Startseite Integral inequalities of Ostrowski type for two kinds of s-logarithmically convex functions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Integral inequalities of Ostrowski type for two kinds of s-logarithmically convex functions

  • Bo-Yan Xi ORCID logo , Shu-Hong Wang ORCID logo und Feng Qi ORCID logo EMAIL logo
Veröffentlicht/Copyright: 24. April 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In the paper, the authors establish several integral inequalities of the Ostrowski type for s-logarithmically convex functions. These integral inequalities modify the conditions and correct errors in two main theorems of the paper [A. O. Akdemir and M. Tunç, Ostrowski type inequalities for s-logarithmically convex functions in the second sense with applications, Georgian Math. J. 22 (2015), no. 1, 1–7].

Award Identifier / Grant number: 12361013

Funding statement: This work was partially supported by the National Natural Science Foundation of China (Grant No. 12361013).

Acknowledgements

The authors appreciate anonymous referees for their careful corrections and valuable comments on the original version of this paper.

References

[1] A. O. Akdemir and M. Tunç, On some integral inequalities for s-logarithmically convex functions and their applications, preprint (2012), https://arxiv.org/abs/1212.1584. Suche in Google Scholar

[2] A. O. Akdemir and M. Tunç, Ostrowski type inequalities for s-logarithmically convex functions in the second sense with applications, Georgian Math. J. 22 (2015), no. 1, 1–7. 10.1515/gmj-2014-0061Suche in Google Scholar

[3] M. Alomari and M. Darus, Some Ostrowski type inequalities for convex functions with applications, RGMIA Res. Rep. Coll. 13 (2010), no. 2, Paper No. 3. Suche in Google Scholar

[4] M. Alomari, M. Darus, S. S. Dragomir and P. Cerone, Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense, Appl. Math. Lett. 23 (2010), no. 9, 1071–1076. 10.1016/j.aml.2010.04.038Suche in Google Scholar

[5] R.-F. Bai, F. Qi and B.-Y. Xi, Hermite–Hadamard type inequalities for the m- and ( α , m ) -logarithmically convex functions, Filomat 27 (2013), no. 1, 1–7. 10.2298/FIL1301001BSuche in Google Scholar

[6] W. W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Räumen, Publ. Inst. Math. (Beograd) (N. S.) 23(37) (1978), 13–20. Suche in Google Scholar

[7] T. Du and Y. Peng, Hermite–Hadamard type inequalities for multiplicative Riemann–Liouville fractional integrals, J. Comput. Appl. Math. 440 (2024), Article ID 115582. 10.1016/j.cam.2023.115582Suche in Google Scholar

[8] H. Hudzik and L. Maligranda, Some remarks on s-convex functions, Aequationes Math. 48 (1994), no. 1, 100–111. 10.1007/BF01837981Suche in Google Scholar

[9] K. Mehrez and P. Agarwal, New Hermite–Hadamard type integral inequalities for convex functions and their applications, J. Comput. Appl. Math. 350 (2019), 274–285. 10.1016/j.cam.2018.10.022Suche in Google Scholar

[10] W. Orlicz, A note on modular spaces. I, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 9 (1961), 157–162. Suche in Google Scholar

[11] J. E. Pečarić, F. Proschan and Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Math. Sci. Eng. 187, Academic Press, Boston, 1992. Suche in Google Scholar

[12] Y. Peng, H. Fu and T. Du, Estimations of bounds on the multiplicative fractional integral inequalities having exponential kernels, Commun. Math. Stat. (2022), 10.1007/s40304-022-00285-8. 10.1007/s40304-022-00285-8Suche in Google Scholar

[13] M. Tunç and A. Açikel, On ( β , α ) -logarithmically convex functions in the first and second sense with their inequalities, Int. J. Open Problems Compt. Math. 9 (2016), no. 2, 39–52. 10.12816/0033920Suche in Google Scholar

[14] Y. Wu and F. Qi, Discussions on two integral inequalities of Hermite–Hadamard type for convex functions, J. Comput. Appl. Math. 406 (2022), Article ID 114049. 10.1016/j.cam.2021.114049Suche in Google Scholar

[15] B.-Y. Xi and F. Qi, Inequalities of Hermite–Hadamard type for extended s-convex functions and applications to means, J. Nonlinear Convex Anal. 16 (2015), no. 5, 873–890. Suche in Google Scholar

[16] B. Y. Xi and F. Qi, Some integral inequalities of Hermite–Hadamard type for s-logarithmically convex functions, Acta Math. Sci. Ser. A (Chinese Ed.) 35 (2015), no. 3, 515–524. Suche in Google Scholar

[17] B.-Y. Xi and F. Qi, Some integral inequalities of Hermite–Hadamard type for s-logarithmically convex functions, preprint (2015), https://doi.org/10.13140/RG.2.1.4385.9044. Suche in Google Scholar

Received: 2023-09-22
Revised: 2023-12-03
Accepted: 2023-12-25
Published Online: 2024-04-24
Published in Print: 2024-12-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 15.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2024-2018/html
Button zum nach oben scrollen