Startseite Synthesis of spiro[pyrazole-4,8′-pyrazolo [3,4-f]quinolin]-5(1H)-ones by the reaction of aldehydes with 1H-indazol-6-amine and 1H-pyrazol-5(4H)-one
Artikel Open Access

Synthesis of spiro[pyrazole-4,8′-pyrazolo [3,4-f]quinolin]-5(1H)-ones by the reaction of aldehydes with 1H-indazol-6-amine and 1H-pyrazol-5(4H)-one

  • Fang Dong und Xiang-Shan Wang EMAIL logo
Veröffentlicht/Copyright: 24. September 2016

Abstract

A four-component reaction including two equivalents of aldehyde, 1H-indazol-6-amine and 1H-pyrazol-5(4H)-one proceeds smoothly to afford a series of spiro[pyrazole-4,8′-pyrazolo[3,4-f]quinolin]-5(1H)-ones in high yields under catalyst-free conditions.

Introduction

Due to unique antimalarial activity, quinoline derivatives have received considerable attention in recent years [1], [2], [3] and some of them including chloroquine [4] and plasmoquine [5] (Figure 1) are clinical drugs to treat malaria. Pyrazole exhibits a wide range of biological applications. A typical example is analgesic and antipyretic drug antipyrine [6]. Pyrazole fused quinoline (pyrazoloquinoline) is also a useful heterocycle whose derivatives show various bioactivities including antimalarial [7], analgesic [8], antipsychotic [9], and antimicrobial activities [10]. Many procedures have been reported to synthesize these active compounds in the past few years [11], [12], [13], [14].

Figure 1 The marketed drugs containing pyrazole or quinoline.
Figure 1

The marketed drugs containing pyrazole or quinoline.

In our previous paper, the reactions of aldehyde, 1H-indazol-6-amine and 3-phenylisoxazol-5(4H)-one were performed in refluxing EtOH, giving spiro[isoxazole-4,8′-pyrazolo[3,4-f]quino-lin]-5-ones or ring-opening products of pyrazoloquinolines depending on the activity of the aldehyde. In view of the importance of pyrazole, the aldehyde 1 was allowed to react with 1H-indazol-6-amine 2 and 1H-pyrazol-5(4H)-one 3 under similar reaction conditions (Scheme 1). This reaction gave exclusively spiro[pyrazole-4,8′-pyrazolo[3,4-f]quinolin]-5(1H)-ones 4 regardless of the type of substituents on the substrates. This report describes a continuation of our research devoted to the development of new methods for the preparation of heterocycles containing nitrogen atoms under catalyst-free conditions [15], [16], [17], [18].

Scheme 1 The synthetic route for the products 4.
Scheme 1

The synthetic route for the products 4.

Results and discussion

The initial reaction involved two equivalents of 4-nitrobenzaldehyde (1a, 2.0 mmol), 1H-indazol-6-amine (2, 1.0 mmol) and 1,3-dimethyl-1H-pyrazol-5(4H)-one (3, 1.0 mmol) in refluxing EtOH (Scheme 1). This reaction furnished 1,3-dimethyl-7′,9′-bis(2-nitrophenyl)-1′,6′,7′,9′-tetrahydrospiro[pyrazole-4,8′-pyrazolo[3,4-f]quinolin]-5(1H)-one (4a) in an 89% yield. This model reaction was conducted in various solvents including THF, MeOH, EtOH, dioxane, toluene, and DMF. It was found that under catalyst-free conditions the use of EtOH is optimal.

Subsequently, various aldehydes 1 were allowed to react with 2 and 3 in EtOH under reflux conditions. All products 4an were obtained in 84%–91% yields. The presence of electron-donating (alkyl) or electron-withdrawing (halide, nitro, and cyano) group on the substrates does not affect the high efficiency of the reaction.

Conclusion

The efficient synthesis of spiro[pyrazole-4,8′-pyrazolo [3,4-f]quinolin]-5(1H)-one derivatives 4 by the reaction of two equivalents of aldehyde 1 with 1H-indazol-6-amine 2 and 1H-pyrazol-5(4H)-one 3 is described. The four-component reaction proceeds smoothly in refluxing EtOH in the absence of any catalysts.

