Startseite Immune-regulatory activity of methanolic extract of Acacia confusa heartwood and melanoxetin isolated from the extract
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Immune-regulatory activity of methanolic extract of Acacia confusa heartwood and melanoxetin isolated from the extract

  • Shang-Tse Ho , Yu-Tang Tung , Yu-Jung Wu , Chi-Chen Lin EMAIL logo und Jyh-Horng Wu EMAIL logo
Veröffentlicht/Copyright: 22. November 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The antioxidant, anti-inflammatory, antivirus, uric acid decreasing, and hepatoprotective activities of Acaciaconfusa extracts were demonstrated in previous studies. However, there is no scientific evidence concerning the immune-regulatory activity of the heartwood extract of A. confusa. In this study, the effect of a methanolic heartwood extract (MHE) from A. confusa on dendritic cell (DC) activation and function was examined. A. confusa MHE significantly reduced the production of pro-inflammatory cytokine interleukin-6 (IL-6) in lipopolysaccharide (LPS)-stimulated DCs, and the effective concentration (25 μg ml-1) of A. confusa MHE did not affect cell viability. Additionally, the bioactive phytochemical from A. confusa MHE, melanoxetin, was isolated and purified by HPLC. This substance inhibited the production of pro-inflammatory cytokines (tumor necrosis factor-α, IL-6, and IL-12) in LPS-stimulated DC at a concentration of 12.5 μM. Moreover, the expression levels of co-stimulatory molecules such as CD40, CD80, and CD86 also remarkably decreased after treatment with melanoxetin at the same dose. These findings indicate that A. confusa MHE and melanoxetin have excellent immune-suppressive activity and may be potential candidates for further development of natural health supplements.


Corresponding authors: Chi-Chen Lin, Institute of Biomedical Science, National Chung Hsing University, Taichung 402, Taiwan, Tel.: +886 4 22840345, Fax: +886 4 22851308, e-mail: ; and Jyh-Horng Wu, Department of Forestry, National Chung Hsing University, Taichung 402, Taiwan, Tel.: +886 4 22840345, Fax: +886 4 22851308, e-mail:

References

Anttila, A.K., Pirttilä, A.M., Häggman, H., Harju, A., Venäläinen, M., Haapala, A., Holmbom, B., Julkunen-Tiitto, R. (2013) Condensed conifer tannins as antifungal agents in liquid culture. Holzforschung 67:825–832.10.1515/hf-2012-0154Suche in Google Scholar

Banchereau, J., Steinman, R.M. (1998) Dendritic cells and the control of immunity. Nature 392:245–252.10.1038/32588Suche in Google Scholar PubMed

Benavente-García, O., Castillo, J. (2008) Update on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity. J. Agric. Food Chem. 56:6185–6205.10.1021/jf8006568Suche in Google Scholar PubMed

Chien, S.C., Xiao, J.H., Tseng, Y.H., Kuo, Y.H., Wang, S.Y. (2013) Composition and antifungal activity of balsam from Liquidambar formosana Hance. Holzforschung 67:345–351.10.1515/hf-2012-0086Suche in Google Scholar

Chu, C.L., Lowell, C.A. (2005) The Lyn tyrosine kinase differentially regulates dendritic cell generation and maturation. J. Immunol. 175:2880–2889.10.4049/jimmunol.175.5.2880Suche in Google Scholar PubMed

Clark-Lewis, J.W., Porter, L.J. (1972) Phytochemical survey of the heartwood flavonoids of Acacia species from arid zones of Australia. Aust. J. Chem. 25:1943–1955.10.1071/CH9721943cSuche in Google Scholar

Dalod, M., Chelbi, R., Malissen, B., Lawrence, T. (2014) Dendritic cell maturation: functional specialization through signaling specificity and transcriptional programming. EMBO J. 33:1104–1116.10.1002/embj.201488027Suche in Google Scholar PubMed PubMed Central

