Abstract
Freeze dried nanofibrils were acetylated in a heterogeneous system with acetic anhydride, pyridine, and dimethylformamide and the obtained acetylated cellulose nanofibrils (CNFac) were combined with poly(lactic acid) (PLA) to a composite. CNFac with its partially hydrophobic surface showed a good compatibility with PLA resulting in composite films with improved properties. Tensile strength (TS), modulus of elasticity (MOE), and elongation at break (EB) of PLA/CNF increased significantly when 2–5% of CNFac was added to the PLA matrix, while the addition of 10% and higher amounts CNFac decreased the EB at a higher TS and MOE. Mechanical parameters did not improve in the case of unmodified CNF addition. The addition of CNFac maintained transparency and had absorbance values between those of pure PLA film and PLA film with 2% CNF, while films formed with the addition of 5 and 10% of CNF were less transparent. The addition of CNF did not essentially affect the thermal properties of nanocomposite films. The addition of 2–10% of CNFac increased the enthalpy and maximal temperature of cold crystallization as opposed to higher loading of CNFac. The results of differential scanning calorimetry (DSC) coincide with those of the mechanical properties. Tailoring properties of PLA/CNF are only reproducible in case of homogenously distributed CNF within the PLA matrix and by an improved interphase adhesion between PLA and CNFac.
Acknowledgments
The authors wish to gratefully acknowledge the Ministry of Higher Education, Science and Technology of the Republic of Slovenia, within the Programs P4-0015. We would like to thank Erika Švara Fabjan from ZAG for FE-SEM images.
References
Abdul Khalil, H.P.S., Bhat, A.H., Ireana Yusra, A.F. (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr. Polym. 87:963–979.10.1016/j.carbpol.2011.08.078Search in Google Scholar
Abdulkhani, A., Hosseinzadeh, J., Ashori, A., Dadashi, S., Takzare, Z. (2014) Preparation and characterization of modified cellulose nanofibers reinforced polylactic acid nanocomposite. Polym. Test. 35:73–79.10.1016/j.polymertesting.2014.03.002Search in Google Scholar
Abdulkhani, A., Hosseinzadeh, J., Dadashi, S., Mousavi, M. (2015) A study of morphological, thermal, mechanical and barrier properties of PLA based biocomposites prepared with micro and nano sized cellulosic fibers. Cellulose Chem. Techn. 49:597–605.Search in Google Scholar
Arjmandi, R., Hassan, A., Eichhorn, S.J., Mohamad Haafiz, M.K., Zakaria, Z., Tanjung, F.A. (2015) Enhanced ductility and tensile properties of hybrid montmorillonite/cellulose nanowhiskers reinforced polylactic acid nanocomposites. J. Mat. Sci. 50:3118–3130.10.1007/s10853-015-8873-8Search in Google Scholar
Arrieta, M.P., Fortunati, E., Dominici, F., Rayon, E., Lopez, J., Kenny, J.M. (2014) Multifunctional PLA-PHB/cellulose nanocrystal films: Processing, structural and thermal properties. Carbohydr. Polym. 107:16–24.10.1016/j.carbpol.2014.02.044Search in Google Scholar PubMed
Aulin, C., Karabulut, E., Amy, T., Wagberg, L., Lindstrom, T. (2013) Transparent nanocellulosic multilayer thin films on polylactic acid with tunable gas barrier properties. ACS Appl. Mat. Interfaces 5:7352–7359.10.1021/am401700nSearch in Google Scholar PubMed
Baheti, V., Mishra, R., Militky, J., Behera, B.K. (2014) Influence of noncellulosic contents on nano scale refinement of waste jute fibers for reinforcement in polylactic acid films. Fiber. Polym. 15:1500–1506.10.1007/s12221-014-1500-5Search in Google Scholar
Bulota, M., Kreitsmann, K., Hughes, M., Paltakari, J. (2012) Acetylated microfibrillated cellulose as a toughening agent in poly(lactic acid). J. Appl. Polym. Sci. 126:E449–E458.10.1002/app.36787Search in Google Scholar
Chakraborty, A., Sain, M., Kortschot, M. (2006) Reinforcing potential of wood pulp-derived microfibres in a PVA matrix. Holzforschung 60:53–58.10.1515/HF.2006.010Search in Google Scholar
Cheng, Q., Wang, S., Rials, T.G. (2009) Poly(vinyl alcohol) nanocomposites reinforced with cellulose fibrils isolated by high intensity ultrasonication. Compos. Part A. Appl. Sci. Manuf. 40:218–224.10.1016/j.compositesa.2008.11.009Search in Google Scholar