Experimental

Melting points were determined in open capillaries and are uncorrected. IR spectra were recorded on a Tensor 27 spectrometer in KBr pellets. 1H NMR spectra were obtained in DMSO-d6 with Me4Si as internal standard using a Bruker-400 spectrometer (400 MHz). HR-MS analyses were carried out using a Bruker-micro- TOF-Q-MS analyzer.

General procedure for the synthesis of 4

A mixture of aromatic aldehyde 1 (2.0 mmol), 1H-indazol-6-amine 2 (1.0 mmol), 1H-pyrazol-5(4H)-one 3 (112 mg, 1.0 mmol), and EtOH (10.0 mL) was stirred at reflux for 6–10 h. After the completion of the reaction as indicated by TLC analysis, the pure product 4 was obtained by simple filtration after cooling the mixture to room temperature.

1,3-Dimethyl-7′,9′-bis(4-nitrophenyl)-1′,6′,7′,9′-tetrahydro spiro[pyrazole-4,8′-pyrazolo[3,4-f]quinolin]-5(1H)-one (4a)

Yield 89%; mp 254–255°C; 1H NMR: δH 1.95 (s, 3H, CH3), 2.71 (s, 3H, CH3), 4.83 (s, 1H, CH), 5.09 (s, 1H, CH), 6.90 (m, 2H, ArH), 7.04 (s, 1H, NH), 7.36 (m, 1H, ArH), 7.60 (m, 3H, ArH), 7.89 (s, 1H, ArH), 7.96 (m, 1H, ArH), 8.19 (s, 1H, ArH), 8.24 (d, J=8.8 Hz, 2H, ArH), 11.27 (s, 1H, NH); IR: ν 3311, 2930, 1685, 1624, 1597, 1529, 1492, 1437, 1404, 1348, 1291, 1256, 1093, 1059, 1014, 931, 871, 859, 838, 820, 795, 719 cm−1. ESI-HR-MS. Calcd for C26H20N7O5 ([M – H]): m/z 510.1520. Found: m/z 510.1537.

7′,9′-Bis(4-chlorophenyl)-1,3-dimethyl-1′,6′,7′,9′-tetrahydro spiro[pyrazole-4,8′-pyrazolo[3,4-f]quinolin]-5(1H)-one (4b)

Yield 91%, mp 272–274°C; 1H NMR: δH 1.97 (s, 3H, CH3), 2.71 (s, 3H, CH3), 4.61 (s, 1H, CH), 4.90 (s, 1H, CH), 6.58 (m, 1H, ArH), 6.82 (s, 1H, NH), 6.82 (d, J=8.8 Hz, 1H, ArH), 7.10 (m, 1H, ArH), 7.14 (m, 1H, ArH), 7.35 (m, 3H, ArH), 7.42 (m, 2H, ArH), 7.53 (d, J=8.4 Hz, 1H, ArH), 7.85 (s, 1H, ArH), 11.14 (s, 1H, NH); IR: ν 3377, 3253, 3063, 2926, 1697, 1621, 1589, 1524, 1489, 1428, 1376, 1354, 1255, 1173, 1089, 1057, 1014, 968, 927, 841, 730, 706 cm−1. ESI-HR-MS. Calcd for C26H20Cl2N5O ([M – H]) : m/z 488.1039. Found: m/z 488.1066.

1,3-Dimethyl-7′,9′-bis(2-nitrophenyl)-1′,6′,7′,9′-tetra hydrospiro[pyrazole-4,8′-pyrazolo[3,4-f]quinolin]-5(1H)-one (4c)

Yield 86%; mp 226–228°C; 1H NMR: δH 1.94 (s, 3H, CH3), 2.54 (s, 3H, CH3), 5.26 (s, 1H, CH), 5.37 (s, 1H, CH), 6.82 (d, J=8.8 Hz, 1H, ArH), 7.16 (d, J=8.0 Hz, 1H, ArH), 7.30 (s, 1H, NH), 7.47 (d, J=8.8 Hz, 2H, ArH), 7.57 (m, 4H, ArH), 7.62~7.72 (m, 2H, ArH), 8.24 (d, J=8.0 Hz, 1H, ArH), 12.56 (s, 1H, NH); IR: ν 3395, 3166, 2971, 2929, 1698, 1630, 1576, 1527, 1463, 1429, 1377, 1343, 1322, 1226, 1187, 1045, 1018, 936, 874, 862, 850, 789, 730 cm−1. ESI-HR-MS. Calcd for C26H20N7O5 ([M – H]) : m/z 510.1520. Found: m/z 510.1543.