Dongmo, A.B., Miyamoto, T., Yoshikawa, K., Arihara, S., Lacaille-Dubois, M.A. (2007) Flavonoids from Acacia pennata and their cyclooxygenase (COX-1 and COX-2) inhibitory activities. Planta Med. 73:1202–1207.10.1055/s-2007-981596Suche in Google Scholar PubMed

Galleano, M., Calabro, V., Prince, P.D., Litterio, M.C., Piotrkowski, B., Vazquez-Prieto, M.A., Miatello, R.M., Oteiza, P.I., Fraga, C.G. (2012) Flavonoids and metabolic syndrome. Ann. N. Y. Acad. Sci. 1259:87–94.10.1111/j.1749-6632.2012.06511.xSuche in Google Scholar

Guermonprez, P., Valladeau, J., Zitvogel, L., Thery, C., Amigorena, S. (2002) Antigen presentation and T cell stimulation by dendritic cells. Annu. Rev. Immunol. 20:621–667.10.1146/annurev.immunol.20.100301.064828Suche in Google Scholar PubMed

Horstmann, B., Zinser, E., Turza, N., Kerek, F., Steinkasserer, A. (2007) MCS-18, a novel natural product isolated from Helleborus purpurascens, inhibits dendritic cell activation and prevents autoimmunity as shown in vivo using the EAE model. Immunobiology 212:839–853.10.1016/j.imbio.2007.09.016Suche in Google Scholar PubMed

Hua, C., Yang, Y., Sun, L., Dou, H., Tan, R., Hou, Y. (2013) Chaetoglobosin F, a small molecule compound, possesses immunomodulatory properties on bone marrow-derived dendritic cells via TLR9 signaling pathway. Immunobiology 218:292–302.10.1016/j.imbio.2012.05.015Suche in Google Scholar PubMed

Huang, R.Y., Yu, Y.L., Cheng, W.C., OuYang, C.N., Fu, E., Chu, C.L. (2010) Immunosuppressive effect of quercetin on dendritic cell activation and function. J. Immunol. 184:6815–6821.10.4049/jimmunol.0903991Suche in Google Scholar PubMed

Johnson, D.J., Ohashi, P.S. (2013) Molecular programming of steady-state dendritic cells: impact on autoimmunity and tumor immune surveillance. Ann. N. Y. Acad. Sci. 1284:46–51.10.1111/nyas.12114Suche in Google Scholar

Kadir, R., Ali, N.M., Soit, Z., Khamaruddin, Z. (2014) Anti-termitic potential of heartwood and bark extract and chemical compounds isolated from Madhuca utilis Ridl. H. J. Lam and Neobalanocarpus heimii King P. S. Ashton. Holzforschung 68:713–720.10.1515/hf-2013-0101Suche in Google Scholar

Karlsson, A., Nygren, E., Karlsson, J., Nordström, I., Dahlgren, C., Eriksson, K. (2007) Ability of monocyte-derived dendritic cells to secrete oxygen radicals in response to formyl peptide receptor family agonists compared to that of myeloid and plasmacytoid dendritic cells. Clin. Vaccine Immunol. 14:328–330.10.1128/CVI.00349-06Suche in Google Scholar PubMed PubMed Central

Lee, T.H., Chou, C.H. (2000) Flavonoid aglycones and indole alkaloids from root of Acacia confusa. J. Chin. Chem. Soc. 47:1287–1290.10.1002/jccs.200000178Suche in Google Scholar

Lee, T.H., Qiu, F., Waller, G.R., Chou, C.H. (2000) Three new flavonol galloylglycosides from leaves of Acacia confusa. J. Nat. Prod. 63:710–712.10.1021/np990482wSuche in Google Scholar

Lee, J.C., Chen, W.C., Wu, S.F., Tseng, C.K., Chiou, C.Y., Chang, F.R., Hsu, S.H., Wu, Y.C. (2011) Anti-hepatitis C virus activity of Acacia confusa extract via suppressing cyclooxygenase-2. Antiviral Res. 89:35–42.10.1016/j.antiviral.2010.11.003Suche in Google Scholar PubMed

