Startseite σ-symmetric amenability of Banach algebras
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

σ-symmetric amenability of Banach algebras

  • Lin Chen EMAIL logo , Mohammad Javad Mehdipour und Jun Li
Veröffentlicht/Copyright: 26. März 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we introduce the notion of σ-symmetric amenability of Banach algebras and investigate some hereditary properties of them. We also apply our results to several abstract Segal algebras and group algebras.

Award Identifier / Grant number: 12061018

Funding statement: This work is supported by the National Natural Science Foundation of China (No. 12061018).

Acknowledgements

The authors wish to thank anonymous reviewers for their constructive and valuable suggestions which have considerably improved the presentation of the paper.

References

[1] M. Alaghmandan, R. Nasr-Isfahani and M. Nemati, Character amenability and contractibility of abstract Segal algebras, Bull. Aust. Math. Soc. 82 (2010), no. 2, 274–281. 10.1017/S0004972710000286Suche in Google Scholar

[2] J. Alaminos, M. Mathieu and A. R. Villena, Symmetric amenability and Lie derivations, Math. Proc. Cambridge Philos. Soc. 137 (2004), no. 2, 433–439. 10.1017/S0305004104007637Suche in Google Scholar

[3] A. Bodaghi, Module ( ϕ , ψ ) -amenability of Banach algebras, Arch. Math. (Brno) 46 (2010), no. 4, 227–235. Suche in Google Scholar

[4] H. G. Dales, Banach Algebras and Automatic Continuity, London Math. Soc. Monogr. (N. S.) 24, Oxford University, New York, 2000. 10.1093/oso/9780198500131.001.0001Suche in Google Scholar

[5] F. Ghahramani and A. T. M. Lau, Weak amenability of certain classes of Banach algebras without bounded approximate identities, Math. Proc. Cambridge Philos. Soc. 133 (2002), no. 2, 357–371. 10.1017/S0305004102005960Suche in Google Scholar

[6] M. Ghasemi and M. J. Mehdipour, Homological properties of Banach modules related to locally compact groups, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 21 (2020), no. 4, 295–301. Suche in Google Scholar

[7] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis. Vol. II: Structure and Analysis for Compact Groups. Analysis on Locally Compact Abelian Groups, Grundlehren Math. Wiss. 152, Springer, New York, 1970. 10.1007/978-3-662-26755-4_3Suche in Google Scholar

[8] H. İnceboz, B. Arslan and A. Bodaghi, Module symmetrically amenable Banach algebras, Acta Math. Acad. Paedagog. Nyházi. (N. S.) 33 (2017), no. 2, 233–245. Suche in Google Scholar

[9] A. Jabbari and A. Ebadian, Characterization of symmetric amenability of unital Banach algebras, preprint (2020), https://arxiv.org/abs/2006.03823. Suche in Google Scholar

[10] B. E. Johnson, Symmetric amenability and the nonexistence of Lie and Jordan derivations, Math. Proc. Cambridge Philos. Soc. 120 (1996), no. 3, 455–473. 10.1017/S0305004100075010Suche in Google Scholar

[11] A. T. M. Lau and J. Pym, Concerning the second dual of the group algebra of a locally compact group, J. Lond. Math. Soc. (2) 41 (1990), no. 3, 445–460. 10.1112/jlms/s2-41.3.445Suche in Google Scholar

[12] D. Malekzadeh Varnosfaderani, Derivations, multipliers and topological centers of certain banach algebras related to locally compact groups, Ph.D. Thesis, University of Manitoba, 2017. Suche in Google Scholar

[13] M. J. Mehdipour and G. R. Moghimi, The existence of nonzero compact right multipliers and Arens regularity of weighted Banach algebras, Rocky Mountain J. Math. 52 (2022), no. 6, 2101–2112. 10.1216/rmj.2022.52.2101Suche in Google Scholar

[14] M. J. Mehdipour and R. Nasr-Isfahani, Compact left multipliers on Banach algebras related to locally compact groups, Bull. Aust. Math. Soc. 79 (2009), no. 2, 227–238. 10.1017/S0004972708001147Suche in Google Scholar

[15] M. J. Mehdipour and A. Rejali, Regularity and amenability of weighted Banach algebras and their second dual on locally compact groups, preprint (2021), https://arxiv.org/abs/2112.13286. Suche in Google Scholar

[16] M. S. Monfared, Character amenability of Banach algebras, Math. Proc. Cambridge Philos. Soc. 144 (2008), no. 3, 697–706. 10.1017/S0305004108001126Suche in Google Scholar

[17] M. S. Moslehian and A. N. Motlagh, Some notes on ( σ , τ ) -amenability of Banach algebras, Stud. Univ. Babeş-Bolyai Math. 53 (2008), no. 3, 57–68. Suche in Google Scholar

Received: 2023-09-12
Revised: 2023-11-17
Accepted: 2023-11-30
Published Online: 2024-03-26
Published in Print: 2024-12-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 20.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2024-2011/html?lang=de
Button zum nach oben scrollen