1,3-Dimethyl-7′,9′-bis(3-nitrophenyl)-1′,6′,7′,9′-tetra hydrospiro[pyrazole-4,8′-pyrazolo[3,4-f]quinolin]-5(1H)-one (4d)

Yield 84%; mp>300°C; 1H NMR: δH 2.02 (s, 3H, CH3), 2.67 (s, 3H, CH3), 4.83 (s, 1H, CH), 5.07 (s, 1H, CH), 6.91 (d, J=8.8 Hz, 1H, ArH), 7.06 (d, J=9.6 Hz, 2H, ArH), 7.32 (s, 1H, NH), 7.41 (m, 1H, ArH), 7.60 (d, J=9.6 Hz, 1H, ArH), 7.69 (m, 2H, ArH), 7.79 (d, J=8.0 Hz, 2H, ArH), 7.88 (s, 1H, ArH), 8.13 (m, 1H, ArH), 11.27 (s, 1H, NH); IR: ν 3419, 3309, 3084, 2927, 1695, 1623, 1600, 1531, 1498, 1438, 1373, 1351, 1258, 1225, 1075, 1056, 1001, 929, 845, 811, 798, 781, 760, 740, 715 cm−1. ESI-HR-MS. Calcd for C26H20N7O5 ([M – H]): m/z 510.1520. Found: m/z 510.1526.

7′,9′-Bis(4-chloro-2-nitrophenyl)-1,3-dimethyl-1′,6′,7′,9′-tetrahydrospiro [pyrazole-4,8′-pyrazolo[3,4-f]quinolin]-5(1H)-one (4e)

Yield 86%; mp 211–212°C; 1H NMR: δH 1.93 (s, 3H, CH3), 2.60 (s, 3H, CH3), 5.22 (s, 1H, CH), 5.25 (s, 1H, CH), 7.16 (d, J=8.4 Hz, 2H, ArH), 7.36 (s, 1H, NH), 7.58 (m, 2H, ArH), 7.81 (m, 3H, ArH), 7.96 (d, J=2.4 Hz, 1H, ArH), 8.30 (s, 1H, ArH), 12.59 (s, 1H, NH); IR: ν 3409, 3176, 3098, 3042, 2970, 1694, 1659, 1624, 1566, 1530, 1459, 1434, 1421, 1388, 1378, 1354, 1342, 1332, 1325, 1102, 1065, 932, 894, 852, 841 cm−1. ESI-HR-MS. Calcd for C26H18Cl2N7O5 ([M – H]) : m/z 578.0740. Found: m/z 578.0697.

7′,9′-Bis(5-bromo-2-nitrophenyl)-1,3-dimethyl-1′,6′,7′,9′-tetra hydrospiro[pyrazole-4,8′-pyrazolo[3,4-f]quinolin]-5(1H)-one (4f)

Yield 90%; mp 216–218°C; 1H NMR: δH 1.92 (s, 3H, CH3), 2.60 (s, 3H, CH3), 5.24 (s, 1H, CH), 5.36 (s, 1H, CH), 6.82 (d, J=8.8 Hz, 1H, ArH), 7.21 (s, 1H, NH), 7.42 (s, 1H, ArH), 7.62 (m, 2H, ArH), 7.80 (m, 3H, ArH), 7.88 (s, 1H, ArH), 8.19 (d, J=8.8 Hz, 1H, ArH), 12.70 (s, 1H, NH); IR: ν 3342, 3175, 3066, 2926, 1696, 1659, 1626, 1597, 1566, 1522, 1496, 1462, 1421, 1377, 1339, 1290, 1256, 1182, 1099, 932, 875, 843 cm−1. ESI-HR-MS. Calcd for C26H18Br2N7O5 ([M – H]): m/z 665.9730. Found: m/z 665.9690.

