-0049Suche in Google Scholar
De Vetter, L., Cnudde, V., Masschaele, B., Jacobs, P.J.S., Van Acker, J. (2006) Detection and distribution analysis of organosilicon compounds in wood by means of SEM-EDX and micro-CT. Mater. Charact. 56:39–48.10.1016/j.matchar.2005.09.007Suche in Google Scholar
De Vetter, L., Stevens, M., Van Acker, J. (2009) Fungal decay resistance and durability of organosilicon-treated wood. Int. Biodeter. Biodeg. 63:130–134.10.1016/j.ibiod.2008.08.002Suche in Google Scholar
Donath, S., Militz, H., Mai, C. (2004) Wood modification with alkoxysilanes. Wood Sci. Technol. 38:555–566.10.1007/s00226-004-0257-1Suche in Google Scholar
Donath, S., Militz, H., Mai, C. (2006) Creating water-repellent effects on wood by treatment with silanes. Holzforschung 60:40–46.10.1515/HF.2006.008Suche in Google Scholar
Fuchs, J.N. (1825) Über ein neues Product aus Kieselerde und Kali und dessen nützliche Anwendung als Schuzmittel gegen schnelle Verbreitung des Feuers in Theatern, als Bindemittel, zu firnisartigen Anstrichen. Dinglers Polytechnisches J. 17:465–481.Suche in Google Scholar
Gao, M., Li, S., Sun, C. (2004) Thermal Degradation of Wood in Air and Nitrogen Treated with Basic Nitrogen Compounds and Phosphoric Acid. Combust. Sci. Technol. 176:2057–2070.10.1080/00102200490514840Suche in Google Scholar
Greenwood, P. (2010) Surface modifications and applications of aqueous silica sols. PhD thesis, Department of Chemical and Biological Engineering. Chalmers University of Technology, Göteborg.Suche in Google Scholar
Harada, T. (2001) Time to ignition, heat release rate and fire endurance time of wood in cone calorimeter test. Fire Mater. 25:161–167.10.1002/fam.766Suche in Google Scholar
Hill, C.A.S. Wood modification: Chemical, Thermal and Other processes. John Wiley & Sons Ltd, England, 2006.10.1002/0470021748Suche in Google Scholar
Hirata, T., Kawamoto, S., Nishimoto, T. (1991) Thermogravimetry of wood treated with water-insoluble retardants and a proposal for development of fire-retardant wood materials. Fire Mater. 15:27–36.10.1002/fam.810150106Suche in Google Scholar
Mahltig, B., Swaboda, C., Roessler, A., Böttcher, H. (2008) Functionalising wood by nanosol application. J. Mater. Chem. 18:3180–3192.10.1039/b718903fSuche in Google Scholar
Mai, C., Militz, H. (2004a) Modification of wood with silicon compounds. inorganic silicon compounds and sol-gel systems: a review. Wood Sci. Technol. 37:339–348.10.1007/s00226-003-0205-5Suche in Google Scholar
Mai, C., Militz, H. (2004b) Modification of wood with silicon compounds. Treatment systems based on organic silicon compounds-a review. Wood Sci. Technol. 37:453–461.10.1007/s00226-004-0225-9Suche in Google Scholar
Marney, D.C.O., Russell, L.J., Mann, R. (2008) Fire performance of wood (Pinus radiata) treated with fire retardants and a wood preservative. Fire Mater. 32:357–370.10.1002/fam.973Suche in Google Scholar
Merk, V., Chanana, M., Gaan, S., Burgert, I. (2016) Mineralization of wood by calcium carbonate insertion for improved flame retardancy. Holzforschung 70:867–876.10.1515/hf-2015-0228Suche in Google Scholar
Miyafuji, H., Saka, S. (1996) Wood-inorganic composites prepared by the sol-gel process. 5. Fire-resisting properties of the SiO2-P2O5-B2O3 wood-inorganic composites. Mokuzai Gakkaishi 42:74–80.Suche in Google Scholar
