Startseite Light scattering characterization of lignosulfonate structure in saline solutions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Light scattering characterization of lignosulfonate structure in saline solutions

  • Yong Qian , Yonghong Deng EMAIL logo , Yunqing Guo , Hao Li und Xueqing Qiu EMAIL logo
Veröffentlicht/Copyright: 10. Oktober 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The solution behavior and molecular conformation of sodium lignosulfonates (NaLS) in saline solution has been studied by means of static and dynamic light scattering (LSstat and LSdyn). Results show that the salt content must be larger to eliminate the slow mode in LSdyn analysis of NaLS than that of the theory, and this discrepancy can only be explained by a modified microgel model. The higher salt amount is needed for the formation of a strong ionic gradient field between surface and the inner part of NaLS, which forces counter ions to penetrate into the inner part of NaLS to screen the small amount of charges. The NaLS single molecular shape can be described by an oblate spheroid based on the absolute molecular weight Mw and diffusion coefficients D. The best fitting result is semiaxis a=1.6 nm and axial ratio r=3.5, D=5.73×10-7 cm2 s-1, and the corresponding Mw=1.7×105 g mol-1.


Corresponding authors: Yonghong Deng and Xueqing Qiu: School of Chemistry and Chemical Engineering, State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong 510640, P.R. China, Phone: +86-20-87114722, Fax: +86-20-87114721, e-mail: ,

Acknowledgments

The authors are grateful for the financial support of National Basic Research Program of China (973 Program) (2012CB215302), and the National Natural Science Foundation of China (21374032). Yong Qian would like to acknowledge the China Scholarship Council (CSC) for supporting his visit at McMaster.

References

Deng, Y.H., Feng, X.J., Yang, D.J., Yi, C.H., Qiu, X.Q. (2012) π-π stacking of the aromatic groups in lignosulfonates. BioResources 7:1145–1156.Suche in Google Scholar

Dong, D., Fricke, A.L. (1993) Investigation of optical effect of lignin solution and determination of Mw of kraft lignin by LALLS. J. Appl. Polym. Sci. 50:1131–1140.Suche in Google Scholar

Forss, K.G., Stenlund, B.G., Sãgfors, P.E.J. (1976) Determination of the molecular-weight distribution of lignosulfonates and kraft lignin. Appl. Polym. Sci. 28:1185–1194.Suche in Google Scholar

Förster, S., Schmidt, M., Antonietti M. (1990) Static and dynamic light scattering by aqueous polyelectrolyte solutions: effect of molecular weight, charge density and added salt. Polymer 31:781–792.10.1016/0032-3861(90)90036-XSuche in Google Scholar

Goring, D.A.I., Vuong, R., Gancet, C., Chanzy, H. (1979) The flatness of lignosulfonate macromolecules as demonstrated by electron microscopy. J. Appl. Polym. Sci. 24:931–936.Suche in Google Scholar

Kato, N., Saito, K., Aida, H., Uesu, Y. (1999a) Observations of merocyanine J-aggregate domains in mixed molecular monolayers using SHG/fluorescence and atomic force microscopes. Chem. Phys. Lett. 312:115–120.10.1016/S0009-2614(99)00956-2Suche in Google Scholar

Kato, N., Saito, K., Uesu, Y. (1999b) Optical second harmonic images of merocyanine J-aggregate monolayers at the air-water interface. Thin Solid Films 338:5–8.10.1016/S0040-6090(98)01164-XSuche in Google Scholar

Kato, N., Yamamoto, K., Uesu, Y. (2007) Aqueous dispersions of J-aggregates and J-aggregate-doped silica bulk gels. Jpn. J. Appl. Phys. 46:5318–5320.Suche in Google Scholar

Kontturi, A.K., Kontturi, K., Niinikoski, P., Murtomäki, L. (1992) An experimental study of the effect of temperature on effect charge numbers and diffusion coefficients of lignosulfonate. Acta Chem. Scand. 46:941–948.10.3891/acta.chem.scand.46-0941Suche in Google Scholar

Le Bell, J.C. (1984) The relation between the structure of lignosulphonates and their effect as stabilizers for latex particulate dispersions. Colloids Surf. 9:273–251.10.1016/0166-6622(84)80166-3Suche in Google Scholar

Li, Z.L., Pang, Y.X., Lou, H.M., Qiu, X.Q. (2009) Influence of lignosulfonates on the properties of dimethomorph water-disperse granules. Bioresources 4:586–601.Suche in Google Scholar