1,3-Dimethyl-7′,9′-bis(2-(trifluoromethyl)phenyl)-1′,6′,7′,9′-tetrahydrospiro [pyrazole-4,8′-pyrazolo[3,4-f]quinolin]-5(1H)-one (4g)

Yield 87%; mp 264–265°C; 1H NMR: δH 1.97 (s, 3H, CH3), 2.70 (s, 3H, CH3), 4.76 (s, 1H, CH), 5.21 (s, 1H, CH), 6.77 (d, J=8.8 Hz, 1H, ArH), 7.07 (s, 1H, NH), 7.32 (s, 1H, ArH), 7.37 (d, J=8.0 Hz, 1H, ArH), 7.52 (m, 3H, ArH), 7.67 (m, 3H, ArH), 7.97 (s, 2H, ArH), 11.01 (s, 1H, NH); IR: ν 3297, 2921, 1709, 1669, 1625, 1595, 1513, 1497, 1437, 1378, 1344, 1310, 1291, 1258, 1157, 1135, 1061, 1038, 929, 858, 770 cm−1. ESI-HR-MS. Calcd for C28H20F6N5O ([M – H] ): m/z 556.1566. Found: m/z 556.1546.

1,3-Dimethyl-7′,9′-bis(4-(trifluoromethyl)phenyl)-1′,6′,7′,9′-tetrahydrospiro [pyrazole-4,8′-pyrazolo[3,4-f]quinolin]-5(1H)-one (4h)

Yield 84%; mp 244–245°C; 1H NMR: δH 1.74 (s, 3H, CH3), 2.76 (s, 3H, CH3), 4.65 (s, 1H, CH), 5.07 (s, 1H, CH), 7.06 (m, 3H, ArH), 7.44 (d, J=8.8 Hz, 2H, ArH), 7.59 (m, 1H, ArH), 7.69 (s, 1H, NH), 7.75 (d, J=2.4 Hz, 1H, ArH), 8.22 (s, 1H, ArH), 8.54 (s, 1H, ArH), 8.69 (s, 2H, ArH), 12.32 (s, 1H, NH); IR: ν 3196, 3083, 1715, 1633, 1604, 1550, 1524, 1470, 1447, 1380, 1346, 1239, 1202, 1135, 1092, 1072, 950, 893, 859, 825, 786 cm−1; ESI-HR-MS. Calcd for C28H20F6N5O ([M – H]): m/z 556.1566. Found: 556.1543.

7′,9′-bis(4-bromo-2-nitrophenyl)-1,3-dimethyl-1′,6′,7′,9′-tetrahydrospiro [pyrazole-4,8′-pyrazolo[3,4-f]quinolin]-5(1H)-one (4i)

Yield 89%; mp 271–272°C; 1H NMR: δH 2.09 (s, 3H, CH3), 2.76 (s, 3H, CH3), 4.06 (s, 1H, CH), 5.70 (s, 1H, CH), 6.60 (s, 3H, ArH), 7.67~7.71 (m, 1H, ArH), 7.80 (m, 2H, ArH), 7.96 (s, 1H, NH), 8.09 (m, 2H, ArH), 8.18 (d, J=8.0 Hz, 1H, ArH), 12.25 (s, 1H, NH); IR: ν 3196, 3083, 1715, 1633, 1604, 1550, 1524, 1470, 1447, 1380, 1346, 1239, 1202, 1135, 1092, 1072, 950, 893, 859, 825, 786 cm−1. ESI-HR-MS. Calcd for C26H18Br2N7O5 ([M – H]): m/z 665.9730. Found m/z 665.9685.

7′,9′-Bis(4-bromophenyl)-1,3-dimethyl-1′,6′,7′,9′-tetra hydrospiro[pyrazole-4,8′-pyrazolo[3,4-f]quinolin]-5(1H)-one (4j)

Yield 85%; mp 272–273°C; 1H NMR: δH 2.09 (s, 3H, CH3), 2.64 (s, 3H, CH3), 4.68 (s, 1H, CH), 4.94 (s, 1H, CH), 6.18 (s, 1H, ArH), 6.53 (s, 1H, NH), 6.75 (m, 1H, ArH), 7.07 (d, J=8.0 Hz, 1H, ArH), 7.20~7.23 (m, 2H, ArH), 7.39 (m, 4H, ArH), 7.57~7.60 (m, 1H, ArH), 7.95~7.98 (m, 1H, ArH), 12.83 (s, 1H, NH); IR: ν 3367, 3208, 2924, 1693, 1672, 1620, 1588, 1487, 1428, 1407, 1378, 1326, 1254, 1169, 1089, 1073, 1009, 926, 842, 860, 797, 756, 729, 704 cm−1. ESI-HR-MS. Calcd for C26H20Br2N5O ([M – H]): m/z 576.0035. Found: m/z 576.0002.