Miyashita, H., Ohmi, M., Tominaga, H., Sawatari, A., Suzuki, M., Kawarada, K., Mizumoto, K. (2000) The distribution of silicon atoms in sugi wood treated with gamma-methacryloxypropyl trimethoxysilane and its fire retardancy. Mokuzai Gakkaishi 46:449–455.Suche in Google Scholar
Moghaddam, M.S., Wålinder, M.E.P., Claesson, P.M., Swerin, A. (2016) Wettability and swelling of acetylated and furfurylated wood analyzed by multicycle Wilhelmy plate method. Holzforschung 70:69–77.10.1515/hf-2014-0196Suche in Google Scholar
Nagaoka, T., Kodaira, A., Uehara, S. (1998) Relationship between density and the ignitability and combustibility of wood. In: Proceedings of the Third Asia-Oceania Symposium on Fire Science and Technolgy. Eds. Cox, G., Langford, B. Singapore, pp. 197–208.Suche in Google Scholar
Pries, M., Mai, C. (2013) Treatment of wood with silica sols against attack by wood-decaying fungi and blue stain. Holzforschung 67:697–705.10.1515/hf-2012-0133Suche in Google Scholar
Ringman, R., Pilgård, A., Brischke, C., Richter, K. (2014) Mode of action of brown rot decay resistance in modified wood: a review. Holzforschung 68:239–246.10.1515/hf-2013-0057Suche in Google Scholar
Rochow, E.G. The Chemistry of Silicon. Pergamon Press, Oxford, 1973.Suche in Google Scholar
Römpp, H. Römpp Chemie-Lexikon Online. Thieme Chemistry, Stuttgart, 2001.Suche in Google Scholar
Shabir Mahr, M. Wood modification with titania and silica based precursors: a novel approach to prepare multifunctional sol-gel derived TiO2/SiO2 wood-inorganic composites. Georg-August-University Göttingen, PhD thesis, Cuvillier, Göttingen, 2013.Suche in Google Scholar
Shabir Mahr, M., Hübert, T., Schartel, B., Bahr, H., Militz, H. (2012) Fire retardancy effects in single and double layered sol-gel derived TiO2 and SiO2-wood composites. J. Sol-Gel Sci. Techn. 64:452–464.10.1007/s10971-012-2877-5Suche in Google Scholar
Shultz, T., Goodell, B., Nicholas, D.D. (2014) Deterioration and Protection of Sustainable Biomaterials. American Chemistry Society Symposium Series.10.1021/bk-2014-1158Suche in Google Scholar
Šimkovic, I., Martvoňová, H., Maníková, D., Grexa, O. (2005) Flame retardance of insolubilized silica inside of wood material. J. Appl. Polym. Sci. 97:1948–1952.10.1002/app.21962Suche in Google Scholar
Slimak, K.M., Slimak, R.A. (2014) Process of using sodium silicate to create fire retardant products, U.S. Patent.Suche in Google Scholar
Spearpoint, M.J., Quintiere, J.G. (2000) Predicting the burning of wood using an integral mode. Combust. Flame 123:308–324.10.1016/S0010-2180(00)00162-0Suche in Google Scholar
Stamm, A.J., Seborg, R.M. (1936) Minimizing wood shrinkage and swelling–treating with synthetic resin-forming materials. Ind. Eng. Chem. 28:1164–1169.10.1021/ie50322a009Suche in Google Scholar
Tanno, F., Saka, S., Yamamoto, A., Takabe, K. (1998) Antimicrobial TMSAH-added wood-inorganic composites prepared by the sol-gel process. Holzforschung 52:365–370.10.1515/hfsg.1998.52.4.365Suche in Google Scholar
Temiz, A., Terziev, N., Jacobsen, B., Eikenes, M. (2006) Weathering, water absorption, and durability of silicon, acetylated, and heat-treated wood. J. Appl. Polym. Sci. 102:4506–4513.10.1002/app.24878Suche in Google Scholar
Xie, Y., Fu, Q., Wang, Q., Xiao, Z., Militz, H. (2013) Effects of chemical modification on the mechanical properties of wood. Eur. J. Wood Wood Prod. 71:401–416.10.1007/s00107-013-0693-4Suche in Google Scholar