Li, R., Yang, D.J., Guo, W.Y., Qiu, X.Q. (2013) The adsorption and dispersing mechanisms of sodium lignosulfonate on Al2O3 particles in aqueous solution. Holzforschung 67:387–394.10.1515/hf-2012-0108Suche in Google Scholar

Lin, S.Y., Dence, C.W. Methods in Lignin Chemistry. Springer– Verlag, Berlin, 1992. pp. 407–424.10.1007/978-3-642-74065-7Suche in Google Scholar

Myrvold, B.O. (2008) A new model for the structure of lignosulphonates: Part 1. Behaviour in dilute solutions. Ind. Crops Prod. 27:214–219.10.1016/j.indcrop.2007.07.010Suche in Google Scholar

Myrvold, B.O. (2013a) Evidence for a very slow disaggregation of ligno-sulfonates. Holzforschung 69:9–16.10.1515/hf-2013-0242Suche in Google Scholar

Myrvold, B.O. (2013b) Salting-out and salting-in experiments with lignosulfonates (LSs). Holzforschung 67:549–557.10.1515/hf-2012-0163Suche in Google Scholar

Nyström, B., Walderhaug, H., Hansen, F.K. (1993) Dynamic crossover effects observed in solutions of a hydrophobically associating water-soluble polymer. J. Phys. Chem. 97:7743–7752.Suche in Google Scholar

Ouyang, X.P., Qiu, X.Q., Lou, H.M., Yang, D.J. (2006) Corrosion and scale inhibition properties of sodium lignosulfonate and its potential application in recirculating cooling water system. Ind. Eng. Chem. Res. 45:5716–5721.Suche in Google Scholar

Ouyang, X.P., Zhang, P., Tan, C.M., Deng, Y.H., Yang, D.J., Qiu, X.Q. (2010) Isolation of lignosulfonate with low polydispersity index. Chin. Chem. Lett. 21:1479–1481.Suche in Google Scholar

Ouyang, X.P., Deng, Y.H., Qian, Y., Zhang, P., Qiu, X.Q. (2011a) Adsorption characteristics of lignosulfonates in salt-free and salt-added aqueous solutions. Biomacromolecules 12:3313–3320.10.1021/bm200808pSuche in Google Scholar

Ouyang, X.P., Zhang, P., Qiu, X.Q., Deng, Y.H., Chen, P. (2011b) Lignosulfonate separation using preparative column chromatography. Ind. Eng. Chem. Res. 50:10792–10799.10.1021/ie200975eSuche in Google Scholar

Pellinen, J., Salkinoja-Salonen, M. (1985) High performance size exclusion chromatography of lignin and its derivatives. J. Chromatogr. 322:129–138.10.1016/S0021-9673(01)97665-4Suche in Google Scholar

Perrin, F. (1934) Mouvement brownien d’un ellipsoide (I). Dispersion dielectrique pour des molecules ellipsoidales. J. de Physique et Le Radium 5:497–511.10.1051/jphysrad:01934005010049700Suche in Google Scholar

Qian, Y., Deng, Y.H., Guo, Y.Q., Yi, C.H., Qiu, X.Q. (2013a) Determination of absolute molecular weight of sodium lignosulfonates (NaLS) by laser light scattering (LLS). Holzforschung 67:265–271.10.1515/hf-2012-0063Suche in Google Scholar

Qian, Y., Deng, Y.H., Qiu, X Q., Huang, J.H., Yang, D.J. (2013b) Aggregation of sodium lignosulfonate above a critical temperature. Holzforschung 68:641–647.10.1515/hf-2013-0167Suche in Google Scholar

Qian, Y., Deng, Y.H., Qiu, X.Q., Lou, H.M., Pang, Y.X. (2014) Slow relaxation mode of sodium lignosulfonate in saline solutions. Holzforschung 69:17–23.10.1515/hf-2014-0004Suche in Google Scholar

Qiu, X Q., Kong, Q., Zhou, M.S., Yang, D.J. (2010) Aggregation behavior of sodium lignosulfonate in water solution. J. Phys. Chem. B 114:15857–15861.Suche in Google Scholar

Rezanowich, A., Goring, D.A.I. (1960) Polyelectrolyte expansion of a lignin sulfonate microgel. J. Colloid Sci. 15:452–471.10.1016/0095-8522(60)90049-0Suche in Google Scholar