Cheng, Q., Wang, S., Rials, T.G., Lee, S.H. (2007) Physical and mechanical properties of polyvinyl alcohol and polypropylene composite materials reinforced with fibril aggregates isolated from regenerated cellulose fibers. Cellulose 14:593–602.10.1007/s10570-007-9141-0Search in Google Scholar
Deblieck, R.A.C., van Beek, D.J.M., Remerie, K., Ward, I.M. (2011) Failure mechanisms in polyolefines: The role of crazing, shear yielding and the entanglement network. Polymer 52:2979–2990.10.1016/j.polymer.2011.03.055Search in Google Scholar
Dhar, P., Tarafder, D., Kumar, A., Katiyar, V. (2015) Effect of cellulose nanocrystal polymorphs on mechanical, barrier and thermal properties of poly(lactic acid) based bionanocomposites. RSC Adv. 5:60426–60440.10.1039/C5RA06840ASearch in Google Scholar
Di Lorenzo, M.L. (2006) Calorimetric analysis of the multiple melting behavior of poly(L-lactic acid). J. Appl. Polym. Sci. 100:3145–3151.10.1002/app.23136Search in Google Scholar
Espino-Perez, E., Bras, J., Ducruet, V., Guinault, A., Dufresne, A., Domenek, S. (2013) Influence of chemical surface modification of cellulose nanowhiskers on thermal, mechanical, and barrier properties of poly(lactide) based bionanocomposites. Eur. Polym. J. 49:3144–3154.10.1016/j.eurpolymj.2013.07.017Search in Google Scholar
Fischer, E.W., Sterzel, H.J., Wegner, G. (1973) Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Kolloid. Z. Z. Polym. 251:980–990.10.1007/978-3-642-47050-9_24Search in Google Scholar
Fordyce, C.R., Genung, L.B., Pile, M.A. (1946) Composition of cellulose esters – use of equations and nomographs. Ind. Eng. Chem. Analytical Edition 18:547–550.10.1021/i560157a008Search in Google Scholar
Fortunati, E., Armentano, I., Zhou, Q., Iannoni, A., Saino, E., Visai, L., Berglund, L.A., Kenny, J.M. (2012) Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohyd. Polym. 87:1596–1605.10.1016/j.carbpol.2011.09.066Search in Google Scholar
Freire, C.S.R., Fernandes, S.C.M., Silvestre, A.J.D., Neto, C.P. (2013) Novel cellulose-based composites based on nanofibrillated plant and bacterial cellulose: recent advances at the University of Aveiro – a review. Holzforschung 67:603–612.10.1515/hf-2012-0127Search in Google Scholar
Frone, A.N., Berlioz, S., Chailan, J.-F., Panaitescu, D.M. (2013) Morphology and thermal properties of PLA-cellulose nanofibers composites. Carbohyd. Polym. 91:377–384.10.1016/j.carbpol.2012.08.054Search in Google Scholar PubMed
Galeski, A. (2003) Strength and toughness of crystalline polymer systems. Prog. Polym. Sci. 28:1643–1699.10.1016/j.progpolymsci.2003.09.003Search in Google Scholar
Herrera, N., Mathew, A.P., Oksman, K. (2015) Plasticized polylactic acid/cellulose nanocomposites prepared using melt-extrusion and liquid feeding: Mechanical, thermal and optical properties. Compos. Sci. Technol. 106:149–155.10.1016/j.compscitech.2014.11.012Search in Google Scholar
Higgins, H.G., Stewart, C.M., Harrington, K.J. (1961) Infrared spectra of cellulose and related polysaccharides. J. Polym. Sci. 51:59–84.10.1002/pol.1961.1205115505Search in Google Scholar
Hill, C.A.S., Jones, D., Strickland, G., Cetin, N.S. (1998) Kinetic and mechanistic aspects of the acetylation of wood with acetic anhydride. Holzforschung 52:623–629.10.1515/hfsg.1998.52.6.623Search in Google Scholar
Johari, A.P., Kurmvanshi, S.K., Mohanty, S., Nayak, S.K. (2016) Influence of surface modified cellulose microfibrils on the improved mechanical properties of poly (lactic acid). Int. J. Biol. Macromolec. 84:329–339.10.1016/j.ijbiomac.2015.12.038Search in Google Scholar PubMed
Lee, J.H., Park, S.H., Kim, S.H. (2014) Surface modification of cellulose nanowhiskers and their reinforcing effect in polylactide. Macromol. Res. 22:424–430.10.1007/s13233-014-2064-3Search in Google Scholar
Liu, D.Y., Yuan, X.W., Bhattacharyya, D., Easteal, A.J. (2010) Characterisation of solution cast cellulose nanofibre-reinforced poly(lactic acid). Express. Polym. Lett. 4:26–31.10.3144/expresspolymlett.2010.5Search in Google Scholar