1,3-Dimethyl-7′,9′-di-p-tolyl-1′,6′,7′,9′-tetrahydrospiro[pyrazole-4,8′-pyrazolo [3,4-f]quinolin]-5(1H)-one (4k)

Yield 84%; mp 267–268°C; 1H NMR: δH 1.96 (s, 3H, CH3), 2.30 (s, 3H, CH3). 2.40 (s, 3H, CH3). 2.66 (s, 3H, CH3), 4.52 (s, 1H, CH), 4.86 (s, 1H, CH), 6.45 (d, J=8.0 Hz, 1H, ArH), 6.68 (s, 1H, NH), 6.84~6.88 (m, 2H, ArH), 6.99~7.03 (m, 1H, ArH), 7.10 (m, 1H, ArH), 7.12~7.21 (m, 4H, ArH), 7.49 (d, J=8.4 Hz, 1H, ArH), 7.80 (s, 1H, ArH), 10.85 (s, 1H, NH); IR: ν 3403, 3250, 3061, 3028, 2918, 2865, 1686, 1617, 1588, 1487, 1432, 1375, 1327, 1259, 1225, 1060, 1021, 929, 846, 801, 733, 701 cm−1. HRMS (ESI, m/z): Calcd for C28H26N5O [M – H] 448.2131, found 448.2122.

7′,9′-bis(4-methoxyphenyl)-1,3-dimethyl-1′,6′,7′,9′-tetra hydrospiro[pyrazole-4,8′-pyrazolo[3,4-f]quinolin]-5(1H)-one (4l)

Yield 86%; mp 258–259°C; 1H NMR: δH 1.99 (s, 3H, CH3), 2.68 (s, 3H, CH3), 3.69 (s, 3H, OCH3), 3.73 (s, 3H, OCH3), 4.53 (s, 1H, CH), 4.84 (s, 1H, CH), 6.40 (s, 1H, NH), 6.48~6.51 (m, 1H, ArH), 6.62~6.65 (m, 1H, ArH), 6.68 (s, 1H, ArH), 6.84 (d, J=2.4 Hz, 1H, ArH), 6.97 (d, J=8.8 Hz, 1H, ArH), 7.03~7.05 (m, 1H, ArH), 7.10~7.12 (m, 1H, ArH), 7.42 (d, J=8.4 Hz, 1H, ArH), 7.49 (d, J=8.4 Hz, 1H, ArH), 7.72~7.76 (m, 1H, ArH), 7.80 (s, 1H, ArH), 10.76 (s, 1H, NH); IR: ν 3412, 3234, 3038, 3004, 2956, 2927, 2838, 1686, 1618, 1584, 1512, 1489, 1462,1382, 1305, 1253, 1177, 1107, 1060, 1030, 964, 832, 803, 739, 703 cm−1. ESI-HR-MS. Calcd for C28H26N5O3 ([M – H]): m/z 480.2108. Found: m/z 480.2082.

7′,9′-Bis(3-bromophenyl)-1,3-dimethyl-1′,6′,7′,9′-tetra hydrospiro[pyrazole-4,8′-pyrazolo[3,4-f]quinolin]-5(1H)-one (4m)

Yield 84%; mp 287–288°C; 1H NMR: δH 1.84 (s, 3H, CH3), 2.68 (s, 3H, CH3), 4.52 (s, 1H, CH), 4.78 (s, 1H, CH), 6.47 (d, J=8.0 Hz, 1H, ArH), 6.53 (s, 1H, NH), 6.78 (m, 3H, ArH), 7.14 (s, 1H, ArH), 7.23 (s, 1H, ArH), 7.24 (s, 1H, ArH), 7.23 (s, 1H, ArH), 7.41 (s, 1H, ArH), 7.42 (m, 1H, ArH), 7.76 (s, 1H, ArH), 11.22 (s, 1H, NH); IR: ν 3447, 3196, 2923, 1694, 1622, 1591, 1565, 1510, 1474, 1428, 1374, 1302, 1234, 1091, 1069, 1030, 995, 925, 836, 799, 786, 754, 721 cm−1. ESI-HR-MS. Calcd for C26H20Br2N5O ([M – H]): m/z 576.0010. Found: m/z 576.0006.