Sedlák, M. (1993) Domain Structure of Polyelectrolyte Solutions: Is It Real? Macromolecules 26:1158–1162.10.1021/ma00057a040Suche in Google Scholar

Sedlák, M. (1995) On the “filterable aggregates and other particles” interpretation of the slow polyelectrolyte mode. Macromolecules 28:793–794.10.1021/ma00107a020Suche in Google Scholar

Vainio, U., Lauten, R.A., Serimaa, R. (2008) Small-angle X-ray scattering and rheological characterization of aqueous lignosulfonate solutions. Langmuir 24:7735–7743.10.1021/la800479kSuche in Google Scholar PubMed

Wang, J.H. (1954) Theory of the self-diffusion of water in protein solutions. A new method for studying the hydration and shape of protein molecules. J. Am. Chem. Soc. 76: 4755–4763.10.1021/ja01648a001Suche in Google Scholar

Yan, M.F., Yang, D.J., Deng, Y.H., Chen, P., Zhou, H.F., Qiu, X.Q. (2010) Influence of pH on the behavior of lignosulfonate macromolecules in aqueous solution. Colloids Surf. A Physicochem. Eng. Aspects 371:50–58.10.1016/j.colsurfa.2010.08.062Suche in Google Scholar

Yang, D.J., Qiu, X.Q., Zhou, M.S., Lou, H.M. (2007) Properties of sodium lignosulfonate as dispersant of coal water slurry. Energy Convers. Manage. 48:2433–2438.Suche in Google Scholar

Zhou, H.F., Yang, D.J., Wu, X.L., Deng, Y.H., Qiu, X.Q. (2012) Physicochemical properties of sodium lignosulfonates (NaLS) modified by laccase. Holzforschung 66:825–832.10.1515/hf-2011-0189Suche in Google Scholar

Zhou, H.F., Zhu, J.Y., Luo, X.L., Leu, S.Y., Wu, X.L., Gleisner, R., Dien, B.S., Hector, R.E., Yang, D.J., Qiu, X.Q., Horn, E., Negron, J. (2013) Bioconversion of beetle-killed lodgepole pine using SPORL: process scale-up design, lignin coproduct, and high solids fermentation without detoxification. Ind. Eng. Chem. Res. 52:16057–16065.10.1021/ie402873ySuche in Google Scholar

Received: 2014-4-3
Accepted: 2014-9-17
Published Online: 2014-10-10
Published in Print: 2015-5-1

©2015 by De Gruyter

Artikel in diesem Heft

  1. Frontmatter
  2. Review Articles
  3. A large-scale test set-up for measuring VOC emissions from wood products under laboratory conditions in simulated real rooms
  4. Industrial waste water for biotechnological reduction of aldehyde emissions from wood products
  5. Original Articles
  6. Light scattering characterization of lignosulfonate structure in saline solutions
  7. Differences in wood properties of Picea abies L. Karst. in relation to site of provenance and population genetics
  8. Rapid determination of biomass and polypropylene in three types of wood plastic composites (WPCs) using FTIR spectroscopy and partial least squares regression (PLSR)
  9. Thermal modification of Southern pine combined with wax emulsion preimpregnation: effect on hydrophobicity and dimensional stability
  10. Mixed-mode fracture toughness of bond lines of PRF and PUR adhesives in European beech wood
  11. Effect of specimen dimension and pre-heating temperature on supercritical CO2 dewatering of radiata pine sapwood
  12. Sound absorption of wood-based materials
  13. Threshold for ion movements in wood cell walls below fiber saturation observed by X-ray fluorescence microscopy (XFM)
  14. Oxygen plasma treatment of bamboo fibers (BF) and its effects on the static and dynamic mechanical properties of BF-unsaturated polyester composites
  15. A combined view on composition, molecular structure, and micromechanics of fungal degraded softwood
  16. Morphological changes induced in wood samples by aqueous NaOH treatment and their effects on the conversion of cellulose I to cellulose II
  17. Young’s modulus and shear modulus of solid wood measured by the flexural vibration test of specimens with large height/length ratios
  18. Effects of cell wall ultrastructure on the transverse shrinkage anisotropy of Scots pine wood
  19. Short Note
  20. Reacted copper(II) concentrations in earlywood and latewood of micronized copper-treated Canadian softwood species
Heruntergeladen am 12.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hf-2014-0105/html
Button zum nach oben scrollen