Xie, Y., Liu, N., Wang, Q., Xiao, Z., Wang, F., Zhang, Y., Militz, H. (2014) Combustion behavior of oak wood (Quercus mongolica L.) modified by 1,3-dimethylol-4,5-dihydroxyethyleneurea (DMDHEU). Holzforschung 68:881–887.10.1515/hf-2013-0224Suche in Google Scholar
Zhang, X., Mu, J., Chu, D., Zhao, Y. (2016) Synthesis of fire retardants based on N and P and poly(sodium silicate-aluminum dihydrogen phosphate) (PSADP) and testing the flame-retardant properties of PSADP impregnated poplar wood. Holzforschung 70:341–350.10.1515/hf-2014-0362Suche in Google Scholar
©2016 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Editorial
- The COST action FP1105 – a research network to understand wood cell wall structure, biopolymer interaction and composition
- Selected Articles
- COST Action FP1105: effect of raw materials and pulping conditions on the characteristics of dissolved kraft lignins
- Topography effects in AFM force mapping experiments on xylan-decorated cellulose thin films
- COST-FP1105: Properties of PLA films reinforced with unmodified and acetylated freeze dried nanofibrillated cellulose
- Exploitation of liquefied wood waste for binding recycled wood particleboards
- Urea-formaldehyde (UF) resins prepared by means of the aqueous phase of the catalytic pyrolysis of European beech wood. COST Action FP1105
- Topochemical kinetic mechanism of cellulase hydrolysis on fast-growing tree species. COST Action FP1105
- Original Articles
- Contribution of lignin to the strength properties in wood fibres studied by dynamic FTIR spectroscopy and dynamic mechanical analysis (DMA)
- Combustion behavior of Scots pine (Pinus sylvestris L.) sapwood treated with a dispersion of aluminum oxychloride-modified silica
- Thermogravimetric analyses (TGA) of lignins isolated from the residue of corn stover bioethanol (CSB) production
- In situ detection of the fracture behaviour of moso bamboo (Phyllostachys pubescens) by scanning electron microscopy
- Dynamic moisture sorption and hygroexpansion of Populus euramericana Cv. under two cyclic hygrothermal conditions
Artikel in diesem Heft
- Frontmatter
- Editorial
- The COST action FP1105 – a research network to understand wood cell wall structure, biopolymer interaction and composition
- Selected Articles
- COST Action FP1105: effect of raw materials and pulping conditions on the characteristics of dissolved kraft lignins
- Topography effects in AFM force mapping experiments on xylan-decorated cellulose thin films
- COST-FP1105: Properties of PLA films reinforced with unmodified and acetylated freeze dried nanofibrillated cellulose
- Exploitation of liquefied wood waste for binding recycled wood particleboards
- Urea-formaldehyde (UF) resins prepared by means of the aqueous phase of the catalytic pyrolysis of European beech wood. COST Action FP1105
- Topochemical kinetic mechanism of cellulase hydrolysis on fast-growing tree species. COST Action FP1105
- Original Articles
- Contribution of lignin to the strength properties in wood fibres studied by dynamic FTIR spectroscopy and dynamic mechanical analysis (DMA)
- Combustion behavior of Scots pine (Pinus sylvestris L.) sapwood treated with a dispersion of aluminum oxychloride-modified silica
- Thermogravimetric analyses (TGA) of lignins isolated from the residue of corn stover bioethanol (CSB) production
- In situ detection of the fracture behaviour of moso bamboo (Phyllostachys pubescens) by scanning electron microscopy
- Dynamic moisture sorption and hygroexpansion of Populus euramericana Cv. under two cyclic hygrothermal conditions