Lu, J., Askeland, P., Drzal, L.T. (2008) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49:1285–1296.10.1016/j.polymer.2008.01.028Search in Google Scholar
Lu, F., Yu, H., Yan, C., Yao, J. (2016) Polylactic acid nanocomposite films with spherical nanocelluloses as efficient nucleation agents: effects on crystallization, mechanical and thermal properties. RSC Adv. 6:46008–46018.10.1039/C6RA02768GSearch in Google Scholar
Martinez-Sanz, M., Abdelwahab, M.A., Lopez-Rubio, A., Lagaron, J.M., Chiellini, E., Williams, T.G., Wood, D.F., Orts, W.J., Imam, S.H. (2013) Incorporation of poly(glycidylmethacrylate) grafted bacterial cellulose nanowhiskers in poly(lactic acid) nanocomposites: Improved barrier and mechanical properties. Eur. Polym. J. 49:2062–2072.10.1016/j.eurpolymj.2013.04.035Search in Google Scholar
Mondal, M.I.H., Alam, A.B.M.F. (2013) Utilization of cellulosic wastes in textile and garment industries: 2. Synthesis and characterization of cellulose acetate from knitted rag. J. Polym. Environ. 21:280–285.10.1007/s10924-012-0521-7Search in Google Scholar
Oconnor, R.T., Dupre, E.F., McCall, E.R. (1957) Infrared spectrophotometric procedure for analysis of cellulose and modified cellulose. Anal. Chem. 29:998–1005.10.1021/ac60127a003Search in Google Scholar
Oksman, K., Aitomäki, Y., Mathew, A.P., Siqueira, G., Zhou, Q., Butylina, S., Tanpichai, S., Zhou, X., Hooshmand, S. (2016) Review of the recent developments in cellulose nanocomposite processing. Compos. Part A. Appl. Sci. Manuf. 83:2–18.10.1016/j.compositesa.2015.10.041Search in Google Scholar
Paul, D.R., Robeson, L.M. (2008) Polymer nanotechnology: Nanocomposites. Polymer 49:3187–3204.10.1016/j.polymer.2008.04.017Search in Google Scholar
Pei, A., Berglund, L.A., Zhou, Q. (2014) Surface-modification of nanocelluloses and their applications in poly(lactic acid)/nanocellulose biocomposites. In: Abstract of Papers of the ACS, 247th National Spring Meeting of the American-Chemical-Society (ACS), Dallas, TX, 163-CELL-p.Search in Google Scholar
Peng, Y., Gardner, D.J., Han, Y. (2012) Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19:91–102.10.1007/s10570-011-9630-zSearch in Google Scholar
Petersson, L., Kvien, I., Oksman, K. (2007) Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Compos. Sci. Technol. 67: 2535–2544.10.1016/j.compscitech.2006.12.012Search in Google Scholar
Qu, P., Zhou, Y., Zhang, X., Yao, S., Zhang, L. (2012) Surface modification of cellulose nanofibrils for poly(lactic acid) composite application. J. Appl. Polym. Sci. 125:3084–3091.10.1002/app.36360Search in Google Scholar
Robles, E., Urruzola, I., Labidi, J., Serrano, L. (2015) Surface-modified nano-cellulose as reinforcement in poly(lactic acid) to conform new composites. Ind. Crops Prod. 71:44–53.10.1016/j.indcrop.2015.03.075Search in Google Scholar
Roohani, M., Habibi, Y., Belgacem, N.M., Ebrahim, G., Karimi, A.N., Dufresne, A. (2008) Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur. Polym. J. 44:2489–2498.10.1016/j.eurpolymj.2008.05.024Search in Google Scholar
Saheb, N., Ul Qadir, N., Siddiqui, M.U., Arif, A.F.M., Akhtar, S.S., Al-Aqeeli, N. (2014) Characterization of nanoreinforcement dispersion in inorganic nanocomposites: A review. Materials 7:4148–4181.10.3390/ma7064148Search in Google Scholar PubMed PubMed Central
Song, Z., Xiao, H., Zhao, Y. (2014) Hydrophobic-modified nano-cellulose fiber/PLA biodegradable composites for lowering water vapor transmission rate (WVTR) of paper. Carbohyd. Polym. 111:442–448.10.1016/j.carbpol.2014.04.049Search in Google Scholar PubMed
Sukyai, P., Sriroth, K.-R., Lee, B.-H., Hyun, J.-K. (2012) The effect of bacterial cellulose on the mechanical and thermal expansion properties of kenaf/polylactic acid composites. Appl. Mech. Mater. 117–119:1343–1351.10.4028/www.scientific.net/AMM.117-119.1343Search in Google Scholar
Tingaut, P., Zimmermann, T., Lopez-Suevos, F. (2010) Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid) and acetylated microfibrillated cellulose. Biomacromolecules 11:454–464.10.1021/bm901186uSearch in Google Scholar PubMed