1,3,3′-Trimethyl-7′,9′-bis(4-nitrophenyl)-1′,6′,7′,9′-tetra hydrospiro[pyrazole-4,8′-pyrazolo[3,4-f]quinolin]-5(1H)-one (4n)

Yield 89%; mp 271–272°C; 1H NMR: δH 2.30 (s, 3H, CH3), 2.40 (s, 3H, CH3), 2.45 (s, 3H, CH3), 5.04 (s, 1H, CH), 5.12 (s, 1H, CH), 6.74 (d, J=8.4 Hz, 2H, ArH), 7.00 (s, 1H, NH), 7.41 (d, J=8.4 Hz, 1H, ArH), 7.65 (m, 3H, ArH), 7.97 (m, 2H, ArH), 8.22 (d, J=8.8 Hz, 2H, ArH), 12.25 (s, 1H, NH); IR: ν 3396, 3082, 2934, 1704, 1618, 1604, 1604, 1513, 1470, 1428, 1377, 1345, 1263, 1224, 1153, 1107, 1012, 976, 956, 860, 810, 735, 745 cm−1. ESI-HR-MS. Calcd for C27H22N7O5 ([M – H]): m/z 524.1676. Found: m/z 524.1686.

Award Identifier / Grant number: 14KJA150004

Funding statement: We are grateful to the Major Natural Science Foundation of Jiangsu Province (14KJA150004) and the Priority Academic Program Development of Jiangsu Higher Education Institutions for financial support

Acknowledgments

We are grateful to the Major Natural Science Foundation of Jiangsu Province (14KJA150004) and the Priority Academic Program Development of Jiangsu Higher Education Institutions for financial support.

References

[1] Keri, R. S.; Patil, S. A. Quinoline: a promising antitubercular target. Biomed. Pharmacother. 2014, 68, 1161–1175.10.1016/j.biopha.2014.10.007Suche in Google Scholar

[2] Rodrigues, T.; da Cruz, F. P.; Lafuente-Monasterio, M. J.; Goncalves, D.; Ressurreicao, A. S.; Sitoe, A. R.; Bronze, M. R.; Gut, J.; Schneider, G.; Mota, M. M. Quinolin-4(1H)-imines are potent antiplasmodial drugs targeting the liver stage of malaria. J. Med. Chem.2013, 56, 4811–4815.10.1021/jm400246eSuche in Google Scholar

[3] Weissbuch, I.; Leiserowitz, L. Interplay between malaria, crystalline hemozoin formation, and antimalarial drug action and design. Chem. Rev. 2008, 108, 4899–4914.10.1021/cr078274tSuche in Google Scholar

[4] Plowe, C.V. Antimalarial drug resistance in Africa: strategies for monitoring and deterrence. Curr. Top. Microbiol. Immunol.2005, 295, 55–79.10.1007/3-540-29088-5_3Suche in Google Scholar

[5] Roehl, W. Die wirkung of plasmochins auf die vogelmalaria. Naturwissenschaften1926, 30, 311–318.10.1007/BF01451737Suche in Google Scholar

[6] Brune, K. The early history of non-opioid analgesics. Acute Pain1997, 1, 33–40.10.1016/S1366-0071(97)80033-2Suche in Google Scholar

[7] Sarveswari, S.; Vijayakumar, V.; Siva, R.; Priya, R. Synthesis of 4-hydroxy-2(1H)-quinolone derived chalcones, pyrazolines and their antimicrobial, in silico antimalarial evaluations. Appl. Biochem. Biotech.2015, 175, 43–64.10.1007/s12010-014-1256-9Suche in Google Scholar PubMed

