Startseite On geometrical characteristics and inequalities of new bicomplex Lebesgue Spaces with hyperbolic-valued norm
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On geometrical characteristics and inequalities of new bicomplex Lebesgue Spaces with hyperbolic-valued norm

  • Erdem Toksoy ORCID logo EMAIL logo und Birsen Sağır ORCID logo
Veröffentlicht/Copyright: 20. November 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this work, it is assumed that the norm over bicomplex numbers is the hyperbolic ( đ”» -valued) norm. In this paper, we provide an overview of bicomplex Lebesgue spaces and investigate some of their geometric properties, including đ”č ⁹ ℂ -convexity, đ”č ⁹ ℂ -strict convexity, and đ”č ⁹ ℂ -uniform convexity. Moreover, the basic inequalities such as đ”» -Hölder’s inequality and đ”» -Minkowski inequality for bicomplex Lebesgue spaces are presented, used to show geometric properties.

MSC 2020: 46B20; 43A15; 46E30

References

[1] R. P. Agarwal, D. O’Regan and D. R. Sahu, Fixed Point Theory for Lipschitzian-Type Mappings with Applications, Topological Fixed Point Theory Appl. 6, Springer, New York, 2009. 10.1155/2009/439176Suche in Google Scholar

[2] D. Alpay, M. E. Luna-ElizarrarĂĄs, M. Shapiro and D. C. Struppa, Basics of Functional Analysis with Bicomplex Scalars, and Bicomplex Schur Analysis, Springer Briefs Math., Springer, Cham, 2014. 10.1007/978-3-319-05110-9Suche in Google Scholar

[3] R. G. Bartle, The Elements of Integration and Lebesgue Measure, Wiley Classics Lib., John Wiley & Sons, New York, 1995. 10.1002/9781118164471Suche in Google Scholar

[4] F. Baßar and H. Dutta, Summable Spaces and Their Duals, Matrix Transformations and Geometric Properties, Monogr. Res. Notes Math., CRC Press, Boca Raton, 2020. 10.1201/9781351166928Suche in Google Scholar

[5] C. Chidume, Geometric Properties of Banach Spaces and Nonlinear Iterations, Lecture Notes in Math. 1965, Springer, London, 2009. 10.1007/978-1-84882-190-3Suche in Google Scholar

[6] J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), no. 3, 396–414. 10.1090/S0002-9947-1936-1501880-4Suche in Google Scholar

[7] F. Colombo, I. Sabadini and D. C. Struppa, Bicomplex holomorphic functional calculus, Math. Nachr. 287 (2014), no. 10, 1093–1105. 10.1002/mana.201200354Suche in Google Scholar

[8] N. Değirmen and B. Sağır, On bicomplex đ”č ⁹ ℂ -modules l p đ€ ⁹ ( đ”č ⁹ ℂ ) and some of their geometric properties, Georgian Math. J. 30 (2023), no. 1, 65–79. 10.1515/gmj-2022-2194Suche in Google Scholar

[9] J. Diestel, Geometry of Banach Spaces—Selected Topics, Lecture Notes in Math. 485, Springer, Berlin, 1975. 10.1007/BFb0082079Suche in Google Scholar

[10] S. Dubey, R. Kumar and K. Sharma, A note on bicomplex Orlicz spaces, preprint (2014), https://arxiv.org/abs/1401.7112. Suche in Google Scholar

[11] R. Gervais Lavoie, L. Marchildon and D. Rochon, Infinite-dimensional bicomplex Hilbert spaces, Ann. Funct. Anal. 1 (2010), no. 2, 75–91. 10.15352/afa/1399900590Suche in Google Scholar

[12] R. Gervais Lavoie, L. Marchildon and D. Rochon, Finite-dimensional bicomplex Hilbert spaces, Adv. Appl. Clifford Algebr. 21 (2011), no. 3, 561–581. 10.1007/s00006-010-0274-0Suche in Google Scholar

[13] C. Ghosh, A. Bandyopadhyay and S. Mondal, Hyperbolic valued metric space, preprint (2021), https://arxiv.org/abs/2108.07100. Suche in Google Scholar

[14] C. Ghosh and S. Mondal, Bicomplex version of Lebesgue’s dominated convergence theorem and hyperbolic invariant measure, Adv. Appl. Clifford Algebr. 32 (2022), no. 3, Paper No. 37. 10.1007/s00006-022-01216-0Suche in Google Scholar

[15] N. GĂŒngör, Some geometric properties of the non-Newtonian sequence spaces l p ⁹ ( N ) , Math. Slovaca 70 (2020), no. 3, 689–696. 10.1515/ms-2017-0382Suche in Google Scholar

[16] R. Kumar, R. Kumar and D. Rochon, The fundamental theorems in the framework of bicomplex topological modules, preprint (2011), https://arxiv.org/abs/1109.3424. Suche in Google Scholar

[17] R. Kumar and H. Saini, Topological bicomplex modules, Adv. Appl. Clifford Algebr. 26 (2016), no. 4, 1249–1270. 10.1007/s00006-016-0646-1Suche in Google Scholar

[18] R. Kumar and K. Singh, Bicomplex linear operators on bicomplex Hilbert spaces and Littlewood’s subordination theorem, Adv. Appl. Clifford Algebr. 25 (2015), no. 3, 591–610. 10.1007/s00006-015-0531-3Suche in Google Scholar

[19] R. Kumar, K. Singh, H. Saini and S. Kumar, Bicomplex weighted Hardy spaces and bicomplex C * -algebras, Adv. Appl. Clifford Algebr. 26 (2016), no. 1, 217–235. 10.1007/s00006-015-0572-7Suche in Google Scholar

[20] T. S. Liu and J.-K. Wang, Sums and intersections of Lesbesgue spaces, Math. Scand. 23 (1968), 241–251. 10.7146/math.scand.a-10916Suche in Google Scholar

[21] M. E. Luna-Elizarrarås, M. Shapiro, D. C. Struppa and A. Vajiac, Bicomplex Holomorphic Functions. The Algebra, Geometry and Analysis of Bicomplex Numbers, Front. Math., BirkhÀuser/Springer, Cham, 2015. 10.1007/978-3-319-24868-4Suche in Google Scholar

[22] O. Oğur, Some geometric properties of weighted Lebesgue spaces L w p ⁱ ( G ) , Facta Univ. Ser. Math. Inform. 33 (2018), no. 4, 523–530. Suche in Google Scholar

[23] G. B. Price, An Introduction to Multicomplex Spaces and Functions, Monogr. Textb. Pure Appl. Math. 140, Marcel Dekker, New York, 1991. Suche in Google Scholar

[24] H. Reiter and J. D. Stegeman, Classical Harmonic Analysis and Locally Compact Groups, 2nd ed., London Math. Soc. Monogr. N. S. 22, Oxford University, New York, 2000. 10.1093/oso/9780198511892.001.0001Suche in Google Scholar

[25] D. Rochon and S. Tremblay, Bicomplex quantum mechanics. II. The Hilbert space, Adv. Appl. Clifford Algebr. 16 (2006), no. 2, 135–157. 10.1007/s00006-006-0008-5Suche in Google Scholar

[26] B. Sağır and İ. Alßalvar, On geometric properties of weighted Lebesgue sequence spaces, Ikonion J. Math. 1 (2019), no. 1, 18–25. Suche in Google Scholar

[27] H. Saini, A. Sharma and R. Kumar, Some fundamental theorems of functional analysis with bicomplex and hyperbolic scalars, Adv. Appl. Clifford Algebr. 30 (2020), no. 5, Paper No. 66. 10.1007/s00006-020-01092-6Suche in Google Scholar

[28] J. Yeh, Real Analysis. Theory of Measure and Integration, 2nd ed., World Scientific, Hackensack, 2006. 10.1142/6023Suche in Google Scholar

Received: 2023-03-22
Accepted: 2023-05-10
Published Online: 2023-11-20
Published in Print: 2024-06-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 13.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2023-2093/html
Button zum nach oben scrollen