Trifol, J., Plackett, D., Sillard, C., Hassager, O., Daugaard, A.E., Bras, J., Szabo, P. (2016) A comparison of partially acetylated nanocellulose, nanocrystalline cellulose, and nanoclay as fillers for high-performance polylactide nanocomposites. J. Appl. Polym. Sci. 133:43257–43268.10.1002/app.43257Search in Google Scholar
Wasanasuk, K., Tashiro, K. (2011) Crystal structure and disorder in Poly(l-lactic acid) δ form (α′ form) and the phase transition mechanism to the ordered α form. Polymer 52:6097–6109.10.1016/j.polymer.2011.10.046Search in Google Scholar
Ž, V., Fabjan, E.S., Kasunić, M., Korošec, R.C., Hančič, A., Oven, P., Perše, L.S., Poljanšek, I. (2014) Morphological, thermal, and structural aspects of dried and redispersed nanofibrillated cellulose (NFC). Holzforschung 68:657–667.10.1515/hf-2013-0132Search in Google Scholar
Žepič, V., Poljanšek, I., Oven, P., Škapin, A.S., Hančič, A. (2015) Effect of drying pretreatment on the acetylation of nanofibrillated cellulose. BioRes. 10:8148–8167.10.15376/biores.10.4.8148-8167Search in Google Scholar
Zimmermann, T., Pohler, E., Geiger, T. (2004) Cellulose fibrils for polymer reinforcement. Adv. Eng. Mater. 6:754–761.10.1002/adem.200400097Search in Google Scholar
©2016 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial
- The COST action FP1105 – a research network to understand wood cell wall structure, biopolymer interaction and composition
- Selected Articles
- COST Action FP1105: effect of raw materials and pulping conditions on the characteristics of dissolved kraft lignins
- Topography effects in AFM force mapping experiments on xylan-decorated cellulose thin films
- COST-FP1105: Properties of PLA films reinforced with unmodified and acetylated freeze dried nanofibrillated cellulose
- Exploitation of liquefied wood waste for binding recycled wood particleboards
- Urea-formaldehyde (UF) resins prepared by means of the aqueous phase of the catalytic pyrolysis of European beech wood. COST Action FP1105
- Topochemical kinetic mechanism of cellulase hydrolysis on fast-growing tree species. COST Action FP1105
- Original Articles
- Contribution of lignin to the strength properties in wood fibres studied by dynamic FTIR spectroscopy and dynamic mechanical analysis (DMA)
- Combustion behavior of Scots pine (Pinus sylvestris L.) sapwood treated with a dispersion of aluminum oxychloride-modified silica
- Thermogravimetric analyses (TGA) of lignins isolated from the residue of corn stover bioethanol (CSB) production
- In situ detection of the fracture behaviour of moso bamboo (Phyllostachys pubescens) by scanning electron microscopy
- Dynamic moisture sorption and hygroexpansion of Populus euramericana Cv. under two cyclic hygrothermal conditions
Articles in the same Issue
- Frontmatter
- Editorial
- The COST action FP1105 – a research network to understand wood cell wall structure, biopolymer interaction and composition
- Selected Articles
- COST Action FP1105: effect of raw materials and pulping conditions on the characteristics of dissolved kraft lignins
- Topography effects in AFM force mapping experiments on xylan-decorated cellulose thin films
- COST-FP1105: Properties of PLA films reinforced with unmodified and acetylated freeze dried nanofibrillated cellulose
- Exploitation of liquefied wood waste for binding recycled wood particleboards
- Urea-formaldehyde (UF) resins prepared by means of the aqueous phase of the catalytic pyrolysis of European beech wood. COST Action FP1105
- Topochemical kinetic mechanism of cellulase hydrolysis on fast-growing tree species. COST Action FP1105
- Original Articles
- Contribution of lignin to the strength properties in wood fibres studied by dynamic FTIR spectroscopy and dynamic mechanical analysis (DMA)
- Combustion behavior of Scots pine (Pinus sylvestris L.) sapwood treated with a dispersion of aluminum oxychloride-modified silica
- Thermogravimetric analyses (TGA) of lignins isolated from the residue of corn stover bioethanol (CSB) production
- In situ detection of the fracture behaviour of moso bamboo (Phyllostachys pubescens) by scanning electron microscopy
- Dynamic moisture sorption and hygroexpansion of Populus euramericana Cv. under two cyclic hygrothermal conditions