[8] Alam, M. M.; Marella, A.; Akhtar, M.; Husain, A.; Yar, M. S.; Shaquiquzzaman, M.; Tanwar, O. P.; Saha, R.; Khanna, S.; Shafi, S. Microwave assisted one pot synthesis of some pyrazole derivatives as a safer anti-inflammatory and analgesic agents. Acta Pol. Pharm. 2013, 70, 435–441.Suche in Google Scholar

[9] Yang, S. W.; Smotryski, J.; McElroy, W. T.; Tan, Z.; Ho, G.; Tulshian, D.; Greenlee, W. J.; Guzzi, M.; Zhang, X.; Mullins, D. Discovery of orally active pyrazoloquinolines as potent PDE10 inhibitors for the management of schizophrenia. Bioorg. Med. Chem. Lett. 2012, 22, 235–239.10.1016/j.bmcl.2011.11.023Suche in Google Scholar PubMed

[10] Joshi, S. D.; Hallikeri, C. S.; More, U. A.; Basavaraj, H. S.; Kulkarni, V. H. Synthesis and antimicrobial activity of pyrazolo[3,4-b]quinolines containing pyrimidine moiety, Indian J. Heterocycl. Chem. 2011, 21, 69–72.Suche in Google Scholar

[11] Alizadeh, A.; Moafi, L.; Ghanbaripour, R.; Abadi, M. H.; Zhu, Z.; Kubicki, M. A new route for the synthesis of 1,3,4-trisubstituted pyrazolo[4,3-c]quinolines via a multicomponent reaction. Tetrahedron2015, 71, 3495–3499.10.1016/j.tet.2015.03.062Suche in Google Scholar

[12] Poursattar Marjani, A.; Khalafy, J.; Salami, F.; Mohammadlou, M. Tin(II) chloride catalyzed synthesis of new pyrazolo[5,4-b]quinolines under solvent-free conditions. Synthesis2015, 47, 1656–1660.10.1055/s-0034-1380189Suche in Google Scholar

[13] Kato, J.; Ijuin, R.; Aoyama, H.; Yokomatsu, T. Synthesis of poly-substituted pyrazolo[1,5-a]quinolines through one-pot two component cascade reaction. Tetrahedron2014, 70, 2766–2775.10.1016/j.tet.2014.02.081Suche in Google Scholar

[14] Chen, D. S.; Zhou, Y. J.; Li, Y. L.; Yao, C. S.; Wang, X. S. Combinatorial synthesis of pyrazoloquinoline and pyrazoloacridine derivatives with high regioselectivity. Comb. Chem. High. T. Scr. 2013, 16, 550–561.10.2174/1386207311316070005Suche in Google Scholar PubMed

[15] Li, C.; Mu, X. Y.; Li, Y. L.; Liu, Y.; Wang, X. S. Combinatorial synthesis of fused tetracyclic heterocycles containing [1], [6]naphthyridine derivatives under catalyst free conditions. ACS Comb. Sci. 2013, 15, 267–272.10.1021/co400020wSuche in Google Scholar PubMed

[16] Lu, W. Q.; Zhuang, R.; Chen, D. S.; Wang, X. S. An efficient synthesis of polycyclic heterocycles containing pyrazolo[3,4-f]quinoline or benzo[h]indazolo[6,7-b][1], [6]naphthyridine under catalyst-free conditions. Polycycl. Aromat. Comp.2014, 34, 606–619.10.1080/10406638.2014.927774Suche in Google Scholar

[17] Zhang, M. M.; Wang, W.; Wang, X. S. three-component one-pot synthesis of indolo[3,4-a]acridine derivatives with high regioselectivity under catalyst-free conditions. J. Heterocycl. Chem.2014, 51, 349–353.10.1002/jhet.1896Suche in Google Scholar

[18] Zhang, Y.; Xu, J.; Zhang, M. M.; Wang, X. S. A highly regioselective synthesis of functionalized furo[3,2-a]acridine derivatives via a three-component reaction. Res. Chem. Intermed. 2015, 41, 9917–9927.10.1007/s11164-015-1998-1Suche in Google Scholar

Received: 2016-7-12
Accepted: 2016-7-30
Published Online: 2016-9-24
Published in Print: 2016-10-1

©2016 Walter de Gruyter GmbH, Berlin/Boston

This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Heruntergeladen am 15.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hc-2016-0116/html
Button zum nach oben scrollen