Startseite Generalized Euclidean operator radius
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Generalized Euclidean operator radius

  • Mohammad W. Alomari , Mohammad Sababheh EMAIL logo , Cristian Conde und Hamid Reza Moradi
Veröffentlicht/Copyright: 30. November 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we introduce the f-operator radius of Hilbert space operators as a generalization of the Euclidean operator radius and the q-operator radius. The properties of the newly defined radius are discussed, emphasizing how it extends some known results in the literature.

MSC 2020: 47A12; 47A30; 26A51

References

[1] A. Abu-Omar and F. Kittaneh, A generalization of the numerical radius, Linear Algebra Appl. 569 (2019), 323–334. 10.1016/j.laa.2019.01.019Suche in Google Scholar

[2] M. W. Alomari, K. Shebrawi and C. Chesneau, Some generalized Euclidean operator radius inequalities, Axioms 11 (2022), no. 6, Paper No. 285. 10.3390/axioms11060285Suche in Google Scholar

[3] A. Aluthge, Some generalized theorems on p-hyponormal operators, Integral Equations Operator Theory 24 (1996), no. 4, 497–501. 10.1007/BF01191623Suche in Google Scholar

[4] A. B. Bajmaeh and M. E. Omidvar, Improved inequalities for the extension of Euclidean numerical radius, Filomat 33 (2019), no. 14, 4519–4524. 10.2298/FIL1914519BSuche in Google Scholar

[5] H. Baklouti, K. Feki and O. A. M. Sid Ahmed, Joint numerical ranges of operators in semi-Hilbertian spaces, Linear Algebra Appl. 555 (2018), 266–284. 10.1016/j.laa.2018.06.021Suche in Google Scholar

[6] R. Bhatia, Positive Definite Matrices, Princeton Ser. Appl. Math., Princeton University, Princeton 2007. Suche in Google Scholar

[7] A. Bourhim and M. Mabrouk, Numerical radius and product of elements in C * -algebras, Linear Multilinear Algebra 65 (2017), no. 6, 1108–1116. 10.1080/03081087.2016.1228818Suche in Google Scholar

[8] S. S. Dragomir, Some inequalities for the Euclidean operator radius of two operators in Hilbert spaces, Linear Algebra Appl. 419 (2006), no. 1, 256–264. 10.1016/j.laa.2006.04.017Suche in Google Scholar

[9] S. S. Dragomir, Upper bounds for the Euclidean operator radius and applications, J. Inequal. Appl. 2008 (2008), Article ID 472146. 10.1155/2008/472146Suche in Google Scholar

[10] S. S. Dragomir, Some inequalities of Kato type for sequences of operators in Hilbert spaces, Publ. Res. Inst. Math. Sci. 48 (2012), no. 4, 937–955. 10.2977/prims/92Suche in Google Scholar

[11] M. Erfanian Omidvar and H. Reza Moradi, New estimates for the numerical radius of Hilbert space operators, Linear Multilinear Algebra 69 (2021), no. 5, 946–956. 10.1080/03081087.2020.1810200Suche in Google Scholar

[12] T. Furuta, An extension of the Heinz–Kato theorem, Proc. Amer. Math. Soc. 120 (1994), no. 3, 785–787. 10.1090/S0002-9939-1994-1169027-6Suche in Google Scholar

[13] F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math. 158 (2003), no. 1, 11–17. 10.4064/sm158-1-2Suche in Google Scholar

[14] F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math. 168 (2005), no. 1, 73–80. 10.4064/sm168-1-5Suche in Google Scholar

[15] H. R. Moradi and M. Sababheh, More accurate numerical radius inequalities (II), Linear Multilinear Algebra 69 (2021), no. 5, 921–933. 10.1080/03081087.2019.1703886Suche in Google Scholar

[16] H. R. Moradi and M. Sababheh, New estimates for the numerical radius, Filomat 35 (2021), no. 14, 4957–4962. 10.2298/FIL2114957MSuche in Google Scholar

[17] M. S. Moslehian, M. Sattari and K. Shebrawi, Extensions of Euclidean operator radius inequalities, Math. Scand. 120 (2017), no. 1, 129–144. 10.7146/math.scand.a-25509Suche in Google Scholar

[18] H. P. Mulholland, On generalizations of Minkowski’s inequality in the form of a triangle inequality, Proc. London Math. Soc. (2) 51 (1950), 294–307. 10.1112/plms/s2-51.4.294Suche in Google Scholar

[19] M. E. Omidvar and H. R. Moradi, Better bounds on the numerical radii of Hilbert space operators, Linear Algebra Appl. 604 (2020), 265–277. 10.1016/j.laa.2020.06.021Suche in Google Scholar

[20] G. Popescu, Unitary invariants in multivariable operator theory, Mem. Amer. Math. Soc. 200 (2009), no. 941, 1–91. 10.1090/memo/0941Suche in Google Scholar

[21] M. Sababheh, Heinz-type numerical radii inequalities, Linear Multilinear Algebra 67 (2019), no. 5, 953–964. 10.1080/03081087.2018.1440518Suche in Google Scholar

[22] M. Sababheh and H. R. Moradi, More accurate numerical radius inequalities (I), Linear Multilinear Algebra 69 (2021), no. 10, 1964–1973. 10.1080/03081087.2019.1651815Suche in Google Scholar

[23] A. Sheikhhosseini, M. Khosravi and M. Sababheh, The weighted numerical radius, Ann. Funct. Anal. 13 (2022), no. 1, Paper No. 3. 10.1007/s43034-021-00148-3Suche in Google Scholar

[24] A. Sheikhhosseini, M. S. Moslehian and K. Shebrawi, Inequalities for generalized Euclidean operator radius via Young’s inequality, J. Math. Anal. Appl. 445 (2017), no. 2, 1516–1529. 10.1016/j.jmaa.2016.03.079Suche in Google Scholar

[25] S. Sheybani, M. Sababheh and H. R. Moradi, Weighted inequalities for the numerical radius, Vietnam J. Math. 51 (2023), no. 2, 363–377. 10.1007/s10013-021-00533-4Suche in Google Scholar

[26] T. Yamazaki, On upper and lower bounds for the numerical radius and an equality condition, Studia Math. 178 (2007), no. 1, 83–89. 10.4064/sm178-1-5Suche in Google Scholar

Received: 2023-03-03
Accepted: 2023-05-02
Published Online: 2023-11-30
Published in Print: 2024-06-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 13.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2023-2079/html
Button zum nach oben scrollen