Lin, C.C., Yu, Y.L., Shih, C.C., Liu, K.J., Ou, K.L., Hong, L.Z., Chen, J.D., Chu, C.L. (2011a) A novel adjuvant Ling Zhi-8 enhances the efficacy of DNA cancer vaccine by activating dendritic cells. Cancer Immunol. Immunother. 60:1019–1027.10.1007/s00262-011-1016-4Suche in Google Scholar PubMed

Lin, M.K., Yu, Y.L., Chen, K.C., Chang, W.T., Lee, M.S., Yang, M.J., Cheng, H.C., Liu, C.H., Chen, D.C., Chu, C.L. (2011b) Kaempferol from Semen cuscutae attenuates the immune function of dendritic cells. Immunobiology 216:1103–1109.10.1016/j.imbio.2011.05.002Suche in Google Scholar PubMed

Lin, C.C., Chu, C.L., Ng, C.S., Lin, C.Y., Chen, D.Y., Pan, I.H., Huang, K.J. (2014) Immunomodulation of phloretin by impairing dendritic cell activation and function. Food Funct. 5:997–1006.10.1039/c3fo60548eSuche in Google Scholar PubMed

Makino, R., Ohara, S., Hashida, K. (2011) Radical scavenging characteristics of condensed tannins from barks of various tree species compared with quebracho wood tannin. Holzforschung 65:651–657.10.1515/hf.2011.086Suche in Google Scholar

Miller, A.K., Benson, J.M., Muanza, D.N., Smith, J.R., Shepherd, D.M. (2011) Anti-inflammatory effects of natural product formulations on murine dendritic cells. J. Diet. Suppl. 8:19–33.10.3109/19390211.2010.542233Suche in Google Scholar

Pietarinen, S.P., Willför, S.M., Sjöholm, R.E., Holmbom, B.R. (2005) Bioactive phenolic substances in important tree species. Part 3: Knots and stemwood of Acacia crassicarpa and A. mangium. Holzfoschung 59:94–101.10.1515/HF.2005.015Suche in Google Scholar

Rao, Y.K., Chen, Y.C., Fang, S.H., Lai, C.H., Geethangili, M., Lee, C.C., Tzeng, Y.M. (2013) Ovatodiolide inhibits the maturation of allergen-induced bone marrow-derived dendritic cells and induction of Th2 cell differentiation. Int. Immunopharmacol. 17:617–624.10.1016/j.intimp.2013.08.002Suche in Google Scholar PubMed

Rosales-Castro, M., González-Laredo, R.F., Rocha-Guzmán, N.E., Gallegos-Infante, J.A., Rivas-Arreola, M.J., Karchesy, J.J. (2012) Antioxidant activity of fractions from Quercus sideroxyla bark and identification of proanthocyanidins by HPLC-DAD and HPLC-MS. Holzforschung 66:577–584.10.1515/hf-2011-0157Suche in Google Scholar

Sharan, K., Mishra, J.S., Swarnkar, G., Siddiqui, J.A., Khan, K., Kumari, R., Rawat, P., Maurya, R., Sanyal, S., Chattopadhyay, N. (2011) A novel quercetin analogue from a medicinal plant promotes peak bone mass achievement and bone healing after injury and exerts an anabolic effect on osteoporotic bone: the role of aryl hydrocarbon receptor as a mediator of osteogenic action. J. Bone Miner. Res. 26:2096–2111.10.1002/jbmr.434Suche in Google Scholar PubMed

Sheng, K.C., Pietersz, G.A., Tang, C.K., Ramsland, P.A., Apostolopoulos, V. (2010) Reactive oxygen species level defines two functionally distinctive stages of inflammatory dendritic cell development from mouse bone marrow. J. Immunol. 184: 2863–2872.10.4049/jimmunol.0903458Suche in Google Scholar PubMed

Telysheva, G., Dizhbite, T., Bikovens, O., Ponomarenko, J., Janceva, S., Krasilnikova, J. (2011) Structure and antioxidant activity of diarylheptanoids extracted from bark of grey alder (Alnus incana) and potential of biorefinery-based bark processing of European trees. Holzforschung 65:623–629.10.1515/hf.2011.096Suche in Google Scholar

Thieme, H., Khogali, A. (1975) The occurrence of flavonoids and tannins in the leaves of some African acacia species, Pharmazie. 30:736–743.Suche in Google Scholar

Trucci, V.M., Salum, F.G., Figueiredo, M.A., Cherubini, K. (2013) Interrelationship of dendritic cells, type 1 interferon system, regulatory T cells and toll-like receptors and their role in lichen planus and lupus erythematosus – a literature review. Arch. Oral Biol. 58:1532–1540.10.1016/j.archoralbio.2013.06.016Suche in Google Scholar PubMed

Tung, Y.T., Chang S.T. (2010a) Inhibition of xanthine oxidase by Acacia confusa extracts and their phytochemicals. J. Agric. Food Chem. 58:781–786.10.1021/jf901498qSuche in Google Scholar PubMed

Tung, Y.T., Chang S.T. (2010b) Variation in antioxidant activity of extracts of Acacia confusa of different ages. Nat. Prod. Commun. 5:73–76.10.1177/1934578X1000500118Suche in Google Scholar

Tung, Y.T., Wu, J.H., Kuo, Y.H., Chang, S.T. (2007) Antioxidant activities of natural phenolic compounds from Acacia confusa bark. Bioresource Technol. 98:1120–1123.10.1016/j.biortech.2006.04.017Suche in Google Scholar PubMed

Tung, Y.T., Wu, J.H., Huang, C.C., Peng, H.C., Chen, Y.L., Yang, S.C., Chang, S.T. (2009a) Protective effect of Acacia confusa bark extract and its active compound gallic acid against carbon tetrachloride-induced chronic liver injury in rats. Food Chem. Toxicol. 7:1385–1392.10.1016/j.fct.2009.03.021Suche in Google Scholar PubMed

Tung, Y.T., Wu, J.H., Hsieh, C.Y., Chen, P.S., Chang, S.T. (2009b) Free radical-scavenging phytochemicals of hot water extracts of Acacia confusa leaves detected by on-line screening method. Food Chem. 115:1019–1024.10.1016/j.foodchem.2009.01.026Suche in Google Scholar

Tung, Y.T., Wu, J.H., Huang, C.Y., Kuo, Y.H., Chang S.T. (2009c) Antioxidant activities and phytochemical characteristics of extracts from Acacia confusa bark. Bioresource Technol. 100:509–514.10.1016/j.biortech.2008.01.001Suche in Google Scholar PubMed

Tung, Y.T., Hsu, C.A., Chen, C.S., Yang, S.C., Huang, C.C., Chang, S.T. (2010) Phytochemicals from Acacia confusa heartwood extracts reduce serum uric acid levels in oxonate-induced mice: their potential use as xanthine oxidase inhibitors. J. Agric. Food Chem. 58:9936–9941.10.1021/jf102689kSuche in Google Scholar PubMed

Tung, Y.T., Chang, W.C., Chen, P.S., Chang, T.C., Chang S.T. (2011) Ultrasound-assisted extraction of phenolic antioxidants from Acacia confusa flowers and buds. J. Sep. Sci. 34:844–851.10.1002/jssc.201000820Suche in Google Scholar

Uto, T., Nishi, Y., Toyama, M., Yoshinaga, K., Baba, M. (2011) Inhibitory effect of cepharanthine on dendritic cell activation and function. Int. Immunopharmacol. 11:1932–1938.10.1016/j.intimp.2011.08.003Suche in Google Scholar PubMed

Verhasselt, V., Vanden Berghe, W., Vanderheyde, N., Willems, F., Haegeman, G., Goldman, M. (1999) N-acetyl-l-cysteine inhibits primary human T cell responses at the dendritic cell level: association with NF-kappa B inhibition. J. Immunol. 162:2569–2574.10.4049/jimmunol.162.5.2569Suche in Google Scholar

Welch, A., MacGregor, A., Jennings, A., Fairweather-Tait, S., Spector, T., Cassidy, A. (2012) Habitual flavonoid intakes are positively associated with bone mineral density in women. J. Bone Miner. Res. 27:1872–1878.10.1002/jbmr.1649Suche in Google Scholar

Wu, J.H., Tung, Y.T., Wang, S.Y., Shyur, L.F., Kuo, Y.H., Chang S.T. (2005) Phenolic antioxidants from the heartwood of Acacia confusa. J. Agric. Food Chem. 53:5917–5921.10.1021/jf050550mSuche in Google Scholar PubMed

Wu, J.H., Huang, C.Y., Tung, Y.T., Chang, S.T. (2008a) Online RP-HPLC-DPPH screening method for detection of radical-scavenging phytochemicals from flowers of Acacia confusa. J. Agric. Food Chem. 56:328–532.10.1021/jf072314cSuche in Google Scholar PubMed

Wu, J.H., Tung, Y.T., Chien, S.C., Wang, S.Y., Kuo, Y.H., Shyur, L.F., Chang, S.T. (2008b) Effect of phytocompounds from the heartwood of Acacia confusa on inflammatory mediator production. J. Agric. Food Chem. 56:1567–1573.10.1021/jf072922sSuche in Google Scholar PubMed

Xuan, N.T., Shumilina, E., Gulbins, E., Gu, S., Götz, F., Lang, F. (2010) Triggering of dendritic cell apoptosis by xanthohumol. Mol. Nutr. Food Res. 54:S214–224.10.1002/mnfr.200900324Suche in Google Scholar PubMed

Received: 2014-7-16
Accepted: 2014-10-23
Published Online: 2014-11-22
Published in Print: 2015-7-1

©2015 by De Gruyter

Artikel in diesem Heft

  1. Frontmatter
  2. Original Articles
  3. Study on the residual lignin in Eucalyptus globulus sulphite pulp
  4. Hydrogenolysis of lignin in ZnCl2 and KCl as an inorganic molten salt medium
  5. Synthesis of lignin polyols via oxyalkylation with propylene carbonate
  6. Preparation of water-dispersive poly(3,4-ethylenedioxythiophene) (PEDOT) conductive nanoparticles in lignosulfonic acid solution
  7. Properties of polyurethane (PUR) films prepared from liquefied wood (LW) and ethylene glycol (EG)
  8. Dynamic response of earlywood and latewood within annual growth ring structure of Scots pine subjected to changing relative humidity
  9. One-stage thermo-hydro treatment (THT) of hardwoods: an analysis of form stability after five soaking-drying cycles
  10. The variation of tangential rheological properties caused by shrinkage anisotropy and moisture content gradient in white birch disks
  11. Inheritance of basic density and microfibril angle and their variations among full-sib families and their parental clones in Picea glehnii
  12. Mechanical properties and chemical composition of beech wood exposed for 30 and 120 days to white-rot fungi
  13. Chemical improvement of surfaces. Part 3: Covalent modification of Scots pine sapwood with substituted benzoates providing resistance to Aureobasidium pullulans staining fungi
  14. Chemical and ultrastructural changes of ash wood thermally modified using the thermo-vacuum process: I. Histo/cytochemical studies on changes in the structure and lignin chemistry
  15. Chemical and ultrastructural changes of ash wood thermally modified (TMW) using the thermo-vacuum process: II. Immunocytochemical study of the distribution of noncellulosic polysaccharides
  16. Revisiting hardboard properties from the fiber sorting point of view
  17. Effects of acetylation and formalization on the dynamic water vapor sorption behavior of wood
  18. Immune-regulatory activity of methanolic extract of Acacia confusa heartwood and melanoxetin isolated from the extract
  19. Stereomicroscopic optical method for the assessment of load transfer patterns across the wood-adhesive bond interphase
Heruntergeladen am 11.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hf-2014-0208/html
Button zum nach